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Overview
- Distributed Services

– Replication, Availability and Fault-Tolerance

– Global Server Load Balancing for PoPs

- Typical Cluster Services
   - Fail-over and Load-Balancing 

   - Directory Services

   - Cluster Scheduler (neu)

- Distributed Operating Systems

- Example Services and Algorithms
- Distributed File System with replication and map/reduce

- Distributed (streaming) Log

- Distributed Cache with consistent hashing

- Distributed DB with sharding/partitioning functions 

- Distributed Messaging with event notification  and gossip.
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What is a Distributed Service?

A function provided to applications by a distributed 
middleware with:

- high scalability 

- high availability 

Please NOTE: This is different from application functions 
implemented as services (e.g. micro-services, SOA, web-
services etc.). Here we talk about general services needed 
for a distributed system to function properly.
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Services and Instances

    “Distributed systems are composed of services like 
applications, databases, caches, etc. Services are composed 
of instances or nodes—individually addressable hosts, 
either physical or virtual. The key observation is that, 
conceptually, the unit of interaction lies at the service 
level, not the instance level. We don’t care about which 
database server we interact with, we just want to talk to a 
database server (or perhaps multiple). We’re concerned 
with logical groups of nodes.” 

    Tylor Treat, Iris Decentralized Cloud Messaging, 
bravenewgeek.com
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Core Distributed Services

- Finding Things (Name Service, Registry, Search)
- Storing Things (all sorts of DBs, data grids, block storage etc.)
- Events Handling and asynchronous processing (Queues)
- Load Balancing and Failover
- Caching Service
- Locking Things and preventing concurrent access (Lock service)
- Request scheduling and control (request multiplexing)
- Time handling
- Providing atomic transactions (consistency and persistence)
- Replicating Things (NoSQL DBs)
- Object handling (Lifecycle services for creation, destruction,      
  relationship service)
Etc.
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Distributed Services Hierarchy

Failure Models

Time and Causality Handling, reliable Communication

Consensus/Leadership Algorithms

Lock Service, Time Service

Distributed File Services

Distributed Table Storage Services

Scheduler Security

Global Replication Services

Applications (Search etc.)

Query 
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Availability (ratio) = agreed upon uptime – downtime (planned or unplanned)

-----------------------------------------------------

agreed upon uptime 

Continuous availabilty does not allow planned downtime

Availability: 99.999...



8Morrill et.al, Achieving continuous availability of IBM systems infrastructures, IBM 
Systems Journal Vol. 47, Nr. 4, pg. 496, 2008

Outages



9

Typical first year for a new cluster:
~0.5 overheating (power down most machines in <5 mins, ~1-2 days to recover)
~1 PDU failure (~500-1000 machines suddenly disappear, ~6 hours to come back)
~1 rack-move (plenty of warning, ~500-1000 machines powered down, ~6 hours)
~1 network rewiring (rolling ~5% of machines down over 2-day span)
~20 rack failures (40-80 machines instantly disappear, 1-6 hours to get back)
~5 racks go wonky (40-80 machines see 50% packet loss)
~8 network maintenances (4 might cause ~30-minute random connectivity losses)
~12 router reloads (takes out DNS and external vips for a couple minutes)
~3 router failures (have to immediately pull traffic for an hour)
~dozens of minor 30-second blips for dns
~1000 individual machine failures
~thousands of hard drive failuresslow disks, bad memory, misconfigured 
machines, flaky machines, etc.

Typical Hardware Failures at Google

From: Jeff Dean, Handling Large Datasets at Google, Current 
Systems and Future Directions
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Resilience Matrix at Shopify 

From: DockerCon 2015: Resilient Routing and Discovery by 
Simon Hørup Eskildsen. Take out SPOFs step by step. Reduce
Coupling and failure propagation between business areas.
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 Resource

 Resource  Resource

 Resource  Resource

 Resource

 Resource  Resource

 Resource

 Resource  Resource

 Resource

SPOF, easy update, maintenance 
problems, simple reliability, 
CO? Vertical scalability

HA, CA, CO possible. Load distribution.  
overload in case of failure

Cluster level, HA, CA, CO, 
scalability, replication. Quorum 
algorithms need more machines

Multi-site data 
center, Disaster 
Recovery, Scale

Availability through Redundancy
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3-copy Disaster Recovery Solution

Primary
Cluster A

Secondary
Cluster B

Storage
Subsys

A

Storage
Subsys

B

Tertiary
Cluster A

Storage
Subsys

A

synchronous

asynchronous

Incremental re-synchronization 
after failure of B

Storage system 
hot swap in case 
of failure

Optional, could be just 
data bunker

Long 
distance

After: Clitherow et.al. 
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Fault Tree Diagram 
after Scadden et.al.
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Reliability  Block Diagram 

Source: D. Bailey et.al.
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A B
C

(SPOF 0.99)

D
(SPOF 
0.9999

E

Serial Availability:  
ALL tiers must be 
available („AND“)

B‘

B‘‘

E‘

(B & B‘) || (B & B‘‘) ||  …. 
(OR mixed with AND)

A‘

More 
machines == 
parallel  
availability 
== “OR”

High-
reliability 
machine

Silent 
(passive) 
backup
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Serial chain of ALL needed components: multiplying availabilities gives less 
overall availability or: the more chain members the higher individual 
availability needs to be

Redundant, parallel components where only ONE needs to be up: multiply 
unavailabilities and subtract from 1.

From: Scadden et.al., pg. 
537
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B B‘ B‘‘

Normal
Capacity

Normal
Capacity

Normal
Capacity

B‘‘

Failover
capacity

Failover
capacity

Pairwise Replication Problems
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Total
Capacity 
Of Node

CT

Normal
Use

Capacity
CN

Failover
Capacity

CF

Effect of number of nodes on wasted capacity (assuming 
homogeneous hardware and no sticky sessions bound to 
special hosts aka session pairing)

CN + CF = CT

CF = CT/(n – 1) (n = number of nodes)

CN = CT – (CT/(n-1)) with growing number of 
nodes the normal use capacity gets closer to the 
total capacity while still allowing failover of the 
load from a crashed host  
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Multi-Homed-Sites 

From: High-Availability at Massive Scale: Building Google's Data Infrastructure for Ads
Ashish Gupta and Je Shute, Google 
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/44686.pdf
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Global Server Load Balancing (GSLB)

- DNS Round Robin

- BGP Anycast

- Geo-DNS

- Real User Measurements (RUM)

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/
https://opensource.com/article/18/10/internet-scale-load-balancing

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/


22

PoP (Edge) Selection at Dropbox

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

- “nearest to user” (public vs. internal net)
- datacenter load/fail/maintenance
- backbone capacity, peering connectivity, submarine cables, 
- location w.resp. to all the other PoPs.
- population size, internet quirks 

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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Living at the Edge..

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/


24

DNS Round Robin

DNS

Aliases:
1.2.3.1
1.2.3.2
1.2.3.3

1.2.3.1

1.2.3.2

1.2.3.3

While convenient, DNS allows little mitigation in case of problems 
like overload, fail, etc. Many clients disregard TTL settings and it 
takes approx. 15 min. to drain traffic to troubled servers.
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BGP Anycast (hops)

Several PoPs announce the same subnet. Internet does the rest. But: 
BGP does not know anything about link latency, throughput, packet 
loss, etc. With multiple routes to the destination, it just selects one 
with the least number of hops. Troubleshooting very demanding. 
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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GeoDNS (proximity)

IP addresses are distributed based on geo-location. Relies on a DNS 
provider guessing user IP by their DNS resolver (or trust EDNS CS 
data), then guessing user location by their IP address, then 
approximate physical proximity to latency. Better troubleshooting, 
TTL is a lie.. 
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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GeoDNS at Dropbox

 
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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Real-User-Metrics (RUM, client subnet→ map)

Embedded client code logs latencies to various DNS Servers and PoPs. 
This data is uploaded to DNS and compared to anycast and geodns 
data to create a special map.  
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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Inside PoPs

Public and private peering, kernel level routing, consistent hashing are 
used in typical PoPs. For a description of a software L4LB see the 
Maglev paper from Google. 
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-
edge-network/
https://blog.acolyer.org/2016/03/21/maglev-a-fast-and-reliable-
software-network-load-balancer/

https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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Typical Cluster Services

- Fail-over

- Load-Balancing 

- Directory Services
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Fail-Over with Virtual IP

DNS points only a one VIP. In case of a server failure, client sessions 
to this server are lost but on reconnect clients can establish a new 
session. No DNS changes/flushes/timeouts involved.
https://opensource.com/article/18/10/internet-scale-load-balancing
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Multi-Site Fail-Over with Virtual IP

This is a combination of geo-aware DNS (with its problems) and the 
indirections of a LB/failover front-server which can re-route requests.
https://opensource.com/article/18/10/internet-scale-load-balancing
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DNS
Server

Hostname = foo.com

IP alias : 1.2.3.4

 1.2.3.5

 1.2.3.6

 1.2.3.7

Web
Server 1

Web
Server 2

Web
Server 3

Web
Server 4

Wack.

Wack.

Wack.

Wack.

Config: real IP 1,2,3.4 = 
…

Router

Decisions 
on which 
server takes 
which IP.

 
Distribution 
of ARP 
info.

Arp spoofing in case 
of IP change

Takes over 
second IP

Peer2Peer HA Distributor for IP Fail-over

“wackamole” from Theo Schlossnagle
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D D

D

P

P

P

P

P

P

P

In the Spread group communication framework daemons control 
membership and protocol behavior (order, flow control). Messages are 
packed for throughput. Jgroups is another group membership library 
which could be used.

Heavyweight 
membership

Lightweight 
(group) 
membership

Group Communication Middleware
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Fail-Over, Load-Balancing and Session 
State

1. “Sticky Sessions
2. Session Storage in DB
3. Session Storage in distributed 
cache

The location of session state determines your options with 
respect to fail-over and load-balancing. Today, state-less 
servers with state in distributed backends are the norm. But 
sticky sessions do have advantages as well due to a non-
replicated system of records.
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DBOptions for Session State 

Server A

Server B

Server C

HA 
Distributor

Load Balancer

Client

DB

Cache
S

S S

S

S S

S

S

S

Session State

Replicated SS 

Session State features: Reachability and Replication. With SS only 
on Server C, we call this “sticky sessions”. The distributor needs to 
remember the route and there is no fail-over possible 



37

A compromise: Session Replication Pairs

Server A Server B Server C

HA Distributor
Load Balancer

S1S2 S1S2
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Distributed Load-Balancing Problems

Single Lbs have a distorted view on real server load. The chose-the-
shortes-queue alg. (JSQ) combines those views and can create serious 
herding problems. Client latency should be used as well. 
https://medium.com/netflix-techblog/netflix-edge-load-balancing-
695308b5548c
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Load balancing configuration:

Evaluator functions access server 
stats in shmem and calculate 
result (own server handles, 
redirect or proxying of request)

Web
Server 1

Web
Server 2

moderator

moderator

Server stats: CPU, requsts, mem, etc., 
replicated in shmem‘s

Router

Server Stat 
replication 
via multicast

Redirect 
to other 
server

shmemchild

shmemchild

Proxying request

1

2

F

F

F Configured 
evaluator 
function

config

config

Peer2Peer Load-Balancer

“mod backhand” for Apache Server, from Theo Schlossnagle
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Middle-LB Architectures: Matt Klein, Introduction 
to modern network load balancing and proxying

Covers direct server return, health checking, observability etc.
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Distributed Name/Directory Service
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(Non)-functional requirements (aka Systemic
Requirements) 

The different views of a system are also called „aspects“ today. Aspect-
oriented programming (AOP) tries to keep them conceptually separate but 
„weaves“ them together at or before runtime execution.

For “Systemic Requirements” see: 
http://www.julianbrowne.com/article/viewer/systemic-requirements

Definition:  the functions of a system that serve e.g. the business 
DIRECTLY are called “functional requirements”

“Non-Functional Requirements”: the functions of a system that 
are necessary to achieve speed, reliability, availability, security 
etc. 

Many programs fulfill the functional requirements but die on 
the non-functional requirements.
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functional requirements of a naming service

- re-bind/resolve methods to store name/value pairs. 

- Provide query interface

-Support for name aliases to allow several logical hierarchies (name space 
forms a DAG)

-Support for composite names (“path names”)

-Support location – independence of resources by separating address and 
location of objects.

A naming service offers access to many objects based on names. This requires a sound 
security system to be in place. Is it a clever system design to offer lots of services/objects 
only to require a grand access control scheme?
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Non-functional requirements of a name service
-Persistent name/value combinations (don’t lose mapping in a crash)

-Transacted: Manipulation of a naming service often involves several entries 
(e.g. during application installation) This needs to happen in an all-or-nothing 
way.

-Federated Naming Services: transparently combine different naming zones 
into one logical name service. 

-Fault-Tolerance: Use replication to guarantee availability on different levels 
of the name space. Avoid inconsistencies caused by caching and replication.

-Speed: Guarantee fast look-up through clustering etc. Writes can be slower. 
Client side caching support. Reduce communication costs. 

A naming service is a core component of every distributed 
system. It is easily a Single-point-of-failure able to stop the 
whole system.
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Finding distributed objects : name space design

company

channels

testproduction

topics queues

Factory
finder

development

factory

channels

topics queues

Factory
finder

Factory:
/Development/factory

channels

topics queues

Factory
finder

factory

The organization of a company name space is a design and architecture issue. 
System Management will typically enforce rules and policies and control changes. 
Different machines will host parts of the name space (zones)

Hard link alias

Soft link alias

Zone=name server
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Finding distributed objects : naming service

client
Naming
Service

client

client

Account
Finder

Account
Factory

client Account

Resolve(/test/finders/AccountFinder)

getAccountFactory()

createAccount(4711, 
Kriha, 0)

Credit(100.000)

Using interfaces (naming 
service, factoryfinder, 
factory, account) allows 
system administrators to 
hide different versions or 
implementations from 
clients. 

In a remote environment 
finders also support 
migration and copy of 
objects.
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A fault-tolerant JNDI name service I

From: Wang Yu, uncover the hood of J2EE Clustering, 
http://www.theserverside.com/tt/articles/article.tss?l=J2EEClustering
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A fault-tolerant JNDI name service II

From: Wang Yu, uncover the hood of J2EE Clustering, 
http://www.theserverside.com/tt/articles/article.tss?l=J2EEClustering
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Examples of Naming Services

• Domain Name System (DNS)
• X.500 Directory
• Lightweight Directory Access Protocol (LDAP)
• CORBA Naming Service
• Java Registry
• J2EE JNDI (mapped to CORBA Naming Service)
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Distributed Locking 
// THIS CODE IS BROKEN
function writeData(filename, data) {
    var lock = lockService.acquireLock(filename);
    if (!lock) {
        throw 'Failed to acquire lock';
    }
    try {
        var file = storage.readFile(filename);
        var updated = updateContents(file, data);
        storage.writeFile(filename, updated);
    } finally {
        lock.release();
    }
}

https://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html

Order based resource access

Time based resource access

Exercise: How does 
the correct API 
look?



51

Distributed Operating Systems
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Distributed Operating Systems

RPsAPs

Fan-Out
Services

DisFileSys

Sharded
RDBMs

NoSQL 
DB

Repl.
Cache

Async
Queues

Scheduler
/Locking

Batch 
(m/r)
Worker

Realtime
Streams
Proc.

Internal
Monitoring

All systems clustered. RPC/Rest used 
for communication.

Search
Service
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Distributed OS at Amazon 

“The big architectural change that Amazon went through in 
the past five years was to move from a two-tier monolith 
to a fully-distributed, decentralized, services platform 
serving many different applications. “

Werner Vogels, Amazon CTO,  

At the core of the Amazon strategy are the Web Services. 
The Amazon team takes the concepts of search, storage, 
lookup and management the data and turns them into pay-
per-fetch and pay-per-space web services. This is a 
brilliant strategy and Amazon is certainly a visionary 
company. But what impresses me the most as an engineer 
is their ability to take very complex problems, solve them 
and then shrink wrap their solutions with a simple and 
elegant API. Alex Iskold, SOAWorld Mag. 
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Distributed Operating Systems

DS Services need to enable application engineers! 
They need to hide the complexities of distributed 
algorithms. Google has been especially conservative in 
the use of APIs.  

From 
J.Dean talk
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Amazon Service Arc.

A.Iskold, SOAWorld
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Amazon Service Arc.

http://www.infoq.com/news/2009/02/Cloud-Architectures
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Amazon Client Facing Services

• Storage Services (S3, huge storage capacity, RDS, Aurora, 
Mongo)

• Computation Services (EC2, Virtual Machines)
• Queuing Services

• Load-balancing services
• Elastic map reduce
• Cloudfront (memcache like fast cache)
• Lambda, Stepfunctions
• AI framework services

• And so on....
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Distributed OS at Google

- Scheduling Service

- Map/Reduce Execution Environment

- F1 NewSQL DB

- Spanner Replicated DB

- BigTable NoSQL Storage 

- Distributed File System

- Chubby Lock Service

- Pregel, Percolator, Dremel graph processing and SQL

- Dapper distributed locking

- Google compute platform
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Google vs. Amazon

Google Warehouse Computing AWS

Application

clients

Search/
mail..

“Services”

Flexible, 
“accessible”

According to Steve Yegge,, Jeff Bezos understood 2 things: A platform can be re-
purposed. And you can't make it right for everybody! Read: “Yegge's Rant”: 
https://plus.google.com/+RipRowan/posts/eVeouesvaVX 

“Products”

https://plus.google.com/+RipRowan/posts/eVeouesvaVX


60

Example: Near RT Discovery Platform on AWS

From: Assaf Mentzer, Building a Near Real-Time Discovery 
Platform with AWS, 
http://blogs.aws.amazon.com/bigdata/post/Tx1Z6IF7NA8ELQ9/Bu
ilding-a-Near-Real-Time-Discovery-Platform-with-AWS
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Services: Best Practice
• Keep services independent (see Playfish: a game is a 

service)

• Measure services
• Define SLAs and QoS for services
• Allow agile development of services
• Allow hundreds of services and aggregate them on special 

servers
• Stay away from middleware and frameworks which force 

their patterns on you

• Keep teams small and organized around services
• Manage dependencies carefully
• Create APIs to offer your services to customers

more: www.highscalability.com, Inverview with W.Vogels, 
allthingsdistributed.com

http://www.highscalability.com/
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Distributed File Systems
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Example: GFS, Central Master Approach

- made to store large amounts of documents
- processing mostly sequential and batch-oriented
- atomic updates needed, but no distributed transactions
- high bandwidth needed, latency no big issue
- huge chunk-size (block-size) to keep meta-data small
- chunk-replication instead of RAID. 
- fast rebuild of broken disks
- clients aware of GFS specifics (no posix, no order between 
concurrent chunks etc.)

GFS was built around Google's needs, which was mostly batch 
processing at that time (map-reduce processing). This changed 
drastically over the years and forced Google to build new 
storage systems on top (e.g. BigTable)
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Meta-data server

Processor blade R1

Processor blade R2

Processor blade R3

client

C11

C12

C13

/wacko.avi (C = C11:R1, C12:R2,…

write(„wacko.avi“, 
offset)

Lease: 
R1:C11, 
R2:C12…

Write…

write

Storage grid

Constraints:

nr. replicas

Read/update 
modes

Chunk size

Reboot time

Reorganiz.Posix API wrapper 
library  possible?

Fast 
lookup

Few meta-
data

Processor blade R0
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Meta-data server

Processor blade R1

Processor blade R2

Processor blade R3

client

C11

C12

C13

Lease: 
R1:C11, 
R2:C12…

MapReduce 
API

Storage grid

Posix File 
API

Grid
Gateway

Grid
Lib

Lease: 
R1:C11, 
R2:C12…

Scheduler
Grid
Lib

Processor blade R0
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Storage Backend Technology (e.g. CephFs)

From: https://blog.acolyer.org/2019/11/06/ceph-evolution/

https://blog.acolyer.org/2019/11/06/ceph-evolution/
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Batch Processing at Scale: Map/Reduce

Diag. From: Simplifieded Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat of Google Inc. My annotations in purple.

Lambda functions

Disk latencies, but 
restartable!

Long-tail of 
failing workers

Chubby
Lock 
service



68

Exercise: Use Map/Reduce to calculate PageRank

Define a map and a reduce function to calculate a pagerank from documents!

(define pagerank simply as the number of references (links) to a site)
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Grid Storage vs. NAS/SAN
Posix-Grid gateway needed

Special caching possible but not needed for video (read-
ahead needed?)

Huge bandwidth and scalable

Maintenance special?

Proprietary?

Parallel Processing possible

Special Applications needed

Questionable compatibility with existing apps.

Disaster revovery across sites?

Standard Lustre use possible? (framestore?)

More electric power and space needed for grids

Posix compatible

Special caching difficult to implement in standard 
products

Hard limit in SPxx storage interface but plannable and 
limited lifetime anyway

Simple upgrades

Standard filesystem support

Dynamic growth of file systems via lun-organization

Maintenance effort to balance space/use

Proven, fast technology

Expensive disaster recovery via smaller replicas

Several different filesystem configuration possible

Without virtual SAN hot-spots possible on one drive

Longer drive-rebuild times

Key points with grid storage: watch out for proprietary lock-in with grid storage and 
applications. Watch out for compatibility problems with existing apps.  Without real 
parallel processing applications there is no use for the CPUs, they just eat lots of 
power (atom?). You should be able to program your solutions (map/reduce with 
Hadoop). Definitely more prog. Skills needed with grids. NAS/SAN won‘t go away 
with grid storage (which is specialized).
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ws DB

ws

ws

DB
server

DB
San

DB
server

DB
server

Virtual 
DB
San

DB
server

Ws
Shard API

Membership Milestones:
- 500,000 Users: A Simple 
Architecture Stumbles

1 Million Users:Vertical 
Partitioning Solves Scalability 
Woes

- 3 Million Users: Scale-Out Wins 
Over Scale-Up

- 9 Million Users: Site Migrates to 
ASP.NET, Adds Virtual Storage

- 26 Million Users: MySpace 
Embraces 64-Bit Technology 

(after Todd Hoff‘s Myspace article)

DB

DB
DB

DB DB

Ws
Shard API

64-bit DB
server

Ws
Shard API

What is 
MISSING????

The sad Story of Myspace ...
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Distributed Logs
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What is a Log?

Jay Kreps, The Log: What every software engineer should know 
about real-time data's unifying abstraction.  A log provides total 
order of events and data distribution. It is the base of many 
advanced data systems (Dbs, messaging systems, stream 
processors, pub/sub systems)
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Log Architecture

From: Jay Kreps, The Log: What every software engineer should 
know about real-time data's unifying abstraction.  A log can contain 
raw events (e.g. commands) or the results of a command processed 
by a master first.
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Unified Log

From: Jay Kreps, The Log: What every software engineer should 
know about real-time data's unifying abstraction.  A unified log is a 
powerful enterprise component. It decouples producers and 
consumers and lets everybody create derived logs.



75

Distributed (scalable) Logs: Kafka

From: Jay Kreps, The Log: What every software engineer should 
know about real-time data's unifying abstraction.  Kafka allows 
partitioning via keys. Partitions are totally ordered internally but 
not across partitions. They are replicated and can be read by many 
consumers. Some systems store data for days in Kafka.
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Data-flow (stream) Architecture

From: Jay Kreps, The Log: What every software engineer should 
know about real-time data's unifying abstraction.  Finally, a stream 
architecture is Java Streams on steroids (partitioned across many 
machines). The result is a graph of process stages.
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Other Architectures: Waltz

From: Y. Matsuda, Waltz: A Distributed Write-Ahead Log 
(wepay.com). 
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Waltz: Lost Update

From: Y. Matsuda, Waltz: A Distributed Write-Ahead Log 
(wepay.com). 
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Waltz: Constraint Violation

From: Y. Matsuda, Waltz: A Distributed Write-Ahead Log 
(wepay.com). 
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Waltz: Optimistic Locking

From: Y. Matsuda, Waltz: A Distributed Write-Ahead Log 
(wepay.com). 
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Event-Sourcing: Not Easy!

From: https://chriskiehl.com/article/event-sourcing-is-hard
 

What happens when 
schemas change? 
Materialization cost? 
Eventual consistence? 
CQRS pattern.

But read-my-
writes?
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Caching Services
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 Caching Service

- the fastest request is the one not made!
- storage systems cannot take thousands of concurrent hits
- partitioned storage systems force joins outside DBs
- the social graph is highly connected 

Requirements:
1. Able to add machines to the cache service
2. No “thundering herds” due to placement changes
2. Needs to replicate cache entries 
3. Needs to be very fast
4. Optional disk backup
5. From ram to ssd
6. Different cache replacement policies supported (danger!)
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Exercise: Design of a Caching Service

API: 

Put ( key, value)

Value = get (key)

App
Server

App
Server

App
Server

Storage

Cache?

Design a cache architecture and discuss performance, 
scalability and behavior in case of failures!

Storage
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Example: Memcached Caching Service

Source: Enhancing the Scalability of Memcached, J. T. Langston Jr , 
August 16, 2012.
Warning: A cache miss will destroy your storage system at 100k 
requests/sec! For replication: use two memcached arrays or use a 
memory based NoSQL store with built in replication. 
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Parallel Memcached Algorithm

Source: Enhancing the Scalability of Memcached, J. T. Langston 
Jr , August 16, 2012. Get/Store/Delete locks removed, no CAS in 
Bag LRU. 
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The Problem: Changing Machine Count

http://highscalability.com/blog/2018/6/18/how-ably-efficiently-implemented-
consistent-hashing.html

Machine count old Machine count new
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Solution: Consistent Hashing (Ring)

http://highscalability.com/blog/2018/6/18/how-ably-efficiently-implemented-
consistent-hashing.html

Machines are mapped into a ring. The position decides about the key-space a machine 
is responsible for. Machines can be mapped to several (virtual) positions
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„(i) Both URLs and caches are mapped to points on a circle using a standard hash 
function. A URL is assigned to the closest cache going clockwise around the circle. 
Items 1, 2, and 3 are mapped to cache A. Items 4, and 5 are mapped to cache B. (ii) 
When a new cache is added the only URLs that are reassigned are those closest to the 
new cache going clockwise around the circle. In this case when we add the new cache 
only items 1 and 2 move to the new cache C. Items do not move between previously 
existing caches. „[ Kager et.al., Web Caching with Consistent Hashing, MIT]

On average key/slots elements will have to be moved when a new node joins. 

Simple Consistent Hashing Algorithm

A

B
1

2

3
4

5

A

B
1

2

3
4

5
C
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Dynamo Consistent Hashing Algorithm

Dynamo separates placement from partitioning and allows much more flexibility with respect to nodes and 
locations. The trick is to create virtual nodes and assign those to real machines. In the above diagram, virtual node 
B is responsible for node 1 an 10. The placement vs. partitioning issue will come up again when we talk about 
sharding.

Load Balancing is much easier due to the additional indirection. Dynamo also replicates data over the next n-1 
nodes if requested. Lit:  DeCandia et.al., Dynamo: Amazon’s Highly Available Key-value Store, SOSP’07, October 
14–17, 2007, Stevenson, Washington, USA. Copyright 2007 ACM.

WARNING: Dynamo is “eventual consistent”  (last-write-wins)
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Alternative Cache Architectures

client Storage

Queue/filter

GEODE
cache

GEODE
cache

GEODE
cache

Persistent, 
async 
updates 

Write through cache, pull 

client StorageMem
cached

Mem
cached

Mem-
cached

Persistent, 
async 
request

Cache miss

Worker
pool

request cache, push

Fail or 
fallback
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Cache-Patterns

Pull: during request time, concurrent misses, client crashes 
lead to outdated caches, complicated handling of concurrent 
misses and updates, slow and dangerous for backends. 

Push: Automated push can lead to updates for cached 
values, which are no longer needed. Only use it for values 
ALWAYS needed. 

Pre-warmed: The system loads the cache before the 
application accepts client requests. (Big applications with 
pull caches could not even boot without this)

In all cases: Beware of LRU or clocked invalidations! Your 
cache is mission critical! 
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Cache-Design

Your cache design absolutely depends on the information 
architecture of your system:

- what kind of information fragments exist?
- what is the lifecycle of those fragments?
- how long are the fragments valid?
- what kind of effects does an invalidate of a value cause?
- are there dependencies between fragments, pages etc.?

We will discuss an example IA in our design session! See 
“Design of a Modern Cache”  by B.Manes for advanced 
eviction policies, probabilistic data structures (CountMin 
sketch) and high concurrency buffers.
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Netflix Cache-Design for Replication and Scale

Dump keys and data to external storage (batch) to avoid disturbing client traffic. Send 
meta-data to populator for cache warming. Watch out for changes during this process… 
D. Jayaraman, S. Madappa, S. Enugula, I. Papapanagiotou, https://medium.com/netflix-
techblog/cache-warming-agility-for-a-stateful-service-2d3b1da82642
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Async Rulez: Event Processing
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Local, Synchronous Events: Observer Pattern

Observed:

Register(observer) {

        ObserverList.add(observer);

}

Notify() {

For each observer in List, call 
observer.update(Event) 

}

Observer A:

Update(Event) {}

Observer B:

Update(Event) {}

Register 

Receive updates

Even in the local case these observer implementations have problems: Updates 
are sent on one thread. If an observer does not return, the whole mechanism 
stops. If an observer calls  back to the observed DURING an update call, a 
deadlock is easily created. The solution does not scale and is not reliable (if the 
observer crashes, all registrations are lost). And of course, it does not work 
remotely because the observer addresses are local.
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Distributed  Events

Various combinations of push and pull models are possible. 
Receivers can install filters using a constraint language to 
filter content. This reduces unwanted notifications.

Sender
On machine

A

Receiver
On machine

B

Topic B

Topic A

Topic C

Notification or event channel

push

pull

pull

push

filters

Machine X
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 Asynchronous Event-Processing

- Programming Style used to de-couple components
- Also used to de-couple asynchronous sub-requests from 
synchronous main requests
- Implemented as Message-Oriented-Middleware (MOM) or socket-
based communication library
- Broker-less or brokered mode

Decoupling interaction from computation

Compute

SubscriberPublisher
publish

Interaction
Middleware

Compute

subscribe



99

 Use Case: De-Couple Slow Requests

Today, message queues are used to de-couple requests, create 
background jobs, store overflow data and spikes etc.

Queue/filter

client Storagecache

async 
request

Image 
upload

Worker
pool Get image, trans-

code, store

image
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Interaction Models according to Mühl et.al.

Adressee Consumer 
initiated

Producer 
initiated

Direct Request/Reply callback

Indirect Anonymous 
Request/Reply

Event-
based

Expecting an immediate „reply“ makes interaction logically synchronous – NOT 
the fact that the implementation might be done through a synchronous 
mechanism. This makes an architecture synchronous by implementation (like 
with naive implementations of the observer pattern).

EP-Interaction-Models
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Features of event-driven interaction

• Basic event: Everybody can send events, everybody can 
receive events  - no restrictions, filtering etc.

• Subscription: Optimization on receiver side. Only events for 
which a subscription exists are forwarded to receiver. Can 
trigger publishing too.

• Advertisement: Optimization on sender side. Informs 
receivers about possible events. Avoids broadcast of every 
event in connection with subscriptions.

• Content-based filtering can be used for any purpose. Can 
happen at sender side, in the middleware or at receiver side.

• Scoping: manipulation of routes through an administrative 
component. Invisible assembly of communicating components 
through routes. 
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Centralized Message-Oriented-Middleware

component component

Pub/sub
 API

Central 
Communication 
Hub

The system collects all notifications and subscriptions in one central place. 
Event matching and filtering are easy. Creates single-point-of-failure and 
scalability problems. High degree of control possible. No security/reliability 
problems on clients. Scalability problems. 

Pub/sub
 API

component

Pub/sub
 API

component

Pub/sub
 API
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Clustered Message-Oriented-Middleware

component component

Pub/sub
 API

Communicating 
MOM cluster

Clustering provides scalability at higher communication costs for consistency. 
Filtering and routing of notifications can become expensive due to lots of 
routing/filter-tables at cluster nodes. 

Pub/sub
 API

component

Pub/sub
 API

component

Pub/sub
 API
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External Transactions in event-driven systems

Event
system

Component 2:

beginTA()

Notify(p1)

Notify(p2)

writeToDB()

writeToDB()

Commit()

P1 P2

P1

P2

Component 1

beginTA()

Publish(p1)

Publish(p2)

writeToDB()

writeToDB()

Commit()

P1

P2

Only when the event system itself supports XA-
Resource Manager semantics can we guarantee at 
most once semantics. The event system needs to 
store the events in safe storage like a DB. Even if 
publisher or subscribers crash, events won't get 
lost!
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Wrong feedback expectations with a transaction

C2

C4

C3

BeginTA()

Publish(N1)

Subscribe(N4)

…wait for N4…

Commit()

Code that will not work. N4 causally depends on N1 being published by C1 and received 
by C2. But as publishing by C1 is done within a transaction the notification N1 does not 
become visible until the end of the transaction – which will not be reached because of the 
wait for N4 – which will never come.
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Simple P2P Event Library

component component

Local  EP lib

The local libraries know about each other, but the components are de-coupled. 
This broker-less architecture is much faster than brokered ones. It does not 
provide at-most-once semantics or protection against message loss. Only 
atomicity and perhaps fifo is guarantieed. ZeroMQ, Aaron and Nanomsg are 
examples.

Local  EP lib

component

Local  EP lib

component

Local  EP lib
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Brokered vs. Broker-less Throughput

http://bravenewgeek.com/dissecting-message-queues/
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C1

C2

C5

C4

With flooding notifications travel towards subscriptions which are only kept at leaf 
brokers. See: Mühl et.al. Pg. 22 ff. Advantages are that subscriptions become effective 
rather quickly and notifications are guaranteed to arrive everywhere. The price is a 
large number of unnecessary notifications to leaf nodes without subscribers

Special Case: flooding protocols for distribution
Subscribe (S)

Subscribe (S)

Subscribe (S)
Notify (N)

S

S

S

N

N

N
N N

N
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- Brokerless, fast and small socket library for messaging, 
- message filtering possible
- connection patterns like pipeline, pub/sub, multi-worker
- various transports (in process, across local process, across 
machines and multicast groups)
- message-passing process model without need for synchronization
- multi-platform and multi-language
- “suicidal snail” fail-fast mechanism to kill slow subscribers

Example: ZeroMQ

After: P.Hintjens, iMatix, Introduction to ZeroMQ 
http://www.slideshare.net/pieterh/overview-of-zeromq
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After: I.Barber,  http://www.slideshare.net/IanBarber/zeromq-
is-the-answer?qid=e9d81d72-45dd-4b28-a6b0-
49fce5617a35&v=default&b=&from_search=1

Connection Patterns in ZeroMQ
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Pub-Sub Server in ZeroMQ

After: Francesco Crippa,  
http://www.slideshare.net/fcrippa/europycon2011-
implementing-distributed-application-using-zeromq 
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After: Francesco Crippa,  
http://www.slideshare.net/fcrippa/europycon2011-
implementing-distributed-application-using-zeromq 

Pub-Sub Client in ZeroMQ
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„Snail Suicide”

Slow
subscriber

Fast 
publisherLocal  EP lib

There is no broker to buffer large amounts of messages. ZeroMQ uses a 
surprising solution for this problem: A subscriber which gets overrun, commits 
suicide! This prevents the fan-out from becoming slow for all participants and 
makes buffering (except for a little) unnecessary. 

Local  EP lib

fast
subscriber

Local  EP lib
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From: Tyler Treat,  A Look at Nanomsg and Scalability Protocols, 
http://bravenewgeek.com/a-look-at-nanomsg-and-scalability-
protocols/

Nanomsg – a re-write of ZeroMQ 

- zero-copy mechanism to bypass CPU
- sockets and threads are de-coupled (allows user-level 
threads)
- fast Radix-trie to maintain subscriptions
- scalability patterns provided (PAIR, REQREP, PIPELINE, 
BUS, PUBSUB, and SURVEY)
- Posix compliant sockets, 
- pluggable interfaces for transports and messaging patterns
- thread-safe sockets, interaction as sets of state machines
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Wait-free concurrent writing of incoming message stream with no 
head of line blocking. Further optimiziations: Direct write of header 
structure to network, memory mapped files. >6M/sec messages with 
40 bytes each

Aaron – extremely fast P2P messaging
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No need for ACK messages. Daemon process (conductor) checks for
Gaps in receive structure and requests missing messages

Aaron – Interaction Protocol 
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The Coming of the Shard 

One of the all-time-classics from 
http://highscalability.com/blog/2009/8/6/an-unorthodox-approach-
to-database-design-the-coming-of-the.html

It gives you all the good reasons why you SHOULD shard – and 
why you should NOT do it ever!
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Sharding – divide and conquer! 

[http://www.ralphkoster.com/2009/01/08/
database_sharding_came_from_uo/] (found in [Scheurer])
Game developers early on discovered the need to partition 
things, because systems could not carry the load. 

“The evil wizard Mondain hat attempted to gain control 
over Sosaria by trapping its essence in a crystal. When 
the Stranger at the end of Ultima I defeated Mondain and 
shattered the crystal, the crystal shards each held a 
refracted copy of Sosaria.”
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Sharding as Partitioning  

One of the best introductions to sharding and partitioning that I found is made by 
Jurriaan Persyn of Netlog. “Database Sharding at Netlog” is a presentation held at 
Fosdem 2009 http://www.jurriaanpersyn.com/archives/2009/02/12/database-
sharding-at-netlog-with-mysql-and-php/ 

What: Data types (pictures, comments etc., HORIZONTAL),
           Data values (paying customers vs. non-paying, 

     VERTICAL)
           Functions: login, upload, query etc. 

How: Static sharding functions (time, hash, RR)
    Dynamic sharding via meta-data indexes 

Where: placement strategy fixed because of sharding 
       function. Virtualized placement supporting lifecycle 

 Changes in data behavior. 



120

But first: Know your numbers! (“Load-Parameters”)

Do not repeat the myspace error of optimizing in one place only! Hint: If you have 
a bottleneck in your system and your optimizations cannot push the bottleneck to a 
different spot in your architecture at least for some period of time – then you 
should re-think your architecture end-to-end! Do you need an edge-cache (e.g. 
Akamai)?  Change your business requests? Add more async services?

- requests/sec, data/sec
- what is your read/write ratio?
- what is more expensive? Reads or writes, or both?
- what are your traffic patterns? Spikes?
- how much bandwidth to the data do you need? Changing?
- do you need random or sequential access?
- which data grow fastest?
- which functions grow fastest?
- how much replication safety do you need?
- Did you simplify queries? Push them to analytics?
And finally: How will those numbers change, when your 
caching services are in place? When you fixed queries?
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User profile friends photos messages

0001

0002 Topic 1Topic 2

partitioning along columns

Group 1

Group 2 partitioning along rows

Horizontal vs. Vertical Sharding
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Sharding Strategies

And I would like to add:

6. Keep sharding and placement strategies separat! 

Persyn lists requirements for a sharding scheme and implementation:
1. allow flexible addition of possibly heterogeneous hardware to    

balance growth
2. keep application code stable even in case of sharding changes. 
3. Allow mapping between application view and sharding view (e.g. 

using shard API against a non-sharded database)
4. Allow several sharding keys
5. Make sharding as transparent as possible to the application 

developer by using an API.
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Sharding Functions

A directory-based mapping will allow transparent load-
balancing between shards, e.g. when disks with older users 
become idle! Ideally, the client-storage library will learn the 
proper function dynamically (stored e.g. in zookeeper)

Example:  Horizontal sharding of users
A typical key is e.g. the userID given to your customers. Several 
algorithms can be applied to this key to create different groups 
(shards). 
- A numerical range (users 0-100000, 100001-200000 etc.)
- A time range (1970-80, 81-90, 91-2000 etc.)
- hash and modulo calculation
- directory based mapping (arbitrary mapping from key to shard 
driven by meta-data table)
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Consequences of HS and VS

It is questionable, whether splitting RDBMs into several shards is really beneficial. 
As most of the aggregation is done in the cache and application server levels 
anyway, you might think about using a NoSQL. Consistency will be an issue then, 
but most sharded systems do not run dist. Transactions anyway. USE AN 
INDIRECTION LAYER IN APPLICATIONS TO HIDE STORAGE CHANGES!

- no more DB-Joins with SQL. Lots of copied data!
- a lot more partial requests needed for data aggregation
- expensive distributed transactions for consistency (if needed)
- vertical sharding distributes related data types from one user
- horizontal sharding distributes related users from each other 
(bad for social graph processing)
- SQL further limited because of mostly key/value queries and 
problems with automatic DB-Sequences

And: every change needs application changes as well!!!!
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Meta-master

Write requests from app. 
servers

App.
server

Dispatch

App.
server

Dispatch

Friends master

requests from app. servers

User table 
replicated 
from 
master for 
joins

Friends
table

User
table

Photo master

photo
table

User
table

Not shown: read slaves per master

Vertical Split with De-Normalization
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Write
master

Write requests from app. 
servers

App.
server

Dispatch

App.
server

Dispatch

Read
Slave

Read
Slave

read requests from app. 
servers

Updates to slaves via 
command log or data 
replication

Partitioning over Functions: Read-Slaves

1. Make sure, that those reads result from compulsory cache misses
2. This won't help your writes at all, but suffers from lots of them.
3. How consistent is this?
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Relationships 
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 Relationships

“Person” and “Preferences”. If 
person is deleted, the preferences 
should go too.

Referential 
integrity rules

person

preferences

“has” relationship

Within the database referential integrity rules protect e.g. 
containment relationships. We’ve got nothing like this in 
object space. And distributed?
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Relationships: employee 

employee

Mail system: Mails
Host:

Passwords

Host:
Authorizations 

(Internet Access etc.)

Host:
Authentications

File Server:
Disk Space Host:

Passwords

Applications:
passwords

House Security:
Door access rights

Human Resource 
DB

Can you make sure that once an employee leaves, ALL her rights are cancelled, her disc-space archived and 
erased, the databases for authentication etc. are updated, application specific DBs as well? And last but not least 
that the badge does no longer work? That all equipment has been returned? This are RELATIONS between an 
employee and resources which need to be expressed in a machine readable form.
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Functional Requirements for a Relationship 
Service

• Allow definition of relations between objects without 
modifying those objects

• Allow different types of relations
• Allow graphs of relations

• Allow the traversal of relationship graphs
• Support reference and containment relations

More on relationships: W.Emmerich, Engineering Distributed 
Objects
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Relationship Modeling

Object A
Reference to B

Object B Programmed 
relationship

Node

Node

Relation
type

Role A

Role B

Dynamic 
relationship

Object A

Object B

The objects A and B are not aware of any relations defined on 
them.
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Relationship Service: A Failure

• Powerful modeling tool for meta-information 
• Helps with creation, migration, copy and deletion of 

composite objects and maintains referential integrity

The good:

• Tends to create many and small server objects
• Performance killer (many CORBA vendors did not 

implement this service for a long time). EJB: supported 
with local objects only (in same container)

The bad:
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Today: Graph Processing

• Modern graph-processing databases (e.g. Neo4j)
• Distributed graph-processing algorithms (Google's Pregel)
• Loosely-consistent replicated stores without TAs

The problems with a distributed relationship service 
were a sign of things to come: Processing friend-
relations across 1.5 billion people....
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Next Sessions:

Literature:
•Gray/Reuter, Transaction Processing (Chapter on Transaction 
Models)

• Peter Bailis, Dissertation on Coordination-free Consistency

• Distributed Systems for fun and profit (Chapter on CRDTs)

When the truth is too expensive: Dealing with 
Uncertainty in Replicated Systems!
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Resources

• Understanding LDAP, www.redbooks.ibm.com 
• www.io.de  distributed web search paper
• Van Steen/Tanenbaum, Chapter on Naming
• Van Steen/Tanenbaum, Chapter on Security (homework 

for next session)

• Martin Fowler et al., UML Distilled (small and nice)

Werner Vogels, Amazon Architecure, 
http://queue.acm.org/detail.cfm?id=1142065

Alex Iskold, SOAWorld on Amazon – the real Web Services 
Comp. http://soa.sys-con.com/node/262024

http://queue.acm.org/detail.cfm?id=1142065
http://soa.sys-con.com/node/262024
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Resources
D. Bailey, E. Frank-Schultz, P. Lindeque, and J. L. Temple III, Three reliability engineering techniques and their 
application to evaluating the availability of IT Systems: An Introduction. IBM Systems Journal  Vol. 47, Nr. 4, 2008

R. R. Scadden, R. J. Bogdany, J. W. Clifford, H. D. Pearthree, and R. A. Lock, Resilient hosting in a continuously 
available virtualized environment, IBM Systems Journal Vol 47, Nr. 4

Jeff Dean, Handling Large Datasets at Google, Current Systems and Future Directions, 
http://prof.ict.ac.cn/DComputing/uploads/2013/DC_2_2_Google.pdf

Distributed Lookup Services - Distributed Hash Tables,  Paul Krzyzanowski, December 5, 2012, 
https://www.cs.rutgers.edu/~pxk/417/notes/23-lookup.html

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, 
Swaminathan Sivasubramanian, Peter Vosshall and Werner Vogels, Dynamo: Amazon’s Highly Available Key-
value Store, SOSP’07, October 14–17, 2007, Stevenson, Washington, USA. Copyright 2007 ACM.

Benjamin  Manes, Design of a Modern Cache (Caffeine), http://highscalability.com/blog/2016/1/25/design-of-a-
modern-cache.html 

http://prof.ict.ac.cn/DComputing/uploads/2013/DC_2_2_Google.pdf
https://www.cs.rutgers.edu/~pxk/417/notes/23-lookup.html
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Resources

• Broker vs. Brokerless

http://zeromq.org/whitepapers:brokerless

• A Look at Nanomsg and Scalability Protocols

http://www.bravenewgeek.com/a-look-at-nanomsg-and-scalability-protocols/

• Message Broker

http://en.wikipedia.org/wiki/Message_broker

• The Log: What every software engineer should know about real-time data's unifying

abstraction

http://engineering.linkedin.com/distributed-systems/log-what-every-software-engineershould-

know-about-real-time-datas-unifying

Aeron

• GitHub (Efficient reliable unicast and multicast transport protocol)

https://github.com/real-logic/Aeron/

Strangeloop

https://thestrangeloop.com/sessions/aeron-open-source-high-performance-messaging

https://github.com/real-logic/Aeron/
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Resources

Edge Routing, Internet-Scale load-balancing:

Laura Nolan, Murali Suriar, Directing traffic: Demystifying Internet-scale load balancing, 

https://opensource.com/article/18/10/internet-scale-load-balancing

Oleg Guba and Alexey Ivanov, Dropbox traffic infrastructure, 
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/

Mike Smith,  Rethinking Netflix’s Edge Load Balancing, https://medium.com/netflix-techblog/netflix-
edge-load-balancing-695308b5548c

https://opensource.com/article/18/10/internet-scale-load-balancing
https://blogs.dropbox.com/tech/2018/10/dropbox-traffic-infrastructure-edge-network/
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