

Peer-to-Peer Systems

Tales from the edges of the internet

Intro
Peer-to-peer systems are VERY different to standard IT within companies or

between clients and companies – both technically and socially. Technically they
ADD bandwidth and compute power per new node/participant. Socially they
distribute control over IT infrastructures. By looking at p2p systems we can
acquire new views on distributed systems: Extreme redundancy, anonymity and
direct user enablement. And the possible downsides: reliability and security
problems.

What makes p2p different? In the past most of the differences were a
consequence of the peer not being part of an establised IT-system with full
maintenance of security, systems etc. and with hosts that have a static
identity. The peers typically lived at the „edge“ of the internet and this
requires new and different answers to some well known distributed systems
problems. Today p2p technology is used within companies as well (storage
grids, key/value stores etc.)

Overview

• We will first look at some p2p applications and try to come up with a
classification.

• The next step is a systematic view at the basics of p2p technology with
respect to environment, network structure, identity, naming and
addressing etc.

• We won’t forget our typical questions about security, transactions etc.
• P2p also operates in a special social environment where free-riding and

“the tragedy of the commons” pose problems which may not be SO
different after all.

• And finally we take a look at the p2p framework jxta, its abstractions
and goals

• The bittorrent p2p system is described and we show some empirical
results about its effectivity and question some of its architecture.

• A glance at new uses of p2p technologies in storage grids, media grids
etc.

Definition of Peer-to-Peer

„Peer-to-peer is a class of applications that takes
advantage of resource-storage, cycles, content, human
presence – available at the edges of the Internet.“ (Clay
Shirkey, p2p –harnessing the power...page 22)

This definition leaves room for different distribution topologies, business
models or political goals etc. as we will see.

INTRANET

INTRANET

The „edge“ of the Internet

INTERNET
 DNS

INTERNET
 DNS

Nodes on the edge have no fixed IP address and therefore no permanent identity
(DNS name). They are also characterized by frequent off-line times and
unreliable connections. But there is a huge number of them and there is a big
opportunity to share computing resources, information or services. There is no
central administration of those edge devices – an advantage as well as a
disadvantage. And they are mostly privately used.

ISP

ISP
Problems: How do you connect
devices behind firewalls with
NAT into a p2p network?

mobile
phone

ISP
Fire
Wall

Consequences of being at the „edge“

• No permanent Identity: how do you create this in p2p?

• no standard addressing: how do you locate peers/resources
in p2p? How do you search for something in p2p?

• Unreliable connections: how do you deal with
disconnected peers?

• No central security: How do you avoid abuse of p2p
systems? Who is responsible for what?

• Privately owned devices: how do you create a business
model in a „share based“ community?

• No central control: how do you version resources? protect
from unwanted changes?

Non-computer peer networks

Me
Know-how
Job/Task

Colleague
Know-how
Job/Task

Partner B
Know-how
Job/Task

Friend A
Know-how
Job/Task

Co-worker C
Know-how
Job/Task

Hiring personnel used to be a formal process in organization, traditionally
conducted by a human-resource department. This has changed dramatically: in
many cases it is the personal (peer) network of the people working on a
project that is used to find new team members. The peer network has also
turned into THE social safety net for professionals. See „It‘s not what you
know, it‘s who you know..“

Examples of P2P Applications

• Napster: file sharing app turned
into largest mp3 sharing tool

• freenet: generic file sharing app
with censorship protection

• Groove: Collaboration tool
• Jabber: Instant messaging tool

and generic messaging platform
• Gnutella: generic file sharing

app.
• Open Cola: distributed

searching.

• SETI@home: perform
computations for a research
project on edge machines

• Mixmaster Remailers: send
mail anonymously

• Publius: publishing systems,
tamper and censorship resistant.
Support for anonymous
publishing.

• Free Haven: anonymous storage

All these applications have some p2p features in common. The use of servers
does NOT preclude an application from being a p2p app. SETI e.g. uses
central servers to distribute work and collect results. But the work itself is
performed on the edge.

Things to share in p2p applications

Resources
CPU cycles, file storage,
routing services

Information
Music, Documents, Video
Streams etc. Publishing in
general

Services
Collaboration, instant
messaging, presence.

Currently most p2p applications share resources in those areas. The
resources differ considerably with respect to replication and copying:
Information will scale easily by being copied closer to requesters. Copying
services is much harder and hardware resources can‘t be copied at all

P2P Distribution Topology (1)
centralized

SETI@home and Jabber are p2p applications that use central servers. They
are still p2p type apps because most of the work happens at the edge or
because of their support for edge devices behind firewalls etc.

Edge node
central server

P2P Distribution Topology (2)
mediated

Some peers may take over a special role, e.g. serve as directories. They can
either still function as regular peers or become dedicated servers (brokers)
which mediate requests. The real question is: do they only mediate requests
and then let the peers talk to each other directly or do they play central
server? The special peers can form a hierarchy, e.g. like DNS. Broker peers
hold meta-data on resources.

Dependent device
broker

P2P Distribution Topology (3)
Totally distributed

This architecture consists of identical peers only. It is very robust and hard
to attack because it avoids special nodes. Its downside is scalability and
effectivity (e.g. of searches). There is no broker peer that could store meta-
data on requests or resources.

Client and Server

Vulnerability and distribution topology

• Central servers: they concentrate all work at few machines.
This makes them both dependent on the hardware of the
cluster but also independent from all the other machines at
the edge. But they are hurt by denial of service attacks.

• Broker/special peers in hierarchies: The p2p network can
resist DOS attacks for a while but breaks down suddenly if
a certain number of specialized peers is unavailable

• Totally distributed: DOS attacks do not threaten the whole
p2p network.

Naming and Addressing: broker

Artist:Song
Artist:Song

Artist:Song
Artist:Song

Artist:Song

resource name-space and
meta-information

walter@freesongs

sombody@freesongs

peer name-space and
meta-information

dynamic DNS
information

145.12.34.15

212.122.34.9

central meta-
data store
(broker)

somebody walter

store latest IP
address after boot

query server for
artist and songget info that

„somebody“ has the
song

retrieve song from
212.122.34.9

Several namespaces had to be created for this example: one for the artists and songs, another
one for the peers. The peers get virtual identities that are only valid on this server. The server
provides an interface where peers can register their latest (dynamically assigned) IP address.
Walter queries the song server for a special artist and song and retrieves information where it
can be found. After that walter retrieves the songs and the server updates its repository with
the knowledge that walter now also has the requested songs.

Naming and Addressing: no central server

Without central repositories lookup of information tends to become very
ineffective and sometimes resources will not be found because the time-to-live is
not long enough. The www uses search engines as „in-the-net service“ to
overcome this problem. An interesting question: would the web work without e.g.
google and co.? Searching in totally distributed P2P systems like gnutella is an
open research topic.

artist/song

peer info
and songs

artist/song

peer info
and songs

artist/song

peer info
and songs

artist/song

peer info
and songs

artist/song

peer info
and songs

artist/song

peer info
and songs

Scalability: Avoiding broadcast storms

requester

rendezvous
peer

rendezvous
peerTTL -1

Do not
forward query

Several techniques are combined to prevent request storms: Rules, special peers and
grouping. Rules e.g. prevent simple peers from forwarding queries to other peers they
know. Only special peers (in JXTA called „rendezvous“ peers forward queries, possibly
also to other rendevous peers in different GROUPS. A group forms a scoping boarder e.g
for queries, security or monitoring. But almost always a Time-To-Live (e.g. 7 hops) is
used to let requests die after a number of hops. Gnutella and JXTA use 7.

URL, URI, URN

http://www.w3.org/index.html
An URL defines the ADDRESS of a resource. It is
an error if the resource cannot be resolved at the
given address

http://www.w3.org/1999/
XMLSchema-instance

An URI can serve as a URL but it need not be
electronically resolvable. XML Namespace
definitions are such a case. There is NOTHING
behind the namespace URI given.

urn:juxta:idform-something
An URN is ONLY a name which can be used to
create unique identification spaces. The JXTA IDs
are an example

One of the P2P problems is that no central authority SHOULD exist which could
hand out unique ID‘s. And DNS does not use permanent IDs (IP-addresses) at the
edge of the internet.

Security (1): censorship resistant publishing

encrypted
documentkey

share

encrypted
documentkey

share

encrypted
documentkey

share

encrypted
documentkey

share

Publisher

key document

 A publisher creates a key and uses it to encrypt the document. Then a key sharing
algorithm is applied that creates n partial keys. A certain number of those keys are
necessary to reconstruct the original key (and document). Then shares and keys are
distributed on publishing servers. They can claim that they do not know the contents.
Censorship is hard because documents are distributed over a nubmer of machines and a
hostile person would need to destroy most of the key shares to make the document
unreadable. Surprisingly updates and delete by the author still work. This is an example
from the PUBLIUS system.

Security (2): Reputation System

Artist:Song
Artist:Song

Artist:Song
Artist:Song

Artist:Song

resource name-space and
meta-information

walter@freesongs

sombody@freesongs

peer name-space and
meta-information

dynamic DNS
information

145.12.34.15

212.122.34.9

central meta-
data store
(broker)

somebody walter

store latest IP
address after boot

query server for
artist and songget info that „somebody“

has the song.

retrieve song from
212.122.34.9

Using a central server a reputation system can be built rather easily. Peers rate others after
each transaction. There are a number of problems with this approach: How do you prevent
pseudo-spoofing (somebody creates lots of different pseudonyms). These pseudonyms can
rate each other into a high reputation and then „cash-in“ (e-bay case). See: Accountability,
chapter 17 in Harnessing the power...

reputation score

content OK?

rate „somebodies“
content

AND: somebodies rating

Security (3): Micropayment

Bad
guy

free
storage

free
storage

free
storage

free
storage

The bad guy tries to create a DOS attack by flooding the free storage peers
with dummy documents. This could also be used to censor existing
documents by flushing the caches of publishing servers (e.g. freenet caches
frequently requested docs longer than others). One way to prevent this is to
have the publisher solve a computationally intense piece of work for every
entry. This will slow rogue publishing down. This mechanism is not much
different from digital cash only that the work does not translate into re-usable
cash.

Security (4): Routing and Anonymity

„Plausible Deniability“ is an important argument in legal disputes. A host that acts
only as a transponder without really knowing the content can claim it to protect
himself from legal actions. P2P networks can be designed to minimize the numbers
of hosts that know each other directly. This is of course less efficient than e.g.
having a source sending a response directly to the requester.

requester

direct response

request

peer with resource

indirect response with
copies

Security (5): Content Safety/Fakes

Self-verifying content is achieved be using hash values for names. This allows
easy validation on the receiving side. It does NOT provide a means to verify what
a name really MEANS (denotes). So called fakes are planted to reduce the lookup
success of p2p protocols and to waste bandwidth (time). A directory approach
(collecting hashes and tagging them as „fake“) are not really a successful
countermeasure as it also relies on unauthenticated notifications of fakes (the
problem of „faked fakes“)

A related problem is versioning distributed content. Here an author needs to
provide key material that proves authorization to make changes.

receiver performs
verification by
hashing the stored
contentcontent

hash
value

name

DHT storage

Security (6): Infrastructure Attacks

See Emil Sit et.al, Security Considerations for Peer-to-Peer Distributed Hash
Tables (resources) for a more detailed view on p2p infrastructure attacks.

Routing Attacks: wrong lookup and node identification, false routing updates
(poisioning routing tables), fake bootstrap host into a different (virtual) network, sybil
attacks (one host posing as several different hosts)

Retrieval Attacks: hosts throwing away documents or incorrectly claiming
responsibility for documents (needs regular checks)

DOS attacks on all replicas of a document thereby making it inaccessible

DHT balancing attack: rapidly joining and leaving a DHT can cause a large number
of overhead requests caused by rebalancing the DHT.

Social Problems in P2P Systems

• Free-riding is the use of system
resources without letting the
system use one‘s own resources
(e.g disk space or songs)

• The tragedy of the commons is
the fact that common goods that
are not owned by somebody are
usually destroyed by everybody
using them.

In both cases the answer is the introduction of some kind of „payment“ or
„credit“ into the system. This can be a computational „payment“ that leads to
a certain delay in up-loads or virtual credit that is increased by offering
services to others.

Distributed Hash Tables (DHT)

For an overview of different DHT approaches compare CAN, CHORD and
e.g KADEMLIA. Look at how the routing algorithms deal with high rates of
peers leaving/entering the network. The advantage of a DHT lies in its simple
interface and location independence

get (key) returns IP address

put (key, value) --- get(key)
location independent
storage layer

ID – Host mapping
layer

Dokument Application

DHT Problems

Host lookup can be optimized by applying a distance function on the key –
calculating how „far“ a certain host ID is away in virtual host space. In its
most simple case this could be just subtracting the content hash from the host
ID hash and chosing the host with the smallest difference. Other systems
(kademlia e.g.) try to organise host ID hashes in trees to improve lookup
speed

1. Content Integrity: this is mostly solved through hashing the content (self-
verification).

2. Host lookup. Several algorithms are possible, from totally distributed
(gnutella) to registry approaches (napster, edonkey) or hybrid models
(JXTA)

3. Maintenance: A high churn rate invalidates many indices and can force a
large number of maintenance messages to be exchanged which decreases
lookup efficiency

A loosely consistent tree-walker (Store)

The Rendevous peer R2 calculates the hash of the advertisement, applies the distance
function and finds R5 as best storage location for the indexed advertisement. It also
stores the content at „nearby“ hosts (hosts which are close to R5 in R2‘s routing table.
On a random base the rendevous peers exchange routing tables and detect dead hosts.
(See: „a loosely consistent DHT Rendevous Walker, B. Traversat et.al.)

R1

R5

R2

R3

R4

R5 is used to store the index
of the advertisement, R1 and
R4 serve as backups

put(Advertisement)

host list:

r1: hash

r3: hash

r4: hash

r5: hash

put(index)
put(index)

put(index)

A loosely consistent tree-walker (Lookup)

When a peer does a lookup the rendevous peer calculates the distance
function and picks the proper host where the content was supposedly stored.
If the DHT configuration has not changed the first lookup will already
succeed. If e.g. R5 is down either R1 or R4 would be picked as backup

P2

R1

R5

R2 R3

R4

find(Advertisement)

host list:

r1: hash

r2: hash

r4: hash

r5: hash

get(index)

P1

A loosely consistent tree-walker (Walking)

In case of a high churn rate the routing tables have changed a lot. In case a
query fails at one host the host will start a tree-walk in both directions (up and
down the ID space) and search for the requested content. This allows content
lookup even if the rendezvous peer structure changed beyond our initial
backup copies.

P2

R1

R7

R2 R3

R4

find(Advertisement)

host list:

r1: hash

r2: hash

r4: hash

r5: hash

r6: hash, r7:hash etc.

get(index)

P1

R6

R5

Research Issues in DHT‘s

See Gurmeet Singh Manku, Routing Networks for DHT‘s

Lookup optimization without maintenance (crawling/walking has costs but
those are NOT maintenance)

Delivery guarantees (storage reliability)

Censorship (avoid registry problems)

Routing optimizations for mobile systems (minimize overhead messages)

Consistent hashing to allow for scalability (e.g. Dynamo/Amazon)

Constant lookup times

Why a framework for P2P systems?

Currently p2p suffers from two deficits: There seems to be a new application for
every kind of purpose or resource: the sharing of mp3 files, collaboration spaces,
other file-sharing systems etc. They all use different protocols and meta-data and
cannot re-use each others services. The other deficit is that every p2p application
needs to solve the same low level problems of network structure, peer identity etc.
This could easily performed by a common framework

• Rationale behind JXTA (from „Juxtaposition“)

• Architecture

• Concepts and Abstractions

INTRANET

INTRANET

Abstracting away the physical differences

INTERNET
 DNS

INTERNET
 DNS

Nodes on the edge use all kinds of identities, naming and addressing modes.
They are disconnected frequently. They are behind firewalls with NAT. JXTA
puts an abstraction layer above the physical infrastructure that allows
programmers to program without worrying about the physical differences in
latency etc.

ISP

ISP

mobile
phone

ISP

Fire
Wall

Peer
Peer

Endpoint Peer
Peer

Endpoint
Pipe

peer ID X peer ID Y

Peer
Endpoint

Jxta
Relay

JXTA Architecture

Applications

Community Services (Indexing, Searching, File Sharing)

Core (Peers, Peer Groups, Pipes, Monitoring, Discovery,
 Endpoint binding, Messages and Advertisements)

Minimal Peers, Simple Peers, Rendezvous Peers, Relay Peers

PDAs, Mobile Phones, PCs etc.

JXTA
Shell

By providing core services and interfaces, JXTA allows the building of
interoperable applications and relieves the applications from implementing the
same core functionality again and again.

JXTA Abstractions and Concepts

Peer

ID Endpoint

Endpoint

Pipe
Peer

Endpoint

Endpoint

Peer
Endpoint

Endpoint

Message

Group
Service

Group
Service

Service

Group
Service

Advertisement

Message

Query

ID

ID

ID

ID

ID

ID

ID

Parent Peer Group

Peers are
networked
devices

Most
everything
has an ID

endpoints
bind peers
to
transports

A peer-group
provides a
scoping boarder
for queries,
security and
monitoring. It has
a parent peer
group where it is
advertised

A pipe is a virtual
communication channel:
uni/bi-directional, secured
etc. Some can propagate to
more peers

A message is the basic
request/reply format. It
is an XML structure of
name/value pairs

Advertisements are
meta-data about
resources. They are
described (as everything
in JXTA) using XML

A group service is provided
by the whole group. A
single peer failure does not
disable this service

a service runs
only on this peer.

Module

Module

A module
is a piece
of
pluggable
behavior.

JXTA Protocols

• Peer Discovery Protocol: How to advertise and find resources
• Peer Information Protocol: How to get status information about other

peers (connectivity, uptime etc.)
• Peer Resolver Protocol: generic query mechanism allows exchange of

arbitrary defined queries.
• Pipe Binding Protocol: to establish a virtual communication channel

between peers. The peers need not be able to talk directly to each other
(Relay peers are used)

• Endpoint Routing Protocol: to find routes to destination ports on other
peers. Multi-Hop is possible.

• Rendezvous Protocol: Special peers serve as message propagators
within peer groups.

See: JXTA programming guide pg. 19 ff. for a detailed description of the core
protocols. JXTA defines a message format for each of those so that
applications can interoperate more easily.

Bootstrapping a JXTA peer

Local Area
Network

new peer

relay peer

rendezvous peer

multicast

If a rendezvous or relay peer are pre-configured at the new peer, those will be
contacted through the discovery service. Else a multicast on the lcoal are
network is performed by the discovery service. The local cache of the new peer
will be filled with advertisements about peers or peer groups. All messages are
performed ASYNCHRONOUSLY! TTL at the creating peer is 1 year, otherwise
2 hours. The new peer itself piggybacks its advertisement on the discovery.

advertisements

local cache

Asynchronous Discovery and Use

1. Create advertisement for pipe and publish it

2. Create resource, e.g. pipe

3. Register listener for pipe events.

4. Handle asynchrounous callbacks in listener

This is basically the same pattern used as in Java Beans or Swing.

How to build a flexible P2P framework

Define Interfaces for everything. This allows different implementations and
strategies for the core concepts. Use Factories for object creation.

Define core services that belong to the platform and define a WIRE FORMAT for all
core messages. This is a precondition for interoperability.

Define GENERIC types for messages, queries etc. to allow extensions

Define a plug-in or module concept that allows creation and dynamic loading of new
behavior

Module Class

Module Specification A

Module Implementation YModule Implementation X

Module Specification B

ID

ID

ID ID

ID

e.g. NullMembershipService e.g. PasswordMembershipService

Creating a new service in JXTA

peer

new ModuleClassAdvertisement and ID

new ModuleSpecAdvertisement and ID

new PipeAdvertisement

new ModuleImplAdvertisement

net-peer-group

publish advertisements

new pipe

create input pipe peer

new pipe

create output pipe

discover new advertisements and
store in local cache

cachecache

send message

A module specification defines a service and a pipe where the service can be reached.
Other peers discover the published advertisements, find the pipe definition (ID), create
the proper output pipe with same ID and can then send messages to the service. Also
existing services can be replaced using this pattern. Of course, the peers need to
understand the messages used by the new service.

JXTA Security

All Implementations of the core services need to provide:
• Confidentiality

• Authentication

• Authorization

• Data Integrity
• Non-Repudiation

Other P2P security requirements e.g. to assure anonymity of publishers,
hosts etc. and to avoid censorship are not mentioned at all. They will have
to be implemented on top of the basic services.

Bittorrent: a successful p2p file-sharing system

from: www.cachelogic.com which provides very interesting empirical
research on usage of p2p networks.

Bittorrent Usage Patterns: Disruptive

from: www.cachelogic.com. Note the rising „serious“ use of bittorrent by
software and media companies.

Bittorrent Architecture

Bittorrent relies on web services for finding torrents. It is a pure download
network. Mirrors do load-balancing. Trackers match peers and seeders
provide initial file upload.

Torrent
(tracker url, hash)

Torrent
link

SuprNova
Mirror

(website)

SuprNova
(website)

Torrent
(tracker url, hash)

SuprNova
Mirror

(website)

20 main

Moderators

1000 unattended

5000 moderated

check
content
integrity

authority to
upload
torrents

register new torrent

Torrent
(tracker url, hash)

Tracker
(uses BT

http based
protocol)

Torrent

downloader

Content (file)

seed

file fragments

downloader

find meta-
data

find
tracker

matching
peers

get file
fragmen
ts

file fragments

downloaderupload
fragments

create seed

Bittorrent Analysis

Taken from: Johan Pouwelse, The Bittorrent P2P file-sharing system. (see
resources). The study provides empirical data on BT usage and outages and
comes to some surprising results. See also peer-2-peer.org for diagrams.
Improvements to the protocal would have to solve the problem of introducing
further distribution (e.g. trackers) while preserving content integrity.

1. Availability: BT relies on centralized components which are hard to
distribute and create SPOFs.

2. Integrity: At the same time they guarantee high content quality. The low
number of moderators is a surprise. Trackers seem to suffer huge bandwidth
costs.

3. Flashcrowds: Even content that is in high demand can be downloaded
quickly. Seeders suffer high bandwidth costs for an extended period of time
(design failure?)

4. Performance: around 250 kbit/s. Theoretical limit: overall upload
bandwidth. Practical limit: much higher as not all BT users download
permanently.

The Future

P2P computing puts the emphasis back on individual machines, compared
to the server centric WWW world. This fits nicely with upcoming
topics like mobile computing and autonomous systems.

1. Wireless Mesh Networking. A p2p application that uses ad-hoc, wireless
networking to create a networking infrastructure without dedicated servers
and without the high investments and monopolies that usually accompany
centralized approaches. Interesting for its technical (routing) and social (3rd
world) aspects. See Tomas Krag and Sebastian Buettrich, Wireless Mesh
Networking, presented at the O‘Reilly Emerging Conferences Show.2003

2. Mobile Device Integration: Use JXTA to tie J2ME clients into a general
JMX enterprise infrastructure. See Faheem Khan, Wireless Messaging with
JXTA part 1 and 2 (developerworks)

What‘s next in our distributed systems series?

We have skipped some very interesting and important parts of
distributed systems technology in this lecture: group
communication, consensus and election algorithms, time in
distributed systems etc.

But if we want to implement distributed systems we will need
this know-how: I am therefore planning a seminar on
advanced distributed algorithms where we will tackle all
the above problems. And in addition to that we will
develop a concept of failures, failure modes and how we
can improve the reliability and stability of distributed
systems – be they centralized or of peer-to-peer nature.

Resources (1)

• Peer-to-Peer, Harnessing the Power of Disruptive Technologies,
Edited by Andy Oram, 2001, O‘Reilly. Contains good articles on
different p2p applications (freenet, Mixmaster Remailers, Gnutella,
Publius, Free Haven etc). And also from Clay Shirkey: Listening to
Napster. Recommended.

• Peer-to-Peer, Building Secure, Scalable and Manageable Networks,
Dana Moore and John Hebeler. Definitely lighter stuff then Andy
Oram‘s collection. Missing depth. Covers a lot of p2p applications
but few base technology.

• www.openp2p.org , the portal to p2p technology. You can find
excellent articles e.g. by Nelson Minar on Distributed Systems
Topologies there.

• www.jxta.org, home of the jxta framework from Sun.
• JXTA v1.0 Protocols Specification. Covers abstractions and protocols

used in jxta.

Resources (2)

• Project JXTA: Java Programmer‘s Guide. First 20 pages are also a good
technical overview on p2p issues.

• Upcoming: 2001 P2P Networking Overview, The emergent p2p
platform of presence, identity and edge resources. Clay Shirkey et.al.
I‘ve only read the preview chapter but Shirkey is definitely worth
reading.

• It‘s not what you know, it‘s who you know: work in the information
age, B.A.Nardi et.al.,
http://www.firstmonday.org/issues/issue5_5/nardi/index.html

• Freeriding on gnutella, E.Adar et.al.,
http://www.firstmonday.org/issues/issue5_10/adar/index.html, claims
that over 70% of all gnutella users do not share at all and that most
shared resources come from only 1% of peers.

• Why gnutella can‘t possibly scale, no really, by Jordan Ritter.
http://www.monkey.org/~dugsong/mirror/gnutella.html. An empirical
study on scalability in gnutelly.

Resources (3)

• A Modest Proposal: Gnutella and the Tragedy of the Commons, Ian
Kaplan. Good article on several p2p topics, including the problem of the
common goods (abuse)
http://www.bearcave.com/misl/misl_tech/gnutella.html

• Clay Shirky, File-sharing goes social. Bad news for the RIAA because
Shirky shows that prosecution will only result in cryptographically
secured darknets. There are many more people then songs which makes
sure that you will mostly get the songs you want in your darknet. Also:
do your friends share your music taste? quite likely.
http://www.shirky.com/writings/file-sharing_social.html Don‘t forget to
subscribe to his newsletter – you won‘t find better stuff on networks,
social things and the latest in p2p.

• Bram Cohen, Incentives Build Robustness in Bit Torrent. Explains why
the bit torrent protocol is what it is. Bit torrent tries to achieve „pareto
efficiency“ between partners. Again a beautiful example how social and
economic ideas mix with technical possibilites in p2p protocol design:
why is it good to download the rarest fragments first? etc.

Resources (4) DHT designs

• Bob Loblaw et.al, Building Content-Based
Publish/Subscribe Systems with Distributed Hash Tables.
Nice paper on DHT design with a content based focus (not
topic based as usually done). Experimental, good resource
section.

• M.Frans Kaashoek, Distributed Hash Tables: simplifying
building robust Internet-scale applications
(http://www.project-iris.net) . Very good slide-set on DHT
design. You need to understand DHT if you want to
understand p2p.

• Ion Stoica (CD 268), Peer-to-Peer Networks and Distributed
Hash Tables. Another very detailed and good slide set on
DHT designs. (CAN/Choord/freenet/gnutella etc.). Very
good.

Resources (5) Security in P2P

• Emit Sit, Robert Morris, Security Considerations for Peer-to-Peer
Distributed Hash Tables. A must read. Goes through all possible attack
scenarios against p2p systems. Good classification of attacks (routing,
storage, general). Suggests using verifyable system invariants to ensure
security.

• Moni Naor, Udi Wieder, A simple fault tolerant Distributed Hash Table.
Several models of faulty node behavior are investigated.

• Distributed Hash Tables: Architecture and Implementation. A usenix
paper which discusses transactional capabilities of a DHT based DDS.

• www.emule-project.net/faq/ports.htm shows the ports in use by emule-
related protocols. Shows that several emule-users behind a
NAT/router/firewall need individual redirects established at the firewall
to allow incoming connections to be redirected to a specific client.

Resources (6)

• OCB Maurice, Some thoughts about the edonkey network. the author explains
how lookup is done in edonkey nets and what hurts the network. Interesting
details on message formats and sizes.

• John R. Douceur et.al (Microsoft Research), A secure Directory Service based
on Exclusive Encryption. One of many articles from Microsoft research which
try to use P2p technologies as a substitute for the typical server infrastructure
in companies.

• John Douceur, The Sybil Attack, Can you detect that somebody is using
multiple identities in a p2p network. John claims you can’t without a logicall
central authority.

• Atul Adya et.al (Micr.Res.), Farsite: Federated, Available and Reliable Storage
for an Incompletely Trusted Environment. very good article with security etc.
in a distributed p2p storage system. How to enable caching of encrypted
content etc.

• W.J. Bolosky et.al, Feasibility of a Serverless Distributed Filesystem deployed
on an Existing Set of PCs. Belongs to the topics above. Interesting crypto tech
(convergent encryption) which allows detection of identical but encrypted
files.

Resources (7)

• Ashwin R.Bharambe et.al, Mercury: A scalable Publish-Subscribe System
for Internet Games. Very interesting approach but does not scale yet. Good
resource list at end.

• Matthew Harren et.al, Complex Queries in DHT-based Peer-to-Peer
Networks. How do you create a complex query if hashing means “exact
match”? E.g. by splitting the meta-data in many separate hash values.
Interesting ideas for search in p2p.

• Josh Cates, Robust and Efficient Data management fo a Distributed hash
table, MIT master thesis.

• Peter Druschel at.al, PAST: a large-scale, persistent peer-to-peer storage
utility.Excellent discussion of system design issues in p2p.

• Bernard Traversat et.al, Project JXTA: A loosely-consistent DHT
Rendezvous walker. Read this to get the idea of DHT in an unreliable
environment. Very good.

• John Noll, Walt Scacchi, Repository Support for the Virtual Software
Enterprise. Use of DHT for software engineering support in distributed
teams/projects.

Resources (8)
• Petar Maymounkov et.al. Kademlia: A peer-to-peer Information System based

on the XOR metric. http://kademlia.scs.cs.nyu.edu/ An improvement on DHT
technology through better organization of the node space. Interestingly,
edonkey nets want to use it in the future.

• Zhiyong Xu et.al. HIERAS: A DHT based hierarchical P2P routing algorithm.
Shows that one can win through a layered routing approach which e.g. allows
optimization through proximity.

• Todd Sundsted, The practice of peer-to-peer computing. A series of entry level
articles from www.ibm.com/developerworks (e.g. trust and security in p2p)

• http://konspire.sourceforge.net A comparison with bittorrent technology.
Interesting. What limits the download in a p2p filesharing app? Also get the
overview paper on konspire from that site.

• NS2 – the network simulator. A discrete event simulator targeted at network
research. Use it to simulate your p2p networks. (from
http://www.isi.edu/nsnam

• Zhiyong Xu et.al, Reducing Maintenance Overhead in DHT based peer-to-
peer algorithms.

Resources (9)

• Bernard Traversat et.al., Project JXTA 2.0 Super-Peer Virtual network.
Describes the changes to JXTA 2.0 which introduced “super-peers” for
performance reasons – though they are dynamic and every peer can
become one. Good overview on JXTA.

• Ken Birman et.al, Kelips: Building an Efficient and Stable P2P DHT
Through increased Memory and Background Overhead. I read it simply
because of Birman. Shows the cost if one wants to make p2p
predictable.

• Krishna Gummadi et.al, The impact of DHT Routing Geometry on
Resilience and Proximity. Compares several DHT designs. Quite good.
Findings are that neighbour flexibility is more important than route
selection flexibility. Proximity selection techniques perform well.

• Mark Spencer, Distributed Universal Number Discovery (DUNDi) and
the General Peering Agreement, www.dundi.com/dundi.pdf

• http://www.theregister.com/2004/12/18/bittorrent_measurements_analy
sis/print.html An analysis of the bittorrent sharing system.

Resources (10)

• Ian G.Gosling, eDonkey/ed2k: Study of a young file sharing protocol.
Covers security aspects.

• Heckmann, Schmitt, Steinmetz, Peer-to-Peer Tauschbörsen, eine
Protokollübersicht. www.kom.e-technik.tu-darmstadt.de

• www.selfman.org Portal for EU sponsored research on media
distribution (peerTV), transactional key/value stores (scalaris) and self-
management.

• Security Issues and Solutions in Peer-to-peer Systems for Realtime
Communications draft-schulzrinne-p2prg-rtc-security-00 (Internet RFC
proposal) Feb. 2009

• Bittorrent tracker: http://chaosradio.ccc.de/cre057.html

• Vortrag
http://events.ccc.de/congress/2007/Fahrplan/events/2355.en.html
http://chaosradio.ccc.de/24c3_m4v_2355.html

	Peer-to-Peer Systems
	Intro
	Overview
	Definition of Peer-to-Peer
	The „edge“ of the Internet
	Consequences of being at the „edge“
	Non-computer peer networks
	Examples of P2P Applications
	Things to share in p2p applications
	P2P Distribution Topology (1)
	P2P Distribution Topology (2)
	P2P Distribution Topology (3)
	Vulnerability and distribution topology
	Naming and Addressing: broker
	Naming and Addressing: no central server
	Scalability: Avoiding broadcast storms
	URL, URI, URN
	Security (1): censorship resistant publishing
	Security (2): Reputation System
	Security (3): Micropayment
	Security (4): Routing and Anonymity
	Security (5): Content Safety/Fakes
	Security (6): Infrastructure Attacks
	Social Problems in P2P Systems
	Distributed Hash Tables (DHT)
	DHT Problems
	A loosely consistent tree-walker (Store)
	A loosely consistent tree-walker (Lookup)
	A loosely consistent tree-walker (Walking)
	Research Issues in DHT‘s
	Why a framework for P2P systems?
	Abstracting away the physical differences
	JXTA Architecture
	JXTA Abstractions and Concepts
	JXTA Protocols
	Bootstrapping a JXTA peer
	Asynchronous Discovery and Use
	How to build a flexible P2P framework
	Creating a new service in JXTA
	JXTA Security
	Bittorrent: a successful p2p file-sharing system
	Bittorrent Usage Patterns: Disruptive
	Bittorrent Architecture
	Bittorrent Analysis
	The Future
	What‘s next in our distributed systems series?
	Resources (1)
	Resources (2)
	Resources (3)
	Resources (4) DHT designs
	Resources (5) Security in P2P
	Resources (6)
	Resources (7)
	Resources (8)
	Resources (9)
	Resources (10)

