
Message Protocols for Distributed Systems

with examples from Socket based
Client/Server Systems

2

Overview

1. Message Protocols
• Delivery Guarantees in Point2Point
• Reliable Broadcast
• Request Ordering and Causality

2. Programming C/S Systems with Sockets

3

The Role of Delivery Guarantees

- Problem Scenario: Shop order
- TCP Communication properties
- at-least-once
- at-most-once
- Exactly once?
- Message complexity: the number of messages sent

4

Shop Order Failure Scenarios

Shopuser
Order

Order
confirmation

Order
processing

What happens to the order when certain failure types apply? What
kind of guarantees do you have? Does TCP Help? What outcomes do
you expect?

Browser
crashed

Message
lost

Server
crashedLost in

transmit

DB drop
tables...

5

Concept Exercise: Protocol Design

- You want to receive something eventually
- You don’t want to receive duplicate orders
- Use a browser to place your order
- Use a special fat client to order

Client/Browser Shop

6

Shop Order Failures

a) network problem, server did not receive request, client did
not receive response

b) OS problem: OS did receive request but server crashed
during work

c) Server problem: Server finished request but response got
lost or OS crashed during send.

d) Shop problem: shop out of order, bankrupt, closed.

Case: Client sends request and receives nothing

What are the options for clients and how do they match the
possible failures?

7

Client Options

a) do nothing

network problem, server did not receive request

b) Server problem: OS did receive request but server crashed
during work

c) OS/Network problem: Server finished request but response
got lost or OS crashed during send.

d) Go to different server

e) Chose different shop

Client options: drop request (ok in c), resend request (ok in a
and b), send request to different server (ok in a and b). Other
client actions lead either to lost or duplicated requests.

8

Client Options

Send

Resp?process

Send different
server

Timeout?

Stuck

Yes NO

9

Why is TCP not enough?
TCP communication properties!

• lost messages retransmitted

•Re-sequencing of out of order messages

•Sender choke back (flow control)

•No message boundary protection

These features form a “reliable communication channel”. This
does not include proper behavior in case of connection failures!
(timeout problem). (Ken Birman, building secure and reliable
network applications, chapter 1)

10

Timeout Levels

Shopuser
Order

Order
confirmation

Order
processing

In an asynchronous system, we need timeouts on different levels to
avoid getting stuck in a process. TCP only covers the lowest layer!

TCP-Timeout (reliable channel)

RPC-Timeout (order progress)

Business-Process-Timeout (bus.pro)

11

RPC Delivery Guarantees

• Best effort (doesn’t guarantee anything)

• At least once (same request several times received)

• At most once (not more than once but possibly not at all)

• Once and only once/ exactly once (does it exist?)

In case of channel break-down TCP does NOT make ANY delivery
guarantees. This becomes your job then (or better: a job for your
middleware). For a discussion of “exactly once” in the context of
real-time streaming software see: http://bravenewgeek.com/you-
cannot-have-exactly-once-delivery/

12

An Important Concept: Idempotent Requests

• Get bank account balance?
• Transer $10 to some account?
• Push elevator button?
• Get /index.html ….?
• Book flight?
• Cancel flight?
• ….
Idempotent means, that a repeated execution of a request
will not change state on the server! What kind of delivery
guarantee do you need for idempotent service requests?

13

Idempotency

• Is not a medical condition (Pat Helland)
• The first request needs to be idempotent
• The last request can only be best effort
• Messages may be reordered.
• Your partner may experience amnesia as a
result of failures, poorly managed durable
state, or load-balancing switch-over to its evil
twin.
• ….Pat Helland, http://queue.acm.org/detail.cfm?id=2187821

http://queue.acm.org/detail.cfm?id=2187821

14

Idempotency and Server State

• No need to remember a request and its result
• Server can lose its storage
• Concurrent updates might be consistent

without concurreny control!

The last point is a critical feature of the new Consistent
Replicated Data Types (CRDTs)

15

„At least once“ implementation for
idempotent requests

server

request

Response
(ack)

No or
uncritical
update of
server state

All that is needed is an ack!

client

16

„At most once“ implementation for non-
idempotent requests

Request #
server

request

Response
(ack)

A response is
stored until
client
confirms

By adding a request number to each request the server can
detect duplicate requests and throw them away. The
server itself needs to store a response until the client
acknowledges that it was received. This creates state on
the server!

client

17

„Exactly once“ ???

Request #
server

request

Response
(ack)

A response is
stored until
client
confirms

Not possible in asynchronous systems with network
failures! But we can do a little bit better with two-phase
commit. We need to ensure, that client and server do not
forget their decisions! Things like epoch numbers allow
garbage collection.

client

Atomic
log Atomic

log

18

Multi-Point Protocols

19

Request Order in Multi-Point Protocols

There is no request order:
- from one sender
- between different senders and
- between independent requests of different senders

If your business logic needs some order, it has to be created.
E.g. by using a reliable, fault-tolerant broadcast model.

20

Fault-tolerant Broadcast Model

Process I

Watch out: messages can be delivered without respect to some order. Or they can
be sorted, kept back at the middleware layer and only delivered when a certain
order can be guaranteed. Notice the self-delivery of messages by the sending
process.

Send (m,#)

Point-to-point
primitives:

Process II

Middle-Ware Middle-Ware

Communication Layer

Receive (m,#)

Broadcast
primitives:

Bcast (m,#) Deliver (m,#)Deliver (m,#)

21

Reliable Broadcast -
Request Ordering with Multiple Nodes

- Reliable Broadcast
- Fifo Cast
- Causal Cast
- Absolutely Ordered Casts

Taken from: C. Karamanoulis and K.Birman

22

Reliable Broadcast with no Order

Taken from: C. Karamanoulis, Reliable Broadcasts

client

server

order

rebate

cancel

???? A cancel
request without
previous order

23

Reliable Broadcast with FiFo-Order

Taken from: C. Karamanoulis,

client

server

M2M1

M3 Recv.
Rel.delivery
FIFO del. Delayed!!!

M3

M1 Recv.
Rel.delivery
FiFo delivery

M3 gets FiFO delvd.
Here:

24

 Causal Violation with FiFO Order

Taken from: C. Karamanoulis, Local Order: If a process delivers a message
m before broadcasting a message m’, then no correct process delivers m’
unless it has previously delivered m.

Stud1

Stud2

M2M1

M1 FiFo delivered!

M3

Stud3

Lecture cancelled!

Let's go somewhere!

But we have a
lecture???

25

Twitter Example

Alice gets the re-tweet of Lady Gaga's message, before
she gets the original tweet. Is this OK? How could you
Prevent it? With partition tolerance?

Lady Gaga

Bob follows(Lady Gaga)

Alice follows(Lady Gaga,Bob)

tweet

re-tweetDelayed, network
partition?

26

Solutions for Causal Ordered Broadcasts

- Piggyback every message sent with privious messages:
Processes which missed a message can learn about it with
The next incoming message and then deliver correctly

- Send event history with every message (e.g. using vector
Clocks. Delay delivery until order is correct.

Taken from: C. Karamanoulis and K.Birman. What are
the advantages/disadvantages of both solutions?

27

 Causal Re-Ordering

Taken from: C. Karamanoulis,
P3 has delivered M2 to itself, before delivering M1. Is this a problem?
Think about causal dependency and what causes it!

p1

p2

M2M1

M3 delayed, until M1
delivered!

M3

p3
M2 delivered!

28

Replication Anomalies with Causal Order

Taken from: C. Karamanoulis, Total Order: If correct processes p and q
both deliver messages m and m’, then p delivers m before m’ if and only if
q delivers m before m’.

Replica 1
Add 100

Multiply by 10

State:100

State:100

State:200

State:1000

State:2000

State:1100

Replica 2

29

Solutions for Atomic Broadcasts (Total Order)

- All nodes send messages to every other node.
- All nodes receive messages, but wait with delivery
- One node has been selected to organize total order.
- This node orders all messages into a total order
- This node sends the total order to all nodes
- All nodes receive the total order and deliver their messages
 According to this order.

Taken from: K.Birman. What are the
advantages/disadvantages of this solution?

30

Programming Client/Server Systems with
Sockets and different I/O Models

31

Overview

• Below sockets: Linux Networking Stack
• Socket primitives
• Process Model with sockets
• Example of server side socket use
• Transparency and socket programming?
• Security, Performance, Availability,

Flexibility etc. of socket based C/S.
• Typical C/S infrastructure (Proxies,

Firewalls, LDAP)

32

Linux Network Stack:Admin Structures

From: http://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/ . See also:
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ for more information.

softIRQ kernel threads are created (one per CPU) in spawn_ksoftirqd in
kernel/softirq.c with a call to smpboot_register_percpu_thread from
kernel/smpboot.c. As seen in the code, the function run_ksoftirqd is listed as
thread_fn, which is the function that will be executed in a loop. The ksoftirqd
threads begin executing their processing loops in the run_ksoftirqd function.

Next, the softnet_datastructures are created, one per CPU. These structures hold
references to important data structures for processing network data. One we’ll see
again is the poll_list. The poll_list is where NAPI poll worker structures will be
added by calls to napi_schedule or other NAPI APIs from device drivers.

net_dev_init then registers the NET_RX_SOFTIRQ softirq with the softirq system
by calling open_softirq, as shown here. The handler function that is registered is
called net_rx_action. This is the function the softirq kernel threads will execute to
process packets.

 The call to napi_schedule in the driver adds the driver's NAPI poll structure to
the poll_list for the current CPU.

 The softirq pending bit is set so that the ksoftirqd process on this CPU knows
that there are packets to process.

 run_ksoftirqd function (which is being run in a loop by the ksoftirq kernel
thread) executes.

 __do_softirq is called which checks the pending bitfield, sees that a softIRQ is
pending, and calls the handler registered for the pending softIRQ: net_rx_action
which does all the heavy lifting for incoming network data processing.

http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/
https://github.com/torvalds/linux/blob/v3.13/kernel/softirq.c#L743-L758
https://github.com/torvalds/linux/blob/v3.13/kernel/smpboot.c#L94-L163
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#initialization-of-network-device-subsystem
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/#initialization-of-softirq-handlers

33

Linux Network Stack:Low Level IRQ

From: http://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/ . See also:
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ for more information.

The call to NAPI starts the high-level interrupt processing (SoftIRQ)

http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/

34

Linux Network Stack: SoftIRQ Handler

From: http://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/ . See also:
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ for more information.

The ring buffer with data is processed via SoftIRQ handler. Budget and elapsed
time checking ensure fair processing in the kernel.

http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/

35

Linux Network Stack: Data Processing

From: http://blog.packagecloud.io/eng/2016/10/11/monitoring-tuning-linux-networking-stack-receiving-data-illustrated/ . See also:
http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/ for more information.

http://blog.packagecloud.io/eng/2016/06/22/monitoring-tuning-linux-networking-stack-receiving-data/

36

Protocol Stack for Sockets

Physical Physical

Data Link Data Link

Network Network

Transport/Session Transport/Session

Socket: host A, port
3500, tcp-conn

Socket: host B,
port 80, tcp-conn

Tcp connection Udp connection

Reliable comm. channel

37

Socket Properties

• Using either tcp or udp connections
• Serving as a programming interface
• A specification of “Host”, “Port”, “Connection

type”
• A unique address of a channel endpoint.

38

Berkeley Sockets (1)

Socket primitives for TCP/IP.

Primitive Meaning

Socket Create a new communication endpoint
Bind Attach a local address to a socket

Listen Announce willingness to accept
connections

Accept Block caller until a connection request
arrives

Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

From: van Steen, Tanenbaum, Distributed Systems

39

Berkeley Sockets (2)

Connection-oriented communication pattern using sockets.

From: van Steen, Tanenbaum, Distributed Systems

40

Server Side Processing using Processes

Server (process)

Server Dispatcher ProcessClient

Listening on
port X

Accept and
spawn
process on
Port Y

Connection established
between client on port C and
server on port Y

Connecting on
arbitrary port C

After spawning a new process the dispatcher goes back to
listening for new connection requests. This model scales to
some degree (process creation is expensive and only few
processes are possible). Example: traditional CGI
processing in web-server

41

Server Side Processing using Threads

Server (thread)

Server Dispatcher ProcessClient

Listening on
port X

Accept and
spawn
thread on
Port Y

Connection established
between client on port C and
server on port Y

Connecting on
arbitrary port C

After spawning a new thread the dispatcher goes back to
listening for new connection requests. This model scales well
(thread creation is expensive but they can be pooled) and a
larger number of threads are possible). Example: servlet request
processing in servlet engine (aka “web-container”)

42

Server Side Concurrency

addMoney(account, value)

Thread

Thread

Threaded server

In the case of the threaded server the function needs to be re-entrant.
No unprotected global variables. Keep state per thread on stack.

addMoney(account, value)

Process per request

43

Designing a socket based service

a) Design the message formats to be exchanged (e.g. “http1.0
200 OK …). Try to avoid data representation problems on
different hardware.

b) Design the protocol between clients and server:

- Will client wait for answer? (asynchronous vs. synchr.
Comm.)

- Can server call back? (== client has server functionality)

- Will connection be permanent or closed after request?

- Will server hold client related state (aka session)?

- Will server allow concurrent requests?

44

Stateless or Stateful Service?

Stateless:
• Scales extremely well
• Makes denial of

service attacks harder
• Forces new

authentication and
authorization per
request

Stateful
• Allows transactions and

delivery guarantees
• Can lead to resource

exhaustion (e.g. out of
sockets) on a server

• Needs somehow reliable
hardware and networks to
succeed.

45

Server Dangers: Keeping State and expecting
clients to behave -TCP SYN flooding

client server

Client info
stored

SYN

SYN,ACK(SYN)

request

client server
SYN

Client info stored

SYN

Client info stored
Client info stored

Client never sends request, only SYN,
Server buffer gets filled and other clients
cannot connect

46

A Client using sockets

1. Define hostname and port number of server host
2. Allocate a socket with host and port parameters
3. Get the input channel from the socket (messages from server)
4. Get output channel from socket (this is where the messages to the server

will go)
5. Create a message for the server, e.g. “GET /somefile.html HTTP/1.0”
6. Write message into output channel (message is sent to server)
7. Read response from input channel and display it.

A multithreaded client would use one thread to read e.g. from
the console and write to the output channel while the other
thread reads from the input channel and displays the server
messages on the console (or writes to a file)

47

A server using sockets
1. Define port number of service (e.g. 80 for http server)
2. Allocate a server socket with port parameter. Server socket does “bind” and

“listen” for new connections.
3. “Accept” an incoming connection, get a new socket for the client

connection
4. Get the input channel from the socket and parse client message
5. Get output channel from socket (this is where the messages to the client

will go)
6. Do request processing (or create a new thread to do it)
7. Create a response message e.g. “HTTP/1.0 2000 \n…”
8. Write message into output channel (message is sent to client)
9. Read new message from client channel or close the connection

A bare bone server. Could be extended through e.g. a
command pattern to match requests with processing
dynamically. New commands could get loaded dynamically as
well. (“Application Server”)

48

Distribution Transparency with Sockets?
• Invocation: The server side function cannot

be called on the client side. Instead, socket
operations must be used and messages
defined.

• Location/Relocation/Migration: If service
moves, client breaks.

• Replication/Concurrency: No support yet
• Failure: No support yet
• Persistence: No support yet

To be fair: socket based services need to deal with all that but
they are still fairly simple to write!

49

Infrastructure of C/S Systems

Client
(initiate) Server

(process)

Directory: help locate server
Proxy: check client authorization,
route via firewall
firewall: allow outgoing calls only

FirewallsProxy

Load Balancer

Reverse
Proxy

Authent.
server

Directory

Reverse Proxy: cache results, end
SSL session, authenticate client
Authentication server: store client
data, authorize client
 Load Balancer:
distribute requests across servers

50

Exercises

• Extend the application server from
server.java
- security
- persistence

Using code pieces from the Java examples book we will:

We will discuss general design issues as well! (patterns etc)

51

Sequence Diagram Server.java
Client CSocket Server Listener Connect ServiceSSocket

connect

Create (port)

listen

accept

read

write

listen

Instream,
outstreamwrite

write

close

Csocket

52

Synchronous Threading Limitations

Too few threads
to saturate I/O

Too many threads
contending for CPU

Id
le

ne
ss

 w
as

te

Over-subscription waste

"Performance tuning"

Ideal performance

https://www.tedinski.com/2018/11/06/concurrency-models.html

53

Homework for next session on RPC!

Read: Remote Procedure Call

https://christophermeiklejohn.com/pl/
2016/04/12/rpc.html

54

Resources
• Scaling Ruby Apps to 1000 Requests per Minute - A Beginner's Guide
• by Nate Berkopec, http://www.nateberkopec.com/2015/07/29/scaling-ruby-apps-to-1000-rpm.html
• David Flanagan, Java Examples in a Nutshell, O’Reilly, chapter 5. Code:

www.davidflanagan.com/javaexamples3
• Ted Neward, Server Based Java Programming chapter 10, Code:www.manning.com/neward3
• Doug Lea, Concurrent Programming in Java
• Pitt, Fundamental Java Networking (Springer). Good theory and sources (secure sockets, server

queuing theory etc.)
• Queuing Theory Portal: http://www2.uwindsor.ca/%7Ehlynka/queue.html
• Performance Analysis of networks: http://www2.sis.pitt.edu/~jkabara/syllabus2120.htm (with

simulation tools etc.)
• Meet the experts: Stacy Joines and Gary Hunt on WebSphere performance (performance tools, queue

theory etc.) http://www-128.ibm.com/developerworks/websphere/library/techarticles/0507_joines/
0507_joines.html

• Doug Lea, Java NIO http://gee.cs.oswego.edu/dl/cpjslides/nio.pdf Learn how to handle thousands of
requests per second in Java with a smaller number of threads. Event driven programming, Design
patterns like reactor, proactor etc.

• Abhijit Belapurkar, CSP for Java programmers part 1-3. Explains the concept of communicating
sequential processes used in JCSP library. Learn how to avoid shared state multithreading and its
associated dangers.

• Core tips to Java NIO: http://www.javaperformancetuning.com/tips/nio.shtml
• Schmidt et.al. POSA2 book on design patterns for concurrent systems.
• Nuno Santos, High Peformance servers with Java NIO:

http://www.onjava.com/pub/a/onjava/2004/09/01/nio.html?page=3 . Explains design alternatives for
NIO. Gives numbers of requests per second possible.

• James Aspnes, Notes on Theory of Distributed Systems, Spring 2014,
www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54

