Middleware for Distributed Systems

Old pals and the new kid(s) on the block

Walter Kriha

What is Middleware?

software that helps two separate systems communicate seamlessly.

(www.knownow.com/middleware/lexicon.html)

In a strict sense middleware is **transport software** that is used to move information from
one program to one or more other programs, **shielding the developer** from dependencies on
communication protocols, operating systems
and hardware platform ("plumbing")

(www.talarian.com)

The Transparency Dogma

 Middleware is supposed to hide remote-ness and concurrency by hiding distribution behind local programming language constructs

Critique: Jim Waldo, SUN

Full transparency is impossible and the price is too high

Where do we find Middleware?

Classification

- Remote Procedure Calls (RPCs)
- Object Request Brokers (ORBs)
- Message Oriented Middleware (MOMs)
- Others

The "ilities"

- Reliability
- Availability
- Security
- Scalability
- Quality
- Performance
- Maintainability

Before using a specific middleware, always make sure that the "ilities" aka nonfunctional requirements are met. Middleware almost always differs implementation quality between vendors.

Real-World Problems

- Skills/Understanding: Best practice patterns?
- Single-Point-Of-Failures: replication, load-balancing etc.
- Tooling: generators, deployment tools
- "Brittle-ness" if interfaces change (Compiler "illusion")

RPC type Middleware

- E.g. Sun-RPC, OSF DCE
- Main idea: distribute functions, use concurrent processing
- On top of it: Distributed Directory, File system, Security (cells, principals)
- XML-RPC over http (<u>www.userland.com</u>)

Layer foundations: UUIDs, value vs. reference, marshaling, versioning etc.

Distributed Objects

CORBA

- Object Request Broker
- Multi-language support (platform independence)
- Interface Definition language
- Wire Protocoll: IIOP, GIOP

RMI

- Java only (e.g.Introspection used)
- Lightweight method call semantics
- Java Implementations
- Wire Protocoll now mostly: RMI over IIOP

Both try to preserve object semantics. Interface/Implementation separation

Distributed Components

- Objects are too granular: performance and maintenance problems
- Programmers need more help: separation of concerns and context

Solutions:

- Enterprise Java Beans
- CORBA Components
- COM+

Example: Enterprise Java Beans

EJB Framework (Separation Deployment (Separation of concerns):

Context):

EJB Container

Resource management, life-cycle, statemanagement, transactions, security, persistence

Distributed Messages (MOM)

Asynchronous, loosely-coupled (fault tolerant), persistent messages with either publish/subscribe (topics) or queuing semantics. Scales well. Delivery guarantees differ.

Distributed Code I (Agents, Aglets)

The Problem: who wants a new runtime system?

Distributed Code II (Jini) – The End of Protocols?

Peer 2 Peer

Problems: How do you version files? Overhead?

WebServices

Promises de-coupling of service provider and requester, document interfaces, machine-to-machine communication and ease of use compared to distributed objects. No way to define QOS or conversation yet.

Security, Transactions etc.	Core services
Universal Description, Discovery and Integration	Registry (advertise)
Web Services Description Language	Service features
SOAP	exchange messages
XML Syntax/HTTP	Wire Format/ Transport
Web Server	Broker

Service Granularity? Application, Component, Object or Request?

Use your "de-hyper" generously!

Others

- Parallel Processing: PVM, MPI (e.g. for Linux Beowulf cluster)
- Wireless: Bluetooth
- System Management: Jiro/FMA

- Linda Tuple Spaces (Javaspaces, Tspaces)
- Group Computing (virtual synchrony): Horus, iBus

Resources

- Jim Waldo, End of Protocols
- Marco Boger, Java in verteilten Systemen
- Ken Birman, Building secure and reliable Network Application
- ObjectSpectrum 7/2001, WebServices

- Java Magazine 7/2001, Java Message Service
- www.theserverside.com on EJBs
- Clay Shirky, What is P2P and what Isn't (www.openp2p.com)
- S.Tai, I.Rouvellou, Strategies for Integrating Messaging and Distributed Object Transactions