

Distributed Systems Management

From components to managed resources

Overview

1. System Management Basics
• Architectures to manage

• The evolution of programming models and its consequences
• Controlling change and dependencies
• System Management architecture (information models, design etc.)

2. Examples:

 - Federated Management Architecture (FMA)
• Object Model
• Services

• Basic Mechanisms

- Java Management Extension (JMX) MBeans
- Job Definition Format (JDF) Controller/Agent

Things to be managed in a distributed world

The number of different systems and technologies poses a big problem to reliable
production within an operations factory

What would YOU want to know or do if
you were manager of a large scale

distributed system?

large scale software cycle

Business/IT interfaces

Application
Development

Component
Development

User Service
Operations

Factory

Business

Archi-
tecture

Integration

Systems Engineering/Networks and Comm.

requirements

requirements

production ready packages

support

servicesapplications

platforms

service

standards

Many large companies separate operations from development using a factory
approach. Production ready software is maintained exclusively in operations and
no developer access is allowed. System Management needs to be easy and
automated because there is no development knowledge in the factory.

Services within an operations factory

-Backup and restore of mission critical data

-controlled access to systems

-Monitoring of production systems in a 24/7/365 schedule

-Monitoring of communications equipment

-problem escalation

-no developers necessary! (for security and independence reasons)

A production environment needs to be able to monitor systems and to
perform automatic re-installs. This requires software to be produced for
production, .i.e. a software architecture that supports this concept! Common
off-the-shelf (COTS) software is in many cases a problem for the factory
approach.

Enterprise IT-Structures

Departments and groups

Applications and Services

Systems and Clusters

Networks, switches etc.

An IT-Structure is made of several layers. Changes in one layer can have effects
on layers above or below but in many cases it is not immediately clear what the
effects will be

System management view on IT-Structures

Departments and groups

Applications and Services

Systems and Clusters

Networks, switches etc.

Ideally, every layer would have an associated model defining relationships between layer
elements and across layers. System Management would monitor all layers and take
appropriate actions in case of changes. The effects of changes would be controlled

Roles/Rights

monitoring,
logging

Business
Processes

QOS
expectations

Dependencies

Network
structure
config

System Management for traditional
programming models

Business
Process

Application System

Deployment of an application was installing an image on a machine. The
application „towers“ were largely independent units working on special
databases. It was very clear which bussiness process was affected if
something went wrong on the system.

System Management in component systems

Business
Process

Components

In a component and service based infrastructure the deployment and change
of components or shutdown of systems can cause any kind of problems.
How do you know which business processes are affected by taking down a
certain host? The answer can only be a complete model of processes,
components and infrastructure.

Business
Process

Information models in System Management

• Management Information Base (MIB), defined for
Simple Network Management Protocol (SNMP)

•CMIP (the OSI side of it)

•Common Information Model (CIM) from Distributed
Management Task Force

•Proprietary models (e.g. Component Broker system
management)

Older models are defined using ASN/1 notations. CIM is an object oriented view
on managed resources supporting an XML interface (www.dtmf.org). These
models define resources, properties of resources, events and event handling etc.
Specific devices require specific models. SNMP collects these definitions in the
overall management information base wich is used by system management tools
to control the environment.

Example: Component Broker Information Model

Install World

Image World

Component Definitions,
parts, dependencies
(deployment descriptors)

Model World

the „real world“ of hosts
and installed components
running on servers at these
hosts

Management Zones,
configuration e.g. day vs.
night, host definitions, server
definitions, component-to-
host mapping

The information model offers resources (hosts, components, servers) and
allows different configurations to be defined. A specific configuraton can be
mapped to the image world and becomes active. SM allows you to define
events, actions and logging/tracing levels. Running servers are monitored and
failure actions can be defined.

SM GUI console

A system management console lets you define your resources and actions and
controls changes through a workflow model

SM Runtime Architecture

The typical runtime structure of an SM application: Agents running on all hosts
communicate with a central SM-application station. A common data model describes the
managed resources. Typical problems: synchronization of local and central data models,
SM-application replication, security and reliability of changes etc.

System Management Qualities

SM
DB

replicated or SPOF?

SM
Application

Hosts with agents

replicated or SPOF?

Common Data Model

replicated agent data

Central system
management host

SM GUIdynamic event
handling or restart?

run anywhere? remote?

Further questions: does the distributed system work when SM is down? Can
configurations be exported/imported using e.g. XML?

Separation of Data and Control Path

Node1

Node4

Node2

Node3

Data path

Admin Path

physical watchdog net

Separating data and control path allow control of the system even under a DOS
attack. Physical watchdogs are frequently used in high-performance cluster
architectures.

Two important characteristics of
distributed systems management

System management in distributed systems is itself a
distributed system with all associated problems (network
failures, request duplications, server crashes, single-point
–of-failures etc.

This leads to the funny situation that we need a transacted system
management to administrate a transaction system! Quite a bootstrap
problem as well! And usually we will have to use the same infrastructure
(network, hosts) as well.

Components and services need to use system management
frameworks to actively participate in the overall
management, e.g. a logging service provided by system
management.

Services of distributed system
management

• Logging and monitoring
• Load management
• Software distribution and upgrade
• Alarm generation and handling

• Policy definition, e.g. how to react on alarms.
• Service Management Delegation

The last point is especially important for all kinds of service providers: If
you were an Internet Service Provider, would you offer servlet/EJB services
to companies? Would you allow co-location of components from different
customers? Who would administrate these components? How could this be
done?

Logging, Tracing and Auditing

Component

Log

audit
log

trace
log

Logging: write system state
depending on log level

Tracing: log call flow for debugging
purposes. Needs special debugging
mode. Not in production.

Auditing: save processing
information relevant to BUSINESS
processes

In a distributed component system all log activity must protocol the request id to
enable reconstruction of the complete user activity later on. The log-files can be
used for monitoring system state as well.

Why Observability?

Monolith
Multi-tier App

Fan-out/Mesh Microservices Serverless (OS/
VM/Cont. Not
shown)

The last two years in software development and operations have been characterized by the emerging idea of
“observability”. The need for a novel concept guiding the efforts to control our systems arose from the accelerating
paradigm changes driven by the need to scale and cloud native technologies. In contrast, the monitoring landscape
stagnated and failed to meet the new challenges our massively more complex applications pose. Therefore,
observability evolved as a mission-critical property of modern systems and still attracts much attention.

From: Alexander Wallrabenstein, Observability – Where do we go from here?

https://blog.mi.hdm-stuttgart.de/index.php/2019/02/09/observability-where-do-we-go-from-here/

What is Observability?

“Whereas monitoring provides information whether a
system is operating as expected, observability encompasses
the research why an application behaves in a certain way.
Akin to scalability and resilience, it is a system property.
Observability allows engineers to explore systems and
answer questions yet to be formulated when the code was
deployed. Hence, it is about the unknown-unknowns. It
makes applications comprehensible and enables humans to
understand the internals of the system just by reasoning
about it from the outside.”

From: Alexander Wallrabenstein, Observability – Where do we go from here?
https://blog.mi.hdm-stuttgart.de/index.php/2019/02/09/observability-where-do-we-go-from-here/

The 3 Pillars of Observability

1. Logs (distributed collection, context and correlation ID, storage,
alerting and visualisation, e.g. ELK-stack)
2. Metrics (collect in time-series-db, anomaly detection, e.g.
Prometheus)
3. Traces (deep instrumentation of all software, OpenTracing by
CNCF)

Sindy Sidharan, https://www.oreilly.com/library/view/distributed-
systems-observability/9781492033431/ch04.html

Testing

From: Alexander Wallrabenstein, Observability – Where do we go from here?
https://blog.mi.hdm-stuttgart.de/index.php/2019/02/09/observability-where-do-we-go-from-here/

Future Developments in Observability

• Capturing causal information (Complex Event Processing,
future ML)

• Application of Control Theory to DS (Feedback,
Autoscaling)

• Observability Pipeline Processing (Tyler Treat)
• Making Fault-Tolerance Effects visible

Load Management

In a web-cluster system management tasks are: configuration
synchronization, application and clone launchers, agents for monitoring,
firewall-port handling, dynamic failover and replication of nodes etc.

The Federated Management Architecture (FMA)

Disk

static services:

transactions

locking

workflow

event

scheduling
management
server (station)

dynamic services:

Component

static services:

transactions

locking

workflow

event

scheduling

management
server (station)

dynamic services:

resources:

Client

the FMA provides a component based service architecture for system management.
Static services are always offered by the management stations while dynamic services
can be installed and instantiated on demand. There is a vendor interface between service
and management station.

Dynamic Services (1): Jini mechanisms

Jini Lookup
Service

Jini Client Jini Service

Service Proxy Code

Service „discovers“ a
lookup service after
installation. It „joins“ a
lookup service by
placing a proxy code
and attributes on the
lookup service

Proxy moves to client
during service „lookup“

Service private
protocol

JIRO, an implementation of FMA uses JINI mechanisms for service
deployment and discovery.

Dynamic Services (2): Extended RMI

Service „discovers“ a
lookup service after
installation. It „joins“ a
lookup service by
placing a proxy code
and attributes on the
lookup service

JIRO extends RMI to support dynamic pluggable services. Several features were
missing in RMI: no high-availability through automatic re-start of services on a
different host and re-routing the client request, no methods on class level and especially
no way to instantiate objects on servers remotely (without a factory being present on the
server already)

class methods

remote object instantiation

automatic fail-over

RMI base: remote
object invocation

dynamic pluggable services

context flow

Common Information Model (CIM)

Applications

More

Devices
Network

System

Core
Schema

The CIM provides a data-modeling environment in the form of object-like design
diagrams and a language-neutral description of the model known as the Managed Object
Format (MOF). After: Paul B.Monday, getting started with JIRO and ...

System management typically uses a REPRESENTATION architecture. There is a
representation of the system built up. Compare this with a SUBSUMPTION architecture
which does not use any form of internal representation of the environment (used in
robotics)

JMX MBeans

Diagram taken from: Java Management Extensions Specification 1.2. MBeans and
MBean Server form an agent which can be controlled by management applications. JMX
is in itself a distributed system but should be used only for management purposes.
MBeans provide a standard interface with notification features. The server functions as a
registry for MBeans. MBean references are not exposed to clients.

JMX MBean Types

An important feature of management beans is a flexible interface which needs to be
detected and perhaps even modified during runtime. Remote instantiation of classes is
needed as well to further instrument a platform.

Standard (a static interface is needed)

Dynamic (interface follows dynamic attribute /method
pattern, can be extended dynamically)

Open (only basic types are used. No Java features like
serialization used. Allows other languages to interface with
Agent

Model (An extremely convenient, template driven type of
MBean which allows fast and flexible configuration by
developers

JDF System Components

Controllers
communicate

with other
controllers

Controller, Agent and device are purely logical functions. Agents producte JDF. Controller route JDF and devices interprete
and execute JDF. Devices can send events and respond to queries about their state. MIS collect this information and control
the whole job. See: Job Definition Specification 1.1 specification, pages 10-13

MIS/Controller

Controller/Agent

Device

Machine

Device

Machine

Device

Machine

Controller/Agent

Controllers
route JDF to
devices and
receive JMF

events
Devices read

JDF and
control

machines.
They can
send JMF

events

JDF written
and sent to
Controller

JMF event
JDF to
device

JMF query

JMF queue
message

Players and Opportunities in System
Management

• IBM‘s Tivoli System Administration Package

•BMC‘s PATROL Package

•Computer Associates etc.

• Autonomic Computing (IBM)

Existing packages are very expensive. They cover almost all aspects from
Database migration over system monitoring and software distribution.
Nevertheless, in distributed, component based systems there is a high need
for better solutions and skilled consultants. The ubiquity of computers will
also increase the demand for skilled system management (including
software skills)

Resources (1)

• The Federated Management Architecture (FMA)
www.fma.org

• Yuval Lirov, Mission Critical Systems Management
• Component Broker Connector Overview,

www.redbooks.ibm.com (SG24-2022-00)
• Paul.B.Monday, Management Application Programming:

Getting started with the FMA and Jiro. www-
106.ibm.com/developerworks/library/j-jiro/index.html
(three parts)

• Tivoli TME10 book

• Birman, Building reliable and secure network applications

Resources (2)

• JSR-000003 Java(TM) Management Extensions
Specification 1.2 Maintenance Release,
http://jcp.org/aboutJava/communityprocess/final/jsr003/in
dex3.html

• Job Definition Format (JDF) Rel. 1.1, download from
www.cip4.org

	Distributed Systems Management
	Overview
	PowerPoint-Präsentation
	What would YOU want to know or do if you were manager of a large scale distributed system?
	large scale software cycle
	Services within an operations factory
	Enterprise IT-Structures
	System management view on IT-Structures
	System Management for traditional programming models
	System Management in component systems
	Information models in System Management
	Example: Component Broker Information Model
	SM GUI console
	SM Runtime Architecture
	System Management Qualities
	Separation of Data and Control Path
	Two important characteristics of distributed systems management
	Services of distributed system management
	Logging, Tracing and Auditing
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Load Management
	The Federated Management Architecture (FMA)
	Dynamic Services (1): Jini mechanisms
	Dynamic Services (2): Extended RMI
	Common Information Model (CIM)
	JMX MBeans
	JMX MBean Types
	JDF System Components
	Players and Opportunities in System Management
	Resources (1)
	Resources (2)

