
Distributed Business Components

From objects to components

2

Overview

1. Part One: General Component Technology
• What’s wrong with objects?

• Distributed Components

• Business Concept mapping

2. Part Two: Enterprise Java Beans Example
• Object Model

• Basic Mechanisms

• Separation of Concerns: Persistence, Transactions, Security

• Separation of Context: Environment

• Evolution and Lessons Learned

3

Part One: General Component
Technology

4

The big problems of Remote Objects

• Interfaces: too granular and therefor slow

• Modeling: The idea of “Business Objects” with internal
 workflow behind methods never worked

• No security support

• No persistence support

• No transaction support

CORBA created services to address those issues. Java EE
went the component and framework way. To work, the
object idea needs state and state management!

5

What‘s wrong with Object Interfaces?

O1

A component framework encapsulates objects and offers a
simplified interface to callers

Object interfaces are tightly
intertwined networks of
references (links). Nodes hold
state and link information for
calling nodes. Caller and
callee share state and
promises. Requirement
changes cause ripple effects
and round trip times are
enormous.

O4 O2

O3

O1

O4 O2O3

Service B

A messaging system can be stateless or include all state in
the message itself (context complete communication,
Neward). Webservices and REST approaches follow this
architecture which has less mutual responsibilities. The
current buzzword is Service Oriented Architecture (SOA).
The current concept of decoupling is called Enterprise
Service Bus.

messageService A

6

What makes component based processing?
• Components: self contained software „packages“ with runtime interface,

automatic deployment (install), built to fit into component framework
• A component framework where components plug in.
• Support for composition of and collaboration between components
• A set of roles for development, composition and installation of

components (who does what in the component model?)

• Integration into existing infrastructure (transactions, security, legacy
systems) and requirements (scalability, customizable, maintenance)

• Network addressable interfaces
• Medium to large granularity (e.g. representing 10-20 tables!)
• Representing a business concept (isomorphically).

Enterprise components:

from Herzum, Sims, Conceptual framework chapter. We will compare
EJBs later with these definitions. Especially the last one concerning the
relation business concept – component and the granularity statement

7

from objects to components

object-oriented

dist. objects

dist. components

dist. systems

framework for pluggable business components. A market
for interoperable components. Modeling, development
and deployment are covered

multi-tier systems, Point-to-point connectivity with very
complicated mechanisms. Expensive and hard to develop.

calls between applications. Management and performance
problems with large numbers of small remote objects.

isolated, monolithic applications. No distribution

Note that components go beyond distributed systems to achieve re-use and a
lower cost of development. And remember that these promises were already
made for OO-based development!

8

Business Components

EntitiesEntitiesEntity

ProcessProcessProcess

Busines Concepts Software Artefacts

EntitiesEntitiesEC1

ProcessProcessPC1

Business Components are supposed to directly represent concepts from the business,. The
UML „package“ construct resembles the concept of business components.

9

Alternatives to the concept of isomorphic mapping

Generator

Business Domain

meta-info

Domain Runtime

Do software artefacts really map isomorphically to business concepts? Istn‘t this
a bit like trying to find the concept of „table“ by looking in our brains? Domain
Analyses, generative computing and aspect oriented development are
alternatives. In generative computing several views have been developed to
capture the transformation process: computation independent model, platform
independent model, platform dependent model.

10

Components: Code and Descriptors

Software Artefacts

EntitiesEntitiesEC1

ProcessProcessPC1

The components are clusters of software, configuration etc. which form a deployment and
maintenance unit within the component framework. The software artefact „application“
has been replaced by a collection of collaborating components which can be
adjusted without source code changes.

Desc. Desc.

Component
replaced by

11

why objects are not components
business logicfine grained local

interface

transactions

security

persistence

a regular object mixes business logic with specific mechanisms (e.g.
persistence) and hides the internal interfaces (implementation) behind the
external interface. Assumptions about environment (e.g. which DB to store
state in) are hidden in the code. Customizing objects means code changes.

12

Separation of Concerns and Context

business logic

coarse grained remote
interface

transactions

security

persistence

the internal interface of a component is described in meta-information.
Deployers can use this information to connect the component to the proper
framework services. Concerns (e.g. persistence and transactions) are separated
from business logic. Their implementation is typically done by the framework.
Context information (which DB to use) is contained in meta-information and
not in code. The component can be customized AFTER development.

internal framework
interfaces

Sec=LDAP..

framework code

DB

DB=”...”

LDAP

13

Part Two: Component Technology
Example EJB

14

 Enterprise Java Beans

• allow construction of distributed applications by combining
components from different vendors.

•developers need not understand low level distributed
mechanisms (transactions etc.)

• components will run in EJB containers from different
vendors unchanged

• Enterprise lifecycle support (development, deployment,
runtime)

• Enterprise data support

Enterprise data are data that are a) important for the business and b) shared and used
by many applications and users.

15

 Enterprise Java Beans: Transactional Beans!

„Well, EJB is really all about transactional processing. I mean, at the end of the
day, you go through the EJB spec and easily 60% of the entire spec is talking
about transactional this, transactional that, transactional the other thing. Some of
the remoting aspects, they're very quickly taken care of. Some of the life cycle
aspects, very quickly taken care of. This is not hard stuff for them to do. „

„Enterprise Java Beans should never have been called Enterprise Java Beans,
there's 101 EJBs damnation lists out there, and they said it best. It should not have
been called Enterprise Java Beans, it should have been called Transactional Java
Beans, because that's really what the spec focuses on. „

from an interview with Ted Neward, theserverside.com. He also wrote „Effective
Enterprise Java“ (resources)

16

Component Example: Enterprise Java Beans

Entity

Busines Concepts EJB container

Entity
Bean

Early versions of EJB did a fine grained mapping between business entities to
beans to DB-tables. All components („enterprise beans“) were remote. Newer
versions have local interfaces as well and session beans can compose a number of
beans into a component interface. Support for business processes (workflow) is
weak but will probably improved through „activity beans“ etc.

Table
Row

17

EJB roles and parts (1)

Enterprise
Bean

A

ejb-jar file

created by bean
developer

Enterprise
Bean

A

ejb-jar file with assembly

assembled by
application assembler

Enterprise
Bean

B

bean developer and application assembler are different roles. Assembly
happens through integration of EJBs into bigger ejb-jar files and adjusting the
meta-information (deployment descriptor). The „application“ can contain non-
EJB parts like JSPs or servlets. EJB B uses EJB A.

JSP
jar file

single EJB „application“

18

EJB roles and parts (2)

EJB
A

EJB container

EJB
B

The application is now deployed into a web container and an EJB container.
EJB server and container are usually from the same vendor. The EJBs are
connected to the enterprise backend resources (DB or applications) by the
deployer of the application or system management. The EJB B is connected to
an enterprise internally developed EJB D.

JSP
jar file EJB

D

web container
EJB server

Enterprise DB

Enterprise App

container vendors: IBM, Bea etc. Enterprise provides backend resources and EJB D

19

EJB Component Model

EJB container

Stateless
Session

Bean

EJB server

row

queue

Enterprise DB

Enterprise MOM

Entity
Bean

Stateless
Message
driven
Bean

Stateful
Session

Bean

holds conversational
state, not shared

receives messages,
asynchronous

maps to a row,
shared

a stateless service,
shared

Four different EJB types allow for scalability (stateless services), client code on server side
(conversational state), asynchronous processing and the representation of company data
(entities). Entity Beans are permanent while stateful session beans do not survive a server
crash.

20

Session Beans (stateful and stateless)

• Are per client (un-shared), except stateful session objects
which represent client code moved to the server.

• Can participate in transactions (if session-synchronization
interface is used)

• may access databases but do not directly represent
persistent objects

• short-lived
• removed when container crashes

session objects, especially stateless ones scale best. EJB servers should be
able to support large numbers of those objects

21

Entity Beans (deprecated since 3.0)

• Are always shared and therefor protected through
transactions.

• Their lifetime exceeds the server lifetime
• represent important company data

• can be persisted through container mechanism (Container
managed persistence, CMP)

• can do their own persistence (Bean managed persistence,
BMP)

entity objects have a unique identity which is visible to clients (primary
key). A client can request a „handle“ which is a persistent pointer to an
entity object which allows the client to contact the object even after a long
time. In 3.0 persistence is no longer a concern for EJB. It is now covered in
the Java Persistence API!

22

Message Driven Beans

• are invoked asynchronously
• no client context available during processing
• can be transaction aware
• short-lived and stateless, removed when container crashes
• Do not map to company data directly

Transaction aware means that the message receipt and processing can be
enclosed in one transaction. If the bean crashes during processing the
message is counted „un-read“ and will not be lost. It can be processed after
re-start of the container.

The message driven beans have been integrated into the general EJB
framework to re-use the EJB container services (transactions, security,
concurrency, deployment description etc.)

23

Client View of EJBs

Java Virtual
Machine

EJB container

session bean 2

session bean 1

local
client

remote
client

EJBObjects

EJBHome

EJBLocalObjects

EJBLocalHome

bean
class

bean
class

a client NEVER accesses directly the bean class. A EJB can offer a remote
and/or a local interface. Clients of the local interface need to be in the same Java
virtual machine as the bean container. The home contains mostly lifecycle
methods while the EJBObject deals with identity and handles. The business
logic is contained in the bean class.

24

Local vs. Remote Interfaces

session bean 2

session bean 1

local
client

remote
client

EJBObjects

EJBHome

EJBLocalObjects

EJBLocalHome

Calling the local interface of an EJB uses the same semantics as a local java call:
Value objects are moved BY REFERENCE, meaning client and EJB will
SHARE objects. The remote calling semantics will of course require that value
objects are copied. Bean implementers who want to provide both interfaces must
respect the different calling conventions.

Remote Object
calling convention

Local Java calling
convention

25

Local Interfaces and persistent relationships

Order
Process
Session
Bean

Order
Entity
Bean

Customer
Entity
Bean

LineItem
Entity
Bean

Product
Entity
Bean

*

1

1

*

*1

all local interfaces

The introduction of local interfaces allowed container managed relationships. If
e.g. an order entity is deleted, the container will adjust references and delete
aggregated objects like LineItem. Objects involved in one-to-one relationships are
effectively moved if they are added to another objects relationships. Not so for
1toMany or Many-to-many relationships.

26

SecurityService.check(caller);
if (result == isAllowed)
 beginTransaction();

get DBConnection(„DB“);
conn.getStatement();
Statement.set(delete)
conn.execute(statement)
commit() or rollback()

return;

No Separation of Concerns and Context

Client

delete
Account

Load/persist

Security
Service

Transaction
Service

A lot of code to perform just a tiny business function! Programmers need to know
several service APIs and how they work. AND: Information about the context of the
system (Database names, user roles etc. is embedded in the application.

27

Separation of concerns and context

Automatic Transaction
Management

System Management transaction
modes

EJB Framework (Separation
of concerns):

Deployment (Separation of
context):

Persistence

Automatic, method level Security

System Management defines Data Sources
and pool sizes

System Management defines
Role/User Binding

Component development,
application assembly,
deployment roles

Deployment descriptor and
JNDI interface

28

EJB Container

Client

Entity
Bean

Business
Logic

invoke

delegate

At the point of interception the container provides the following services to the bean:
Resource management, life-cycle, state-management, transactions, security

Load/persist

Entity
Bean

Interface
TA‘s

Persistence
Security

JNDI

find resources

29

More Container Concerns

Client
invoke

Containers more and more take over roles from operating systems. A key role is to isolate
different applications from each other. Currently J2EE uses class loaders for this purpose.
A better concept that does not mix loading with isolation is needed.

Isolation

TA‘s
Persistence

Security
Application A

Application B
TA‘s

Persistence
Security

30

Containers and Threads

Client invoke

A container manages resources across applications. It stores context and session
information in threadlocal storage. This is the reason why container managed applications
are not allowed to create their own threads. These threads would not have the proper meta-
data and context information. EJB3.0 offers a managed service for connectors to create
threads. Applications should not assume resource management so that the container can
chose the proper policy.

TA‘s
Persistence

Security

Thread
Private

TA‘s
Persistence

Security

Thread
Private

invokeClient

31

Interceptors – the missing link?

As Ted Neward points out most remoting technologies offer interceptors/filters to allow
applications to manipulate the requests. Servlet filters, CORBA interceptors or RMI
SocketFactories all follow the interceptor pattern and can be used e.g. to establish session
handling or enforce security checks. Just EJB does not expose the mechanism to
applications.

Client

Entity
Bean

Business
Logic

invoke

delegate
Entity
Bean

Interface
TA‘s

Persistence
Security

Filters manipulating
the request

32

Classes and Interfaces in EJB 2.1

java.rmi.Remote java.io.Serializable

EJBMetaData EnterpriseBean

EJBHome

EJBObject

SessionBean

CartHome CartBeanCartXMetaData XRemoteXHome

XBean

XCartMetaData XCartBean

XCartHome

XRemoteCart

JDK

EJB

Bean Devcontainer

tools

The orange classes mix business logic (CartBean) with framework behavior
(Home, Object etc.). Note that CartBean does NOT derive from Cart Interface.
White boxes are interfaces only.

33

Entity Bean - Container Contract (1)

• setEntityContext(EntityContext) Bean stores context as an interface to the
environment. Usage depends on state.

• PrimaryKeyClass ejbCreate<Method>: Actions related to bean instance
construction.

• ejbPostCreate(): Bean identity is now available
• ejbActivate(): Bean can acquire necessary resources.
• ejbPassivate(): bean releases resources, expecting to be put back into the pool.
• ejbRemove(): last chance for the bean before destruction.

• ejbstore(): bean should update ist internal state, expecting it to be
synchronized with the DB right after this.

• ejbload(): bean should update ist internal state, expecting that ist virtual fields
have just been read from the DB.

• ejbFind(), ejbSelect(). Query methods generated at deployment
• ejbHome<method>: business logic that does not require an object identity

34

Entity Bean - Container Contract (2)

what can be done in the framework methods depends on:

-a transactional context available?

-an object identity available?

-a local or remote view available?

-a client security context available?

See the EJB spec. for full details on both bean provider and
container vendor responsibilities.

35

Bean Managed vs. Container Managed Persistence

Bean needs to
perform ist own
persistence. When
this happens is
controlled by
container

Bean state is
completely stored
and loaded by
container.

Container managed persistence is clearly the way to go in the
future. Bean managed persistence is not portable and requires
adjustments to different datastores etc.

36

EJB 2.1 Virtual Fields and Abstract Schema Types

getX()

setX()

CartBean

getY()

setY()

virtual
CMP field

virtual
CMR field

CartBean deployment descriptor

defined CMP types

defined CMR
abstract schema
types

Previous EJB Releases did use regular field definitions in the beans class.
Rel.2.0 lets the bean developer only define getters and setters, no fields. The
deployment descriptor maps getters/setters to types. Advantage: container can
now use lazy load techniques because the bean cannot access persistent fields
directly – only through the getters and setters.

37

EJB 2.1 Query Language

SELECT DISTINCT OBJECT(o) FROM Order o,
IN(o.lineItems) 1 WHERE
1.product.product_type=`office_supplies´

finder method
beanHome

internal select
beanClass

EJB QL describes queries in terms of abstract schema types and
ejb_names etc. in the deployment descriptor. This allows query
processors to optimize queries by mapping them to the real
datastore query language. Otherwise queries would be dependent on
a specific datastore.

38

EJ Beans Environment: JNDI naming context

java:comp/env......

java:comp/env/ejb.. EJB beans

java:comp/env/[jdbc|jms]
Resource Manager Connection
Factories

java:comp/env/foo...env.entries

java:comp/env/jms/
StockqueueResource
environment references

Initial Context:

Beans locate all their resources through JNDI calls, allowing deployers to place
proper services there. All lookups can be manipulated via the deployment
descriptor.

39

Deployment Descriptor

Meta-info
in XML
format

bean

declare names
and interfaces
used by bean

deployer
adjust values
for specific
environment

Generators

generate
queries etc.
from meta-info

Interfaces create black box views on components. The deployment descriptor is
the main data structure that exposes internals in a controlled way and transports
meta-information across working steps. This lets. e.g. the bean developer specify
security roles without knowledge of real security roles in a target environment.
The roles can be mapped during deployment

40

Security Support

client
Web

server
bean1 bean2

basic auth. Kerberos
principal

run as: bean1

KDC

EJBs allow two security calling modes: principal delegation or
„run as“ identity. Even if „run as“ is specified in the Depl. Descr, a
getCallerPrincipal() at bean2 will return the original caller (client)

41

Transaction Modes

• Not supported

• Required

• Supports

• RequiresNew

• Mandatory

• Never

the transaction modes are specified in the deployment descriptor.
Depending on the modes, TA‘s are either created, taken over from
caller or exceptions are thrown.

42

EJB Anti-Pattern

UserHomeServlet Flight

findByPrimaryKey(userPK)

areSeatsAvailable()

registerWithAirline(aUser)

reserveSeatFor(aUser)

AirlineHome Airline

findByPrimaryKey(airlinePK)

getFlight(flightNum)

this use of EJBs will result in poor performance and user response time
(synchronous calls) and lack of transaction consistency (single calls). Also, the
business logic is implemented in the servlet (client) area. Other bad design
issues: tight coupling of client to bean interfaces.

43

EJB Pattern: Message Facade

A „facade“ contains now the business logic and performs the calls to
participating beans. Since the client does not need an immediate response, a
message bean is ideal. Transactional consistency is guaranteed even if server
crashes. The message won‘t get lost. A session bean fassade would have been
possible as well but suffers from the synchronous calls to beans. (from EJB
Design Patterns)

UserHomeReserveSeatMDB Flight

findByPrimaryKey(userPK)

areSeatsAvailable()

registerWithAirline(aUser)

reserveSeatFor(aUser)

AirlineHome Airline

findByPrimaryKey(airlinePK)

getFlight(flightNum)

Servlet

send JMS Message

Message contains
userPK, airlinePK,

flightNum

JMS
Destination onMessage()

44

EJB 2.1 Best Practises

• Use JDBC for read-only data (lists etc.)
• Use generic access container to transport data across

containers
• Use portable primary key generator

• Use facades to encapsulate business logic and separate
development teams

• Use Singletons correctly (non-blocking)
• Implement own auto key generator

With every new technology finding the best practises takes quite some time.
They make the difference between projects that fail and those that fly.
(www.theserverside.com EJB Design patterns)

45

EJB 2.1 shortcomings

• Large number of artifacts for the programmer to control

• Meta-data separated in deployment descriptor instead of code

• Home interfaces and finding of remote objects tedious

• Performance problems in the O/R mapping due to abstract schema
approach

• No rapid prototyping possible

• Entity beans overloaded with security, transactions and persistence.

Session facade objects typicalle handle security and transactions. But the
highly artificial O/R mapping layer of EJBs may not be enough to justify the
effort.

46

New ways for meta-data

/** * This is the EJB Receiver Xbean * *
 @ejb:bean type="Stateless" * name="ejbReceiver" *
 jndi-name="org.xbeans.ejb.receiver.Receiver" *
 display-name="EJB Receiver Xbean" * * ... other javadoc tags ... */
 public class ReceiverBean implements SessionBean, DOMSource { ...

The XDoclet source code annotation system brought meta-data back into
Java sourcecode. With XDoclet it was much easier to generate EJB artifacts.
C# supports source code annotation as well. The whole concept is so
successful that it became part of Java 5.0 (annotation system) where
developers can create annotations for tool-time, compile-time or runtime.The
Java reflection API was extended to let objects read those annotations.

47

New ways for O/R mapping

• regular java objects (POJOs) are either annotated (hibernate)
or byte-code modified (JDO) to become persistent objects

• SQL is back: The trend towards generic, abstract schema
mappings seems to be over

Developers always had problems with the highly abstract was EJB entity
beans where mapped to persistent stores. JDO and others proved that plain
old java objects should be all that developers need for persistence.

48

Overview of EJB 3.0 features
• More descriptive power: instead of marker interfaces developers can

use java annotations to express what kind of behavior a container
should provide. No more deployment descriptors needed.

• Home interfaces and ejb_create() method gone.Intitialization now left to
the client

• Entity beans are originally only beans and become attached to a
persistence layer by association with an entity manager

• Business interface can be automatically created from the developers
only bean class.

• Mapping of entity beans is now directly to a DB table and rows/columns.
The names of those can be defined in code using annotations

• Direct SQL support.
• Query language now close to SQL
• Source code annotation used to find references, define relationships and

queries

Warning: embedding SQL directly can severely limit the portability of your
components. See: Anil Sharma (resources). The specification learned a lot
from e.g. Springs dependency injection.

49

Overview of EJB 3.1 features

 Local view without interface (No-interface view)
 .war packaging of EJB components
 EJB Lite: definition of a subset of EJB
 Portable EJB Global JNDI Names
 Singletons (Singleton Session Beans)
 Application Initialization and Shutdown Events
 EJB Timer Service Enhancements
 Simple Asynchrony (@Asynchronous for session beans)

50

@asynchronous example
@Stateless

@Remote(HelloEjbAsynchronousRemote.class)

public class HelloEjbAsynchronous implements HelloEjbAsynchronousRemote {

 @Asynchronous, @Override

 public Future<String> ejbAsynchronousSayHello(String name){

 System.out.println(new Date().toString()+" - Begin - HelloEjbAsynchronos-
>ejbAsynchronousSayHello "+name);

 try{

 Thread.sleep(5*1000);

 }catch (Exception e){

 e.printStackTrace();

 }

 System.out.println(new Date().toString()+" - End - HelloEjbAsynchronos-
>ejbAsynchronousSayHello "+name);

 return new AsyncResult<String>("Hello "+name); } }

Example from: Patrick Champion, http://paddyweblog.blogspot.com/2010/04/ejb-31-
asynchronous-session-beans.html

51

Lessons Learned
• It takes many years to define a complex framework for components and

to make it scale.

• It takes many iterations to get the interfaces right so they can be
implemented in a way that performs.

• Developers facing abstractions often do not understand the
consequences.

• Frameworks sometimes force developers to do code duplication (e.g.
finding objects from JNDI). This is tedious (better: dependency
injection with spring).

• Don't couple too many concerns in one framework (Transactions,
persistence, security)

• Code generation is nice but requires tooling. Tooling needs
customization to work.

• Don't apply new technology on a large scale before “best practice
patterns” exist. Complex technology needs those patterns.

52

Dimensions of Distributed Systems

consistency

availability

scalability

EJ
Bs

Coming up next: CAP, CALM, CRDTs and how I learned to
love copying data ….

53

Resources (1)

• Peter Herzum, Oliver Sims, Business Component Factory.
From the „father of business components – Sims“ the book
on how to build enterprise wide distributed business
component solutions.

• DeMichiel et.al., Enterprise Java Beans Specification
Version 2.0, Sun Microsystems 2001. Has gotten a little bit
bloated over the years, still easy to read.

• Mastering Enterprise Java Beans II,
www.theserverside.com, if specs aren‘t your thing yet.

• EJB Design Patterns, www.theserverside.com , very
important „best practises“ for EJB programming.

• The CORBA component model, www.omg.org

54

Resources (2)

• Anil Sharma, EJB 3.0 in a Nutshell,
http://www.javaworld.com/javaworld/jw-08-2004/jw-0809-ejb_p.html
Describes the changes in EJB 3.0 on a few pages.

• Dion Almaer, Using XDoclet: Developing EJBs with Just the Bean
Class http://www.onjava.com/pub/a/onjava/2002/01/30/xdoclet.html

• Nicolas Schmid, Introduction to XDoclet.
http://www.kriha.de/krihaorg/dload/uni/generativecomputing/generati
on/XDoclet.pdf

• Ted Neward, Effective Enterprise Beans. Like his book on server side
Java Ted tackles the real problems of development: Class loading,
performance, scalability. If you really want to understand EJBs get this
book.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

