
Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

„Modellierung operationaler Aspekte von
Systemarchitekturen“

Master Thesis presentation

October 2005 – March 2006

Mirko Bleyh - Medieninformatik

2Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

3Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Goals

� Analyse modeling approaches for operational aspects

� Evaluate existing technology for domain-specific modeling

� Implement prototype modeling solution

4Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

5Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model-Driven Software Development

Goals:

� Reduce software development time

� Reduce software complexity

� Increase software quality

� Increase software reusability

Key aspects:

� Use models as primary development artifacts based on DSL

� Transform abstract models into less abstract models (or source code)

� Provide Infrastructure (tools, processes, components)

6Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model-Driven Software Development

Main paradigms:

� Model-Driven Software Development

� Use abstract but formal models based on DSLs

� Use transformations to generate less abstract models or code

� Model-Driven Architecture (MDA)

� Standardization of Model-Driven Software Development by OMG

� Usage of OMG standards (MOF, UML, XMI, OCL, QVT)

� Focus on interoperability and portability

� Software Factories

� Microsofts vision of Model-Driven Software Development

� Rejects OMG standards, uses own DSL Metamodel

� Focus on tooling support

7Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model-Driven Software Development

Code of the application

reference

implementation

Individual code

Generic code

Schematic and

repeating code

Application model
Application model
Application model

DSL

Transformations

Schematic and

repeating code
Schematic and

repeating code
Schematic and

repeating code

Individual codeIndividual code
Individual code

Platform

analyse
separate

uses creates

8Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model-Driven Architecture

Technical Specification

CORBA-Model J2EE-Model XML-Model

CORBA / C++-

Code

J2EE / Java-

Code
XML-Code

PIM

(via UML-Profile)

PSM

(via UML-Profile)

Implementation

Model-to-Model Transformation

Model-to-Code Transformation

9Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

10Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Pro-active Infrastructure

”Pro-active Infrastructure is a DCX standardized IT infrastructure foundation

to optimize the development and in particular the operations of custom

applications within the DaimlerChrysler group.“

11Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Pro-active Infrastructure

SUN JES

Directory

SUN JES

Directory

CA

Siteminder

CA

Siteminder

WebSphere

Application Server

WebSphere

Application Server

IBM HTTP ServerIBM HTTP Server

DCX Infrastructure (Network, Firewalls, Proxy Server, BGN, etc.)DCX Infrastructure (Network, Firewalls, Proxy Server, BGN, etc.)

ApplicationApplication

PAI J2EEPAI J2EE

PAI

Directory

PAI

Directory PAI SecurityPAI Security

DCX Hardware/OS InfrastructureDCX Hardware/OS Infrastructure

ApplicationApplication

Infrastructure & Middleware integration

issues need to be addressed

on an application project level

Standardized, Integrated &

Release Managed Platforms for all

application projects to minimize complexity

and provide standardized solutions.

Before the usage of PAI After the usage of PAI

12Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Pro-active Infrastructure

Shared

Services

Platforms

Content

Management

Platform

Application

Integration

Platforms

Collaboration

Platform

NetWeaver

Process/People

Integration

Operation

Services

Platform

Application

Platforms
Notes

Application

Platform

.NET

Application

Platform

NetWeaver

Application

Platform

Data

Integration

Platforms

Data

Management

Platform

Business

Intelligence

Platform

NetWeaver

Information

Integration
…

…

…

…
Authentication

Directory

Service*

*provided by PAI Security and Directory Providers

13Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

14Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Operational Aspects

Functional Aspects

- Structures of software components

- Interaction between components

- Definition of interfaces

- Dynamic behaviour of components

Operational Aspects

- Network organisation

- Distribution of components

- Service level requirements

- Systems Management

Software Architecture is devided into two categories:

IBM Architecture Description Standard defines conventions for notation,

terminology and semantics for the architecture of an IT system

15Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Operational Aspects

Software
components

Configuration
files, deployment
descriptors, etc

Developed software

Mainframe

Server

Server

Daten

IT infrastructure

Mainframe

Server

Server

Daten

IT infrastructureSoftware architecture and design

?

?

16Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Operational Aspects

� Vital for the developement and operation of large scale applications

� Need to be addressed in all phases of software development:

Requirements:
- Operational requirements

- Non-functional requirements

Test:
- Set up test environment

- Test functional and non-functional

Requirements

Operation:
- Deploy and configure software

- Maintain and manage software

Implementation:
- Implement for non-functional requirements

- Implement operational Features

Design:
- Distribution of components

- Design for non-functional requirements

17Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

18Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Operational Model (OM) used for operational aspects within PAI:

� Part of IBM Global Services Method

� Defines:

� Distribution of components over

� Nodes of the IT infrastructure and the

� Connections required for the interactions of the components in order to archieve

� Functional and non-funtional requirements

� Contains:

� One or more relationship diagrams

� One or more walktrough diagrams

� Detailed description of nodes and connections

� Description of how functional and non-functional requirements will be met

� Description of the systems management strategy

� Devided into two / three different levels of abstraction…

19Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Operational Model

Conceptual Level

Operational Model

Specification Level

Operational Model

Physical Level

Levels of abstraction for Operational Model
abstraction

time

20Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Operational Model Conceptual Level (CL)

� defines the set of conceptual nodes (CN) and functional relations

between them

� specifies the zoning

� defines deployment units (DU) for each CN

� no product information, no physical specifications

Operational Model

Conceptual Level

Operational Model

Specification Level

Operational Model

Physical Level

21Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Z_Application

Z_DMZ

Z_Administrator

Z_User

CN_CO_Browser

E_WebBrowser

E_JavaRuntime

A_User

CC_002

A_Administrator

To arbitrary
Web

Applications

CN_J2EE_AppServer

E_AppServer

E_AppServerTest

E_DatabaseClient

E_J2EE_RuntimeExtensions

D_J2EE_RuntimeConfiguration

E_J2EE_IntegrationTest

E_J2EE_SecurityIntegration

E_J2EE_SecurityIntegrationTest

D_SecurityPolicyServerConfiguration

E_J2EE_ThinClientServerExample

E_J2EE_RichClientServerExample

E_J2EE_MessagingIntegrationTest

E_Application

Z_Data

Z_Security

.

CN_J2EE_RichClient

E_J2EE_RichClientRuntime

E_JavaRichClientApp

CC_001
CC_006

CC_019

CC_010

To arbitrary
Applications

Z_Deployment

CN_J2EE_DeploymentManager

E_AppServerDeploymentManager

D_ AppServerDMgrConfiguration

D_ AppServerConfiguration

E_J2EE_RuntimeExtensions

D_ J2EE_DMgrRuntimeConfiguration

E_J2EE_SecurityIntegration

D_ J2EE_SecurityConfiguration

D_ SecurityPropertyConfiguration

D_ SecurityPolicyServerDMgrConfiguration

D_ LoggingDataConfiguration

I_J2EE_IntegrationTest

I_J2EE_SecurityIntegration

I_J2EE_SecurityIntegrationTest

I_J2EE_DataExchange

I_J2EE_RichClientServer

I_J2EE_RichClientServerExample

I_J2EE_ThinClientServerExample

I_J2EE_MessagingIntegration

I_J2EE_MessagingIntegrationTest

CC_063

CC_064

CN_SEC_PrivilegeServer

CN_DIR_DirectoryServer

D_J2EE_UserData

D_J2EE_RichClientUserData

D_J2EE_TestUserData

CN_J2EE_DatabaseServer

E_DatabaseServer

D_DataExchangeData

D_LoggingData

D_SessionData

CC_033

CC_034

CN_CO_Browser

E_WebBrowser

E_WebServer

E_AppServerPlugin

E_PolicyServerWebAgent

U_J2EE_WebServerIntegration

I_J2EE_RichClientRuntime

I_J2EE_RichClientExample

CC_066

CC_067

CC_014

CC_030

CC_037

CC_032

CN_J2EE_SharedServices

E_AppServer

E_DatabaseClient

E_J2EE_RuntimeExtensions

D_J2EE_RuntimeConfiguration

E_J2EE_IntegrationTest

E_J2EE_SecurityIntegration

E_J2EE_SecurityIntegrationTest

D_SecurityPolicyServerConfiguration

E_J2EE_DataExchange

E_J2EE_RichClientServer

D_J2EE_RichClientConfiguration

E_J2EE_MessagingIntegration

D_J2EE_MessagingIntegrationConfiguration

E_JavaRuntime

CN_J2EE_WebServer

CC_012

CC_016

I_JavaRichClientApp

I_Application

D_ApplicationUserData

D_ApplicationData

D_ApplicationPolicies

CC_065

CC_031

22Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Operational Model Specification Level (SL)

� Specific instance of conceptual level

� Defines the products and major versions to use

� Specifies the type of CN’s (cluster, HW pattern, ..)

� No hostnames, no information about real instances

Operational Model

Conceptual Level

Operational Model

Specification Level

Operational Model

Physical Level

23Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Z_DMZ

Z_Data

Z_DMZ

Z_Application

Z_Administration

Z_User

SN_CO_Browser

E_WebBrowser

A_User

A_Administrator

SN_CO_Browser

E_WebBrowser

SN_CO_RP_LoadBalancer

E_LoadBalancer

SN_CO_WS_LoadBalancer

E_LoadBalancer

SN_CO_RP_LoadBalancer
HotStdBy

E_LoadBalancer

SN_CO_WS_LoadBalancer
HotStdBy

E_LoadBalancer

SN_CO_ReverseProxy

E_ProxyServer

SC_004

SN_CO_FP_LoadBalancer

E_LoadBalancer

SN_CO_FP_LoadBalancer
HotStdBy

E_LoadBalancer

SN_CO_ForwardProxy

E_ProxyServer

Z_Security .

SN_SEC_PrivilegeServer

D_SEC_Data

SN_CO_DirLoadBalancer

E_LoadBalancer

CN_DIR_DirectoryServer

...

SN_DIR_DirectoryServer

D_DIR_Data

A_User

SN_J2A_Client
CN_J2A_JunaClient
CN_J2A_JavaClient

CN_J2A_JavaThinsClient

E_IAP_ClientContainer
E_IAP_J2EE_Container
E_IAP_ThinClientContainer

U_JavaRichClientApp

E_JavaThinClientApp

SC_002

SN_CO_DB_Admin

E_DB_Admin

SC_015

SC_011

SC_017

SC_012

SC_008

SN_CO_ForwardProxy

E_ProxyServer

SN_CO_ReverseProxy

E_ProxyServer

SC_003

SC_001

SC_005

SC_007

E_JavaRichClientApp

SC_006

SC_014

SN_J2A_AppServer
CN_J2A_WebAppServer

CN_J2A_IAP_Server
CN_J2A_AppServer

E_WAS
E_DatabaseClient
E_WAS_SecurityIntegration
E_IAP_J2A_Runtime

E_J2A_Application

E_WebApplication

SC_016

SN_J2A_WebServer
CN_J2A_WebServer

E_WebServer
E_SiteMinderAgent
E_WebSpherePlugin
E_IAP_WebModule

SN_J2A_DataBase

E_DatabaseServer
D_WAS_ConfigData
D_ADE_Data
D_SESS_Data
D_LOGGING_Data

D_Application Data

SN_J2A_DeploymentManager

E_DeploymentManager

SN_J2A_DeploymentManager
HotStdBy

E_DeploymentManager

Z_Deployment

SC_018

SC_019

SC_010

SC_009

SC_020

24Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Operational Model

Conceptual Level

Operational Model

Specification Level

Operational Model

Physical Level

Operational Model Physical Level (PL)

� Defines all aspects required for setting up the environment in a

real hosting environment

� IP’s, hostnames, ports, FW

� Machine specification, references to asset management

25Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

26Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Other operational artifacts:

� Operational Description (OD):

� XML-based document

� Central repository for operational information

� Contains data from Operational Model of all levels

� Detailed configuration parameters for base products and PAI components

� Used for PICS

� Platform Installation and Configuration Solution (PICS)

� Automated installation and configuration of PAI J2EE Platform

� Based on predefined solutions and user-guided wizard

� Uses OD as major input

27Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

PAI Operational Model

Current state:

� Operational Model only used in informal way (Visio diagrams, Word files…)

� No consistency checks possible

� No standard notation so far for Operational Model

� Only rarely used by PAI projects (due to lack of tools?)

� Operational Description for J2EE has around 3000 lines of XML

� Complex and not human readable

� Difficult to maintain

� Modeling approach could solve some problems here!

28Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

29Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Domain Specific Languages:

� Used to define the key aspects of a specific domain

� Enriches models with semantic

� Captures the knowledge of the domain expert

� Already widely used (SQL, FORTRAN, etc.)

� Key item for model-driven software development

Ingredients:
� Abstract Syntax

� Static Semantic

� Dynamic Semantic

� Concrete Syntax

Metamodel

Model transformations

30Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodeling

� 4 layers defined by Meta-object Facility (MOF)

� Java Code on M0 (as instance of UML-model)

� UML-Models on M1

� UML-Metamodel on M2

� MOF on M3

Possible metamodels for DSL:

1. Extend UML-Metamodel in M2 with profiles

(stereotypes, tagged values)

2. Create new M2 metamodel based on MOF

3. Create new M2 metamodel based on other M3

metametamodel

� DSL as new M2 metamodel based on MOF

Meta-Metamodel

Metamodel

Model

Instances

describes

describes

describes

Instance of

Instance of

Instance of

M3

M2

M1

M0

describes Instance of

31Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodeling approach:

� Analyse existing models

� Extract key elements

� Model key elements in metamodel

� Use modeling techniques known from UML modeling

Best-practices:

� Keep it simple

� Interatively check and extend metamodel against model

� Model containment in one single element (direct or indirect)

32Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Structure of the Metamodel:

Basic Elements

Conceptual Level Specified Level Physical Level

33Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodel

Basic elements

34Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodel

Elements of conceptual level

35Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodel

Elements of specification level

36Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Metamodel

Elements of

physical level

37Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Semantics:

� Semantics define the meaning of a language

� Static semantics define the well-formedness of a model

� Static semantics can be expressed as contraints in the metamodel

� Dynamic semantics define the meaning of elements of the metamodel

� Dynamic semantics expressed on forms of transformations

38Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

DSL for the Operational Model

Static Semantic with OCL

� Object Constraint Language (OCL) is a declarative, side-effect free language for the

definition of constraints on a model (or metamodel)

� Can be applied on M1, M2 or M3

Example for the Operational Model metamodel:

context sl::SNode
inv:

self.deploymentUnits->select(du | not du.supportedOSs
->exists(os | os.ID = self.operatingSystem.ID))
->union(

self.derivedDUs->select(du | not du.supportedOSs
->exists(os | os.ID = self.operatingSystem.ID))

)

39Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

40Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model Transformations

Why model transformations?

� Capture the semantics of the metamodel

� Reduce modeling complexity and effort

� Ensure consistency between models

Model Transformations vs. Text Transformations (XSLT)

� Validation of transformation rules based on metamodel

� Only valid models are generated

� Reduced complexity

� Support for synchronisation of models

41Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model Transformations

IBM Model Transformation Framework

� Based on EMF metamodels

� Bidirectional Transformations

� Reconciliation of transformed models

� Based on RFP on QVT (Query, View, Transformation)

� Available as Eclipse Plugin

42Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Model Transformations

Workflow model

transformations

Transformations

R
e
c
o

n
c
i
li
a

t
i
o

n
I
n

v
e

r
s
e

T

r
a

n
s
f
o

r
m

a
t
i
o

n
I
n
i
t
i
a

l
T

r
a

n
s
f
o

r
m

a
t
i
o

n

Transformation

Execute
transformation

Source model

Mapping
source-target

Target model

Mapping
target-source

Execute
transfomration

Transformation

Target model

Reconcile models

Modified
source model

Mapping
Source-Target

Reconciliated
models

Input Action Output

43Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

44Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

Eclipse Tooling Landscape:

� Eclipse:

� extensible Rich-Client Framework and IDE

� Eclipse Modeling Framework (EMF):

� modeling framework and code generation facility for building tools and other applications based on a

structured data model

� Eclipse Graphical Editing Framework (GEF):

� framework for creating rich graphical editors based on existing application model

� Eclipse Graphical Modeling Framework (GMF):

� provides a generative component and runtime infrastructure for developing graphical editors based on

EMF and GEF

45Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

Tasks:

1. Create metamodel in EMF (abstract syntax)

2. Add constraints in OCL to the metamodel (static semantic)

3. Create GMF editor definition from metamodel (concrete syntax)

4. Generate metamodel and editor code

5. Adjust generated code

6. Run editor in Eclipse

46Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

1. Create metamodel in EMF

� EMF metametamodel is Ecore � similar to EMOF or UML class diagram

� Eclipse EMF provides simple Ecore editor

� EMF metamodel can be imported from Rational UML model, annotated Java classes,

or XMI

� Graphical Editor can be used from

GMF or e.g. Omondo EclipseUML

47Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

2. Add constraints to metamodel

� No native „constraint“ element in Ecore metamodel!

� In UML, annotations are used to visualize constraints

� EAnnotation elements can be used to add constraints to metamodel

� Constraints expressed in OCL

� Validation of constraints by external tool (e.g. Kent OCL Library)

48Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

3. Create GMF editor from metamodel

Create GMF

project

Create graphic

definition

Create tooling

definition

Create mapping

definition

Create

generator

model

Configure

generator

parameters

Generate

diagram

plug - ins

Domain

model (s)
*. ecore

*.gmfgraph

*. gmftool

*. gmfmap

*. gmfgen

Diagram

plug -ins

*.gmfmap

*. gmfgen

*.gmfgen

49Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

3. Create GMF editor from metamodel

A) Graphical definition (gmfgraph):

� Define Figure Gallery based on simple shapes (rectangle, rounded rectangle, polygon, ellipse, polyline,

etc.) or custom shapes based on programmatic GEF figures

� Define graphical nodes for the specific editor

� Map graphical nodes to elements of the figure gallery (can be external figure gallery as well)

� No direct relation to metamodel

� Can be reused for different editors

50Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

3. Create GMF editor from metamodel

B) Tooling definition (gmftool):

� Define tools required for editor:

� Menu contributions

� Context menu

� Toolbar

� …

� Minimum tooling definition contains creation tools for the toolbar for each metamodel element

� No direct relation to metamodel

� Can be reused for different editors

51Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

3. Create GMF editor from metamodel

C) Mapping definition (gmfmap):

� Connect all created models (metamodel, gmfgraph, gmftool)

� Map metamodel elements to corresponding graphical element and creation tool

� Define root diagram element

� Direct relation to metamodel

� Can use multiple models

� Create Generator Model from gmfmap

52Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

4. Generate metamodel and editor code

� Generate Java representation of metamodel from EMF generator model

� Generate editor code from GMF generator model

� resulting projects:

1. Metamodel project - contains models and metamodel code

2. Edit project - contains model editing code (properties, etc.)

3. Editor project - contains editor code (wizards, file extension, etc.)

4. Diagram project - contains GEF code for diagram editor

All projects are Eclipse Plug-ins and can be launched!

53Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

5. Adjust generated code

� Source code of plugins is available

� JavaDoc-tags mark generated code parts (@generated)

� Changes of code required for special use-cases

� Mark manually changed code parts with @generated NOT

� Code generation will not override changed parts

54Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Implementation with Eclipse Tools

6. Run editor in Eclipse

� Generated projects all Eclipse Plugins

� Run plugins withing runtime workbench or export as feature

� Plugins include:

� Creation wizards

� Menu extensions

� Simple model editor

� GMF graphical editor

� File extension registration

55Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

56Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

57Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Conclusion

� Formal modeling is essential for managing complexity

� Operational aspects are too komplex NOT to be modeled

� Metamodeling approaches based on MOF / Ecore provide solid foundation for the

creation of custom DSLs

� Eclipse Tools (EMF, GEF, GMF, etc.) can be good starting point for the

implementation of DSLs

� GMF still in heavy development, major changes to be expected until version 1.0

� Advanced modeling support (multi-user, rights management, change management,

versioning, etc.) has to be provided by other tools or to be self-implemented

� For complete modeling solution for PAI Operational Model, some major effort has to

be applied, but generative approach makes solution very flexible and changes can

be applied easily

58Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

Agenda

� Goals

� Model-Driven Software Development

� Pro-active Infrastructure (PAI)

� Operational Aspects

� PAI Operational Model

� DSL for the Operational Model

� Model Transformations

� Implementation with Eclipse Tools

� Demo

� Conclusion

� References

59Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

References

� „Modellierung operational Aspekte von Systemarchitekturen“ – Mirko Bleyh

http://www.mirkobleyh.de/diplom/Diplomarbeit.pdf

� GMF Tutorial Part 1 + 2

http://wiki.eclipse.org/index.php/Graphical_Modeling_Framework

� IBM Model Transformation Framework

http://www.alphaworks.ibm.com/tech/mtf

� Kent OCL Library

http://www.cs.kent.ac.uk/projects/ocl/

� „Modellgetriebene Softwareentwicklung“ – M. Völter, T. Stahl – dpunkt.verlag

www.voelter.de

� „Moderne Softwarearchitektur“ – J. Siedersleben – dpunkt.verlag

60Mirko Bleyh - Medieninformatik Contains copyrighted material of DaimlerChrysler AG, 2006. Used by permission.

The End

Thank you!

Contact: mirko.bleyh@gmx.de

