
  

Models of Distributed Systems

Message Passing, Queues, Processing and I/O, 



  

Overview

1. Message passing theoretical Model
2. Distributed Computing Topologies
3. Client-Server Systems

– Critical points, architectures, processing 
and I/O models



  

The Message Passing Model

- Modelling and Automata 
- Async. vs. Sync Systems
- Protocol Properties: Correctness, Liveness, Fairness,...
- Complexity
- Failure Types 



  

Modeling of Distributed Systems

Process I
State variables

Inbuf

Outbuf

(After: J.Aspnes): A processing function takes the Inbuf Data from other 
processes, the internal state variables and computes a new internal state and new 
Outbuf data. Communication ist point-to-point and deterministic. A configuration 
is the state vector for all processes. Events change configurations into new ones. 
An execution is a sequence of configurations and events: C0 e0, C1 e1, C2 e2 ...

Send ->

< -  Receive 

Ptp primitives:



  

Synchronous vs. Asynchronous Systems

Synchronous (lockstep): e== event, t== time 
e0t0  ---> delivery at t0+1, e1t1 ---> deliv. t1+1, …..

Asynchronous (delayed): 
e0t0  ---> delivery at ?, e1t1 ---> deliv. t1+?, …..
Reqs: infinitely many computing steps possible, events 
will be eventually delivered.

Synchronous systems have simpler distributed algorithms, 
but are harder to build. The reality is async. Systems with 
additonal help from failure detectors, randomization etc.



  

“Eventually” 

Does NOT MEAN “perhaps” or “maybe”.

It means “will” happen. 

We just don't know WHEN.

http://bravenewgeek.com/from-the-ground-up-reasoning-about-
distributed-systems-in-the-real-world/



  

Message Protocol Properties

- Correctness: invariant properties are shown to hold 
throughout executions
- Liveness/Termination: the protocol is shown to make 
progress in the context of certain failures and in a 
bounded number of rounds
- Fairness: no starvation for anybody
- Agreement: e.g. all processes agree to output the same 
decision
- Validity: for the same input x, all processes output 
according to x (Or: there is a possible execution for every 
possible output value)

(after: Aspnes). 



  

Complexity of Distributed Algorithms

- Time complexity: the time of the last event before all 
processes finish (Aspens)

- Message complexity: the number of messages sent

Message size and the number of rounds needed for 
termination are important for the scalability of protocols



  

Failure Types
- Crash failure: a process stops working and stays down

- Connectivity failures: network failures e.g. causing split 
brain situations with two separate networks or node 
isolation. Typically the time for message propagation is 
affected.

- Message loss: single messages are lost, nodes are up.

- Byzantine Failures: „Evil“ nodes violating protocol 
assumptions and promises. E.g. breaking a promise due to 
disk failure, configuration failure etc.

All protocols are validated with respect to certain failure scenarios!!



  

Distributed Computing Topologies 

- Client/Server

- Hierarchical

- Totally Distributed

- Bus Topologies



  

Client/Server Systems

client server

request

response

Request 
processing

Clients initiate communication and (typically) block 
while waiting for the server to process the request. Still 
the most common DS topology.



  

Hierarchical Systems

Every node can be both client and server but some play a special 
role, e.g. are Domain Name System (DNS) server. A reduction of 
communication overhead and central control options are some of 
the attractive features of this topology.

Client and Server



  

Totally distributed

Every node IS both client and server. Watch out: peer to 
peer systems need not be totally distributed!

Client and Server



  

Bus Systems/Pub-Sub

Every node listens for data and posts data in response. 
This achieves a high degree of separation and 
indepencence. Event-driven systems follow this topology.

Client and Server



  

Client-Server Topologies

- Theoretical Model
- Terminology 
- Critical Points
- Architectures (multi-tier, fan-out, offline)
- Processing Models (cores, threads, processes)
- I/O Models (sync, async, reactive,)



  

Theoretical Model

- Queuing Theory
- Little's Law
- Critical Points
- Architectures (multi-tier, fan-out, offline)
- Processing Models (cores, threads, processes)
- I/O Models (sync, async, reactive,)

See: SEDA: An Architecture for Well-Conditioned, Scalable 
Internet Services, Matt Welsh, David Culler, and Eric Brewer



  

Server

Service policy type Q; (Fifo, 
shortest remaining time first etc.

Probability 
distribution 
for arrivals: 
M,D,G

Queuing Theory: Kendall Notation M/M/m/ß/N/Q

Population Size: ß 
(limited or infinite)

Probability 
distribution 
for service 
time: M,D,G

Number of 
service 
channels: m

Wait queue size: N, 
unlimited

scheduler

Leave reate



  

Queuing Theory Terms 

Processing
server

Waiting items

Incoming 
Requests

Processed 
Requests

Feedback

Server/Node

Dispatch discipline

Service time/ 
utilization

Residence time

Arrival rate



  

• Server/Node – combination of wait queue and processing element 
• Initiator – initiator of service requests 
• Wait time – time duration a request or initiator has to spend waiting in line 
• Service time – time duration the processing element has to spend in order to 
complete the request
• Arrival rate – rate at which requests arrive for service 
• Utilization – portion of a processing element‘s time actually servicing the request 
rather than idling 
• Queue length – total number of requests both waiting and being serviced 
• Response time – the sum of wait time and service time for one visit to the 
processing element
• Residence time – total time if the processing element is visited multiple times for 
one transaction. 
• Throughput – rate at which requests are serviced. A server certainly is interested 
in knowing how fast requests can be serviced without losing them because of long 
wait time. 

Generalized Queuing Theory terms after (Henry Liu)



  

After: 
Stallings

Multiserver Queue



  

After: 
Stallings

Multiple Single-Server Queues



  

From [Hänsch]

E[N]: Erwartungswert aller Requests im 
System 
C= Prozessoren
M = Bedienrate



  

From [Hänsch]



  

From [Hänsch]



  

Little's Law

The long-term average number of customers 
in a stable system L is equal to the long-
term average effective arrival rate, λ, 
multiplied by the (Palm) average time a 
customer spends in the system, W; or 
expressed algebraically: L = λW.

https://en.wikipedia.org/wiki/Little's_law



  

L = λ * W

Processor

tEntry tExit

contention
sec

λ 
=

W = tExit - tEntry

L= ∑ =λ ?



  

Say that elements in the system equals service units needed. Now we can calculate, whether 
our service units are over- or under-provisioned or just about right. 

Uses of Little's Law

Shopify receives 833 requests/second.
They average a 72ms response time
They run 53 application servers with a total 
of 1172 application instances (!!!) with 
Nginx and Unicorn.

http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html. “blocking of application 
instances (anything that stops all 1172 application instances from operating at the same time) can cause 
major deviations from Little’s Law. Realize you have three levers - increasing application instances, 
decreasing response times, and decreasing response time variability. A scalable application that requires 
fewer instances will have fast response times and low response time variability.”

Twitter (old)
600 requests/second
180 application instances (mongrel)
About 300ms average server response time

600*0,3 = ca. 
180 instances

833*0.072 = ca. 
60 instances

http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html


  

the Pollaczek-Kinchin

formula [26] tells us that, for an M/G/1 queue:

where ρ is the load and C 2 is the squared coefficient of variation of job sizes.

Note: Even with low load the system can experience large delays due to the variation 
coefficient! Very heterogeneous workloads kill throughput!

Estimating Queuing Delay

Taken from: Borg, the next generation. https://dl.acm.org/doi/pdf/10.1145/3342195.3387517



  

Lessons Learned from Queuing Theory

- Request Numbers: Caching
- Batching: Multi-Get API
- Task Sizes and Variability: SLAs, Hejunka



  

Queuing Theory for Multi-tier Process Networks

A modern application servers performance largely relies on the proper configuration of 
several queues from network listening to threadpools etc. Queuing theory lets us 
determine the proper configurations (see resources). In general, architectures like above 
are very sensitive for saturated queues. Good architectures create a funnel from left to 
right and limit resources like max. threads. Caching and batching are directly derived 
from queuing theory. Picture from: 
http://publib.boulder.ibm.com/infocenter/wasinfo/v5r1//index.jsp?topic=/
com.ibm.websphere.base.doc/info/aes/ae/rprf_queue.html



  

Reverse
Proxy

Web
Server

App
Server

Database
Server

Disk
Array

Average response time therefore is the sum of 
trip average x wait time plus the sum of service 
demand iterated across all nodes. Note that all 
these requests are synchronous (internally 
sequential) and in all likelihood also in 
contention with each other – which means that 
wait times occur due to contention 

Request Problem in Multi-Tier Networks



  

Large differences in task size cause pipeline stalls between 
nodes (case a) and lead to resource starvation within nodes 
causing contention and coherence effects (case b)

Case a
Case b

Task Size Problem in Multi-Tier Networks



  

From Model to Reality

- Latency
- Blocking/locking/Serialization in Service 

Units
- Non-Random distributions, feedback effect
- Dead Requests
- Backpressure
- Missing Variables, Coherence Losses



  

Backpressure Strategies

Drop, Buffer or Scale-up, but do NOT crash your infrastructure. Look at the 
response time delays due to more requests on time-sharing systems. Diagram 
from:  Mantis in Action, Neeraj Joshi, Justin Becker Qcon, 6/12/2015 



  

Critical Points in C/S Systems 1

client server

request

response

Many Clients?

Session state? 

Authentication?

authorization? 

Privacy?

locate server?

Authenticate? 

Load management, delays and bottlenecks, failures in 
backend systems, capacity planning problems, network 
throughput, security, deployment (global)



  

Critical Points in C/S Systems 2

client server

request

response

Sync/Async?
Blocking?
Single/
MulticoreCPU-
intensive?
Queues?

Sync/Async? 
Speed Up/Down?
Load Balancing?
Queues? 

Wrong decisions here can make the difference between 10 
req/sec and 80.000 req/sec! Think about the upload of a large 
image. Is it going to hurt your architecture?

Bandwidth/latency? 



  

Stateful Server Problem

server

Client 
data

+ data locality

+ consistency

- availability

- load balancing

Stateless design puts all data in DB's, caches etc. In case 
of failures, this makes programming hard. Stateful 
services bring the function to the data – at a price...

client



  

Terminology 1

Host: A physical machine with n CPU's

Server: A process running on a host, receiving messages , performing
computations and sending messages (not necessarily responses)

Thread: Independent computation context within a process, pre-empted by 
kernel (kernel-thread) or yielding voluntarily (application level scheduling)

Multi-Threading: Several threads running within a process context. Either 
executed by one kernel-thread switching between threads, or by several kernel 
threads running in parallel (multi-core). Always non-deterministic.

Multi-Channel: A thread is able to watch several channels with one system call. 
This is typically done by some variant of a select() call and needs good OS 
support.

Synchronous processing: A caller calls some function and waits for its results, 
doing nothing while waiting.



  

Terminology 2

Asynchronous processing: A caller calls a function and immediately continues 
executing its own code. The called function gets executed eventually and a 
callback function is called to inform the caller about the completion. Nothing is 
said about who executes the called function.

Parallel processing: Deterministic execution of independent code paths.

Blocking: A thread calls a function that needs time to e.g. get a resource from 
disk. The thread can't continue and would block an execution core waiting for 
the result. The thread gets “context switched” and a new code path is loaded 
and executed by the core. Context switching is expensive.

Non-blocking calls: A caller calls the non-blocking version of a function. If the 
function can perform immediately without delaying the caller, it will do so. If 
the function would need time to perform its job, it will let the caller return 
immediately and tell it, that it would be blocked. The caller can then decide to 
do something else and try later again (poll again).

Synchronization: Needed, when threads share data and need to control the 
order of access to prevent data inconsistencies



  

Architectures of C/S Systems 

 - multi-tier
- fan-out,
- pipeline (SEDA) 
- offline



  

Multi-Tier System

Process Model?

Request Routing?

I/O Model?

Queue Sizes and Behavior?

Scale Model?

Request Distribution?

Availability Model?

Latency and Response Times?

Performance Data?
Picture: Nate 
Berkopec



  

Large fan-out Architectures at Google

A portal is a typcial “large-fan-out architecture” with long-tail 
problems. See how google handles this: Talk by Jeff Dean, 
http://static.googleusercontent.com/media/research.google.com/en/
/people/jeff/Berkeley-Latency-Mar2012.pdf



  

The Costs of Delays

100 sub-calls, 1% delayed, how many calls 
will experience a delay? 

“Stalls” of any kind are critical in this architecture. What 
can we do against hiccups and stalls? Watch out for requests 
beyond the 99%ile! (Gile Tene, Azul: How NOT to measure 
latency)



  

Offline Processing

Request
handler

cache async.
loader

DB
pre-load cache 
asynchronously

Do not process things at request time that can be delayed. Pre-calculate and 
pre-process as much as possible. Fail fast (Netflix..)

Q
ueue

“friend” notifications
Image conversions
Complex queries
Writes

Background 
worker



  

Process Models

Single Thread / Single Core
Multi-Thread / Single Core
Multi-Thread /Multi-Core
Single Thread/ Multi-Process



  
From: Gunter, Guerillia Capacity Planning

Thread-Level Parallelism



  

Serial Fraction limits Speed-up

From: Gunter, Guerillia Capacity Planning



  

Amdahls Law 

1

(1 – Parallel Fraction) +  Parallel Fraction

Number of Processors

Speedup =

Very soon adding processors does not increase speedup!



  
From: Gunter, Guerillia Capacity Planning



  
From: Gunter, Guerillia Capacity Planning



  

Questions for Process Models

- can it use available cores/CPUs?
- what is the ideal number of threads?
- how does it deal with delays/(b)locking?
- how does it deal with slow requests/uploads?
- Is there observable non-determinism aka race conditions?
- is locking/synchronization needed?
- what is the overhead of context switches and  memory?

We are talking request-level parallelism here. Requests won't 
get faster but we can handle more of them (throughput).



  
Adapted from: T.Jones Boost application performance using asynchronous I/O. Think 
About threads in this context! Which model needs tons of threads to handle more 
Channels? 

Reactor pattern Proactor pattern

I/O Models

Java before 
NIO/AIO

Polling pattern



  From: [Jones], Blocking  Synchronous I/O



  Adapted from: [Jones]. Non-Blocking Synchronous I/O 
Allows alternating  I/O and other app. processing 

Application is polling!

Application is polling!

Application is polling!



  From: [Jones] Blocking Asynchronous I/O (Event loop) 



  
From: [Jones]. True Asynchronous Non-Blocking I/O.  How are data moved? 
Is application processing interrupted? When is completion signaled? Does 
application wait for completion signals? Are data-races possible? 

?



  

Synchronous I/O (blocking calls)

Many threads are required to stay responsive. Many context switches occur and each 
thread needs extra memory. Latency hiding through multiple threads see: Aruna 
Kalaqanan et.al. http://www-128.ibm.com/developerworks/java/library/j-javaio 

Thread
Input

Channel
FileSysOutput

Channel

Wait for client cmd.

Process client cmd, e.g. get file (wait for disk)

Send response to client (Switch on full buffer)

Wait for client cmd.

Switch

Switch

Switch
Switch



  

Non-Blocking: Reactor Pattern

From: Aruna Kalaqanan et.al. http://www-128.ibm.com/developerworks/java/library/j-
javaio. The downside: all processing needs to be non-blocking and the threads need to 
maintain the state of the processing between handler calls (explicit state management vs. 
implicit in normal multi-threaded designs). 

“Server applications in a distributed system must handle multiple clients that send 
them service requests. Before invoking a specific service, however, the server 
application must demultiplex and dispatch each incoming request to its 
corresponding service provider. The Reactor pattern serves precisely this function. 
It allows event-driven applications to demultiplex and dispatch service requests, 
which are then delivered concurrently to an application from one or more clients.”

The Reactor pattern is closely related to the Observer pattern in this aspect: all 
dependents are informed when a single subject changes. The Observer pattern is 
associated with a single source of events, however, whereas the Reactor pattern is 
associated with multiple sources of events.”



  

Reactor Pattern

From: Benedikt Hensle, Reaktive Programmierung



  

Proactor Pattern

From: Benedikt Hensle, Reaktive Programmierung



  

Example Node.js Event Loop
var redis = require('redis'), client = redis.createClient();

client.get("mykey", function printResponse(err, reply) { console.log(reply); });

1. client.get sends network packet and yields
2. eventloop sets marker for future response packet
3. network stack receives message
4. eventloop calls client with message.
5. redis client calls callback (printResponse)

From: Juho Mäkinen, Problems with Node.js Event Loop, 
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop.  Excellent explanation of async-single-threaded processing of I/O



  

Event Loop Request Stalls

From: Juho Mäkinen, Problems with Node.js Event Loop, 
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. The EL is busy processing replies and can't deal with new 
requests.   



  

Stalls and Long Tails 

From: Juho Mäkinen, Problems with Node.js Event Loop, 
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. 



  

Long Processing and NextTick

From: Juho Mäkinen, Problems with Node.js Event Loop, 
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. “NextTick” allows yielding within a processing step – which in 
turn allows requests being handled by the EL



  

Computational Complexity and Event Loops

- calculations: partition and use event loop

- Avoid regex-DOS

- use worker-pools (com. Overhead)

- differentiate between I/O and compute worker

- watch out for resource exhaustion and back-
pressure

- don’t do O(n) if n is determined by client input

From: Don’t block the Event Loop (or the 
worker pool)
https://nodejs.org/en/docs/guides/dont-
block-the-event-loop/



  

Concept Exercise

Our troublesome Node service had a fairly straightforward purpose. Digg uses Amazon S3 for storage which is peachy, except S3 has 
no support for batch GET operations. Rather than putting all the onus on our Python web server to request up to 100+ keys at a 
time from S3, the decision was made to take advantage of Node’s easy async code patterns and great concurrency handling. And 
so Octo, the S3 content fetching service, was born. 

Node Octo performed well except for when it didn’t. Once a day it needed to handle a traffic spike where the requests per minute jump 
from 50 to 200+. Also keep in mind that for each request, Octo typically fetches somewhere between 10–100 keys from S3. 
That’s potentially 20,000 S3 GETs a minute. The logs showed that our service slowed down substantially during these spikes, 
but the trouble was it didn’t always recover. As such, we were stuck bouncing our EC2 instances every couple weeks after Octo 
would seize up and fall flat on its face.

The requests to the service also pass along a strict timeout value. After the clock hits X number of milliseconds since receiving the 
request, Octo is supposed to return to the client whatever it has successfully fetched from S3 and move on. However, even with a 
max timeout of 1200ms, in Octo’s worst moments we had request handling times spiking up to 10 seconds.

The code was heavily asynchronous and we were caching S3 key values aggressively. Octo was also running across 2 medium EC2 
instances which we bumped up to 4.

I reworked the code three times, digging deeper than ever into Node optimizations, gotchas, and tricks for squeezing every last bit of 
performance out of it. I reviewed benchmarks for popular Node webserver frameworks, like Express or Hapi, vs. Node’s built-in 
HTTP module. I removed any third party modules that, while nice to have, slowed down code execution. The result was three, 
one-off iterations all suffering from the same issue. No matter how hard I tried, I couldn’t get Octo to timeout properly and I 
couldn’t reduce the slow down during request spikes.

A theory eventually emerged...

Node
server S3



  

The Danger of Percentiles

From: Juho Mäkinen, Problems with Node.js Event Loop, 
http://www.juhonkoti.net/2015/12/01/problems-with-node-js-event-
loop. Only a very high percentile shows how bad the situation at the 
long tail really is.



  

Questions for I/O Models

- Can it deal with ALL kinds of input/output?
- How are synchronous channels integrated?
- How hard is programming?
- Can it be combined with multi-cores?
- Scalability through multi-processes?
- Race conditions possible?

Event-driven programming can become really hard in the 
context of multiple cores.



  

I/O Models and Multi-Cores???

How can Highly Concurrent Network-Bound Applications
benefit from modern multi-core CPUs? By Lucas Crämer



True Async I/O without Locking: IO_uring

https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-
revolutionize-programming-in-linux/



  

Homework

Read sourcecode of server.java under 
Gitlab.mi.hdm-stuttgart.de/kriha/

kriha_examples
And create a sequence diagram for requests
Where would one add 
- persistence?
- security?



  

Resources
• Scaling Ruby Apps to 1000 Requests per Minute - A Beginner's Guide
• by Nate Berkopec, http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html
• David Flanagan, Java Examples in a Nutshell, O’Reilly, chapter 5. Code: 

www.davidflanagan.com/javaexamples3
• Ted Neward, Server Based Java Programming chapter 10, Code:www.manning.com/neward3
• Doug Lea, Concurrent Programming in Java
• Pitt, Fundamental Java Networking (Springer). Good theory and sources (secure sockets, server 

queuing theory etc.)
• Queuing Theory Portal: http://www2.uwindsor.ca/%7Ehlynka/queue.html 
• Performance Analysis of networks: http://www2.sis.pitt.edu/~jkabara/syllabus2120.htm (with 

simulation tools etc.)
• Meet the experts: Stacy Joines and Gary Hunt on WebSphere performance (performance tools, queue 

theory etc.) http://www-128.ibm.com/developerworks/websphere/library/techarticles/0507_joines/
0507_joines.html 

• Doug Lea, Java NIO http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf Learn how to handle thousands of 
requests per second in Java with a smaller number of threads. Event driven programming, Design 
patterns like reactor, proactor etc.

• Abhijit Belapurkar, CSP for Java programmers part 1-3. Explains the concept of communicating 
sequential processes used in JCSP library. Learn how to avoid shared state multithreading and its 
associated dangers.

• Core tips to Java NIO: http://www.javaperformancetuning.com/tips/nio.shtml 
• Schmidt et.al. POSA2 book on design patterns for concurrent systems.
• Nuno Santos, High Peformance servers with Java NIO: 

http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html?page=3 . Explains design alternatives for 
NIO. Gives numbers of requests per second possible.

• James Aspnes, Notes on Theory of Distributed Systems, Spring 2014, 
www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf

• http://bravenewgeek.com/from-the-ground-up-reasoning-about-distributed-systems-in-the-real-
world/

http://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
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