Processes and Concurrency

Lecture on

Processes and Concurrency
Preserving speed and consistency

Walter Kriha

Goals

» Understand how the resource CPU is shared and managed

*Understand the importance of concurrent programming as
THE means to achieve throughput and good response times.

» Understand the problems of concurrent access: data
inconsistency and deadlocks

* Understand how Java handles concurrency and how threads
can be supported by the operating system

* Learn to use an advanced threadpool design

Tt used to be system programmers which had to deal with complicated concurrency
problems. Now it is application programmers running multiple threads for
performance. We will look at the advantages and pitfalls of concurrent
programming

Procedure

» The basics of sharing CPUs (time sharing, context switches
etc.)

» The process abstraction: sequentially progressing tasks

» process states and scheduling

* The thread abstraction: kernel and user threads

* gsynchronization primitives (mutex, semaphores, monitors)

» Inter-process communication

Getting the maximum out of threads requires a good understanding of how the
specific 05 implements them.

Processes

What 1s a process?

a border around a
set of resources

an ¢xecution flow

+ CPT register (instruction « file descriptors

ointer etc. .
P) » networls connections

. e table entries .
pag + shared memory regions

+ cached instructions

* rights

*User

* identity

Tt is useful to separate the exccution part from the resources. This allows us later to
define a thread as an execution path over an existing set of resources. All in all is a
process a very heavy-weight thing consisting of many data structures which must exist to
make a process runnable. This in turn makes changing processes (context switching) an
expensive operation.

Why Processes?

timeline goal

T e

request [request [
l to kernel l request

to kernel to kernel

hardware hardware
interrupt interrupt

hardware
interrupt

A process is a representation of a sequential task. Asynchronous events like hardware
interrupts from drives or networks are hidden behind a synchronous interface which
blocks a proeess if it has to wait for data. The idea of sequential progress towards some
goal is inherent to processes and at the same time something that programmers can
understand (and program). Other forms of task organization are e.g. table driven state
machines (finite-state machines) which are extremely hard to understand for humans.
That is why e.g. chip design requires case and simulation tools.

Process Identity and Process Table

* Process D

* Process state

+ Registers, stack and instruction pointer

+ Priority

+ Runtime statistics (CPU time, wait time etc.}

+ Waiting for which events

+ Parent/child relations (if applicable)

+ Memory segment (text, data, stack) pointers

+ File descriptors, working directory, User and group ID

Just like files (inode table) or pages (page table entry) every process has a unique
identity (PID). Itis used to associate resources with it, kill the process or gather
statistics for it.

From Program to Process

deseription of task

stack segrnent,
adjusted by kemel

only text and init. data are
contained in a prograr

HORTIOTY

dymmjistaclg grows down

!

heap, adjusted by
kernel

ds irallyy allocated
s

Jata furinitislized)/BS3 i

l%ata](mitiahzedj;w

execution of task

created at program load tirae
and set to zero

T o)
G T
CPU %&m (instruction pointer, address and

data registers, ALIT)

file on disk.

When a program is loaded into memory, three segments (text, data, stack) are created in
memory and the address of the startup location is put into the instruction register of the CPTL
The 3 segments together with the contents of the CPU registers form part of the state of the
process. Without an operating system one program/process would be allocating the CPU
resource completely.

10

How Process Creation Works: exec()
child pid child pid
stack pages stack pages
——
execy(char® prograrm,
char** argyv)
data and heap new data and heap
Pages pages
program & test (code

kemel process state

kemel process state

When a child calls exee(..) with a new program name the program is loaded and
REPLACES the existing code. Data is re-initialized and some of the process state in the
kernel. Open filedescriptors are still open to the new program. Command line

arguments are copied onto the newly initialized stack where main...) will find them.
Same for environment variables.

How Process Creation Works: fork()
puentpid

child pid
stack pages stack pages
pid = fork();
ipid==0){
data and heap fehild data and heap

pages } pages
text icode elsz { tet (code
pages) Pages)

If parent

}

kernel process state kemmel process state

Usually a new process (child) is ereated by an existing process (parent) which uses the fork()
system call to create an exact copy of the parent with a new process ID (pid). The new child
process shares all memory segments with the parent and all resource handles (file descriptors
to disks or network connections ete.). The return value of fork() differs for child and parent
and allows the child to do different computations, e.g. to load a new program and execute it.

11

Death of a process

Parent process waits for child:

pid = wait(&status);

A parent process should always wait for children to terminate. If parents do not wait
the dead child program becomes a ZOMBIE, waiting to be collected by the parent.
If the parent terminates without waiting for a child the child becomes an orphan and
the init process (a system process) becomes the new parent.

Literature: Alan Dix, Unix System Programming I and II, short course notes.

Process Creation and IPC

The typical shell uses the following system ealls to create processes and tie them into
processing pipelines:

-fork : create an exacte duplicate of the memory segments of a process and associated
kernel status like open filedescriptors

-exec : load a program image from disk and start it with the arguments from the command
line

-pipe : creates two filedeseriptors, one for reading and one for writing

-dup : Often, the deseriptors in the child are duplicated onto standard input or output. The
child can then exee() another program, which inherits the standard streams. The
mechanism is used by the shell to connect processes through pipes instead of letting the
processes use the standard input and output files.

-wait : makes the parent block until the child is done.

Find examples here: hitp:/www.ibiblio. org/pub/Linux/docs/linux-doe-
project/programmers- guide/, The Linux Programmers Guide.

From Process to Process: Context Switch

suspended process:

new
dymarnic stack, grows down dymarnic stack, grows down ﬂmnmg
process
f /1
dynarically alloc at dymarnically allocated
(HELP), grows 1 (HEAP), grows upward
page tables data (uninitialized), E‘S data (unirdtialized), BSS page tales
stored in u- data initialized) | data (iuitialized) Ioaded from
area u-area
Text (cods) ‘ / Text (cods)
s
registers (instruction pointer, CPU

address and data registers, AL

A context switch is a costly operation which involves flushing caches and storing the current
state of execution within a process memory area. All information needed to continue the
process after a while must be saved. To perform a context switch processing must change
from user mode to kernel mode.

12 14
A primitive shell Reasons for context switches
COIMnomn
int main (arge, **argv) {
whils (1y {1 foxewer 1. User process gives up execution voluntarily (e.g. by using
ol G e e A a blocking I/O system call or by calling sleep(x)
type_prorapt(); /i display the § or # sign as shell prompt . . .
s o, s,) g s) e et st 2. User process has used its time slice completely and the
pid = fork(); /i create a new process. [f pid = 0 we are in the new child process kemel PRE-EMPTS the process. ']"hls requIeS a timer
if(pid==0) { ifchild it t into the k 1
ercve(command, arguments); I loads the new program into meraory and hands over the arguments | s—only child m eITU.P mto e kernel.
) elee { ffcontimue in the parext aly 3. The user process runs in kernel mode (system call) and 1s
}| eltpl-1 Batahe); U parsnt weils or Lo el | parent interrupted by some high-priority device. The kernel
detects that now a high-priority process is runnable and
This code from Tanenbaum (pg. 695) has been adjusted a little bit. It shows how simple does a context switch. This requires the kernel to allow
shell architecture really is. A shell basically performs three steps again and again: preemption in kernel mode — somethjng most unixes do
1) read users commands and arguments not allow.
2) ecreate a new child process and make it load the requested command and execute
it. The child inherits environment variables and open file descriptors Context switching is a technology needed for SCHEDULING processes. But it does
. not define WHEN to schedule a new process or WHAT proeess to start. These
3) make the parent wait for the child to finish processing and exit decisions are made by scheduling algorithms driven by scheduling policies.
13 15

Process States

waitingblocked

readyinrmable

In creation

A simple state-machine diagram for possible process states. The number and kind of
states are all implementation dependent but most systems know the above states.
Notice that creation and destruction phases have their own state. The zombie state
allows a dead process to stay in the process table e.g. because a parent process did

not wait for it yet.

Why CPU (time) sharing?

recquest data
from network,
wrait till data are

Tser Process

request data
fror disk, wait
. . . till data are
idle while process is -
waiting for L0 arailsble

Processes frequently need external data. Those operations are so called I'O operations and
take factors longer than regular instructions like add. Without an operating system the
process simply idles (busy wait) for the external data to become available. During this time
the CPU is blocked by the process but does not useful computations. Some processes spend
more than 90% of their time waiting for resources. The idea was then to take the CPU away
from a process as long as it is waiting and run some other program during this time. To
allow some programs some CPU time the ,,TIME SLICE® was defined as the time a
process could use the CPU exclusively until it would be taken away from it. If the process
had to wait for a resource it would be replaced immediately. The mechanism that does this
switching of processes is called ,,SCHEDULING* and can be implemented differently for
real-time systems, workstations or large timesharing hosts.

16 18
Process Categorizations Resource Management: CPU
5 ="
“ waiting ﬁ wraiting for
Realtirae Interactmve Batch ortek etk
Processes arc ordered Processes can have Processes can have — — Usex Progsss
by priority different priority and different priority and & B c
If 2 process becomes time-slices but this time-slices but this
mrmI:ible (c.g a does NOT imply does NOT imply
i immediate reaction immediate reaction rming
IESOUrce 15 now on events on events Register state R.eg]stér state
available) the kernel ’ ’ &
will check Processes may be Processes may be 3
]MMEDIATELY if stalled for a long time stalled for a long time ey P (rsgister state B, rura
tl?15 process .has 2 The system tries to The system tries to
higher priority than the .. . Lo,
currently ing minimize reaction maximize throug.hput
process. If 5o time for users and turnaround time The kernel now schedules ownership of the CPU between different processes. In this case it
schedul.ing w;ll happen is clear that only process B could run because the others are blocked waiting on resources.
immediately and the The kernel saved their state to be able to continue the processes once the requested resources
higher priority process are available. A process not waiting on anything can use a whole timeslice of CPU time. A
will get the CPU. timer interrupt will tell the kernel when it is time to schedule a new process.
17 19

A design using several processes

cgi processing

www.home. com/mail.pl

www.home. com/counter. cgi

shell
forkfexec t
new shell script -
for counter.cgl:
request hinbash # hinjsh
Apache Web
* Server perl
interpreter -
executes il pl
_seript | 4 ibindperl
Joinfperl

large processes.

CGI processing is expensive because for every request cotning in a new shell or
interpreter is launched which runs the requested seript. Since processes are
heavyweight resources most operating systems can tolerate only a certain number of

an execution flow
within an existing
process

= CPTJ register (instruction pointer

ete.)

= a function or method

= s0ME Private Memory

= CPT register (instruction pointer

ete.)

= a function or method

= s0ME Private MEmMOTY

What 1s a Thread?

Process resources

= file descriptors
= netwiork connections

= shared memory regions

Both threads share the resources of their process. They have full access to process
resources. Some threads have private storage associated which other threads cannot

ACCEss,

20 22
Why Threads?
* A process contains several independent tasks which would
be better represented with their own execution flow.
* A process needs more parallel execution flows. E.g. a
Threads servlet engine.
» Copying data across process borders is expensive. Threads
have access to all data of the process.
21 23

When live was easy: single-threaded processes progeming er User level threads
hecause user threads
are not pre-etopted
and give up control

only when they are
not in a crifical
ser Process
ser Process
start pre -
empted
tirner - , l Kemel | . tiraer > , Kemel .
CPU CPU

With user level thread (green threads, fibres) the kernel does not schedule threads. The
process itself scheduls threads which must vield control voluntarily. If a thread would do
a blocking system call the whole process would get scheduled. Most user level thread
libraries offer therefor non-blocking system calls. Multiple CPUs could NOT be used to
speed up the process because the kernel does not know about its internal concurrency.

An example of pre-emptive scheduling of user processes. At any time a user process may
be scheduled if the time slice is used up, the process blocks on some resource or — with
real-time systems: a process with higher priority got ready to run. The kemel will later
resumne the pre-empted process exactly where it left it. There is no real concurrency if

only one CPU is present. But even with more CPUs the proeess would not run faster.

26

Asynchronous Signals in single-threaded Lightweight processes (kernel threads)
pI'OCGSSGS MNow threads can

enter critical user
sections
concurently and
chances for
corruption of data
ate much higher if
no synchronization
pritmitives are used.

start TESIE lightweight

end Df signal process process

handling

fimer | LWP table . Kemel Process table | timer

- @ @

CPU CPUL CPU2

Unix signals are an asynchronous mechanism which can call a handler” function in the
process. They can be caused by programming errors, user behavior or sent by other
processes. While in most cases signal handling functions are called when the process is in
the kernel (blocked) there is a chance that the pre-empted process was in a eritical section

Lightweight processes are scheduled by the kernel This means that a process can now
use two CPUs REALLY concurrently by using two L'WPs. This design is extremely
important for virtual machines like the java VM because it can now exploit
multiprocessor designs.

and the signal handler now meodifies values from this section. Lost updates cte. could be the
result. The process can protect itself from asynchronous interruption by issuing
SIGIGNORE calls. Several other race conditions can happen (see Bach, pg. 200£f)

27

Kernel and User level threads

user
TOCESS

lightweight
process
tirner - LWP table . Kemel . Process table H—— timer

CPUL CPU2

Each LWP can have regular user level threads which are scheduled under user level
control. This design tries to combine the performance advantages of user level threads
{extremely cheap thread context switches) with the maintenance advantages of kemel

level threads which are controlled by the kernel)

Scheduling Processes or Threads

» Throughput vs. response times
» Scheduling algorithms

29

Most GUI systems use one thread to paint the GUI and process input events from kevboard
or mouse. If a certain request takes a long time to process (e.g. a large database search) the
GUI becomes unresponsive if the GUI thread is ,,abused” to query the DB. In those cases it

is better to use an extra thread for backend processing and let the GUI thread return quickly.

The business logic (model) will send an update request to the GUI once the data are
available. Please notice that the update request runs in a non-GUI thread and usually cannot
redraw the GUI directly. Instead, it leaves a marker which causes a GUI redraw driven e.g.
by timer events. Most GUI systems have asynchronous netification functions that let non-
GUI threads register redraws. The reason is usually that GUI threads keep special data in

threadlocal space which are not available in other threads.

31

28 30
A design using threads: GUI-Application Throughput vs. Responsiveness
GUI Business logic
create
U search string: o o -
thread HOEEESE thread o - -
. perforn e Context switching frequency is a typical example of the trade-offs
| = long made in operating system design. Each switch has an associated high
- e overhead so avoiding too many switches is necessary to achieve high
o o e frovehpt
elick svent Gkl ey GUI But letting compute bound processes run for long time slices
g punishes /O bound processes and makes the system feel very

sluggish for the users. Good time slices are between 20 and 50 msecs
with an average context switch overhead of 1msee (Tanenbaum pg.
135)

Scheduling Algorithms: Interactive Systems

* Round robin: take one process after the other

* Dynamic recalculation of priorities afier CPU time used
» Based on estimates of processing time left etc.

* Lotterie (ticket based)

» Faire share

» Different Queues

Tanenbaum (pg. 147ff) lists a large number of scheduling algorithms for
interactive systems. Today most operating systems use different queues for
different process types and recaleulate the priority (or the number of tickets in a
lottery based system) dynamically depending on how much CPU time the process
already used. The more CPU time used the lower the new priority. Should two
users experience the same CPU time given to their processes even if one user uses
10 processes and the other only one?

Using Priorities

Giving processes different fixed priorities sound easy. In practice it is
extremely hard to caleulate the effects of different priorities in a
realtitne system. Two sound strategies come to mind:

a) if vou absolutely want to use priorities, use a simulation software like
statemate/rhapsody from www.ilogics.com to completely simulate
your system.

b) if you can afford a bit more hardware, go for a bigger system that will
allow you to use regular timesharing or interactive algorithms for your
soft-realtime system. It will make software development much easier
to treat all processes with the same priority.

And last but not least: Computer scienee students like to play around with new
scheduling algorithms. The wins are usually in microseconds with spectacular
breakdowns at certain unexpected system loads. Real professionals use a reliable
and unspectacular scheduling algorithm and put all their time behind optimizing
the systems I/O subsystem — this is where time is lost or won.

32 34
Scheduling Algorithms: realtime Process Behaviors (1): I/O bound
* non-preemptive
) P P timeline goal
» priority based
« carliest deadline first [[oo] [vnirio]
| CPU slice reserved for this process |
Non-preemptive means that the processes will voluntarily yield the CPU if they An T/O bour_ld process s_pe_nds most of its time waiting for data to come or go. To keep
cannot progress. This works because in a realtime system all processes are m{el:all. runtime .short it is important to start 'O requests as soon as p0551ble: to
expected to cooperate — something not at all guaranteed for a regular multi-user minimize wait time. Such a process can use enly minimal (_jPU time m_ld still run for
system. Priority based scheduling sounds easy but can lead to strange runtime hours. The process metaphor can use task inherent parallelism by starting several
effects due to priority inversion e.g. in waiting on queued packages. Earliest processes doing one task. Internally it enforces strict serialized processing. This is one
deadline first is an algorithm that achieves maximum CPU use without missing of the reasons why threads where invented.
deadlines as long the the overall process load is schedulable at all. The diagram shows that I'O bound processes rarely use their full share of CPU time
slice.
33 35

Process Behaviors (2): compute bound

timeline goal
. 0 e /A
[o] precmpted

A CPU bound process does little I/O. It is not blocked waiting for resources and can
therefore use its CPU slice almost fully. While being very effective with respect to
throughput it causes large wait-times for I'O bound processes. Most scheduling policies
therefore punish CPU bound processes by decreasing their priority or time slice to
make sure that I’O bound processes can run frequently. This is a elear indicator that
vour scheduling strategies will depend on the typical workload of your machine and
that there is no correct policy in every case.

Race Conditions

Read value from
counter

\

increment aid
write to counter counter one go.

counter is either 1 or 2 after

Read value fro
connter
inerement and

thread B .
write to counter

Assume a thread gets pre-empted after reading the counter value. In the meantime the
other thread also reads the counter and increments it. Now the first thread becomes active
again and also writes the (old) incremented value into counter. The second threads
increment is lost (lost update). The effect depends on when the threads are scheduled and
is therefore unpredictable. Those bugs are called race-conditions and they are very hard to
detect.

36 38
Objects and Threads
public class Foo {
. . hasad A \ private int counter;
Synchronization Issues ‘
setCounterint){}
int getCounter() {}
*Race Conditions r !
+Objeets and threads
sthread-safe programs thread B
smutual exclusion
*test and set
*monitors Yes, object encapsulate data. But this is not relevant for multi-threading. With respect to
several concurrently operating threads the field member ,,counter” from aboveis a
GLOBAL variable if both threads share a reference to the same object. Do not confuse
implementation hiding with multithreading.
37 9

Thread-safe programs Busy Waiting

There are 3 ways to achieve thread-safe programs: e try to acquire eomer
1. functions or methods do only access variables from the E’Nuaif lock and

stack. Those are per thread only. Code that works only

through stack vars is called ,,re-entrant because any while (truc) {

number of threads can run the same code at the same synchronized(this) {

time. boolean ret = getLock(,, Counter™);
2. Each thread has its own set of objects and is guaranteed to if (ret = truc) break;

be the only user of those objects. Or it uses only

threadlocal* storage. \ }

3. Code that does access global variables (class members,
static fields, global vars in C etc.) uses protective

wrappers around those to ensure exclusive access. This The slide shows a client doing a busy wait for resource access. This is not only a
can be locks. s emaphores or monitors waste of CPU time but can lead to deadlocks when a system uses different fixed
) .

priorities for processes. If the lock is owned by a low priority process the high-
priority busy waiter will not let the owner process run and therefore the lock will
never be released (priority inversion).

42
Mutual Exclusion Monitors
public class Buffer {
private int value=0;
private volatile boolean full=false;
public synchronized void put {int a) throws InterruptedException { /f use synchronized like this
thoead & while(full) /f ALWAYS bracket wait with a check loap
wait();
acquire lock and counter valug = a; full = true;
proceed with notifyall(); /f wake up ALL threads if they are equal
counter }
public synchronized int get() throws InterruptedException {
int result;
thread B wehile (1full)
try to acquire wait();
busy lock and result = false; full = false;
wait notifyall();

retum result;

One way to achieve consistency is to serialize access to resources through locks. A lock
can be taken only once. The process which gets it first automatically excludes every other
thread from passing the lock. Only when the lock owner finishes processing the resource
and returns the lock can the other threads continue (by trying to get the lock).

from Bacon/Harris. Notice that one could lock more granular using synchronized
(object) and distinguish putter and getter threads. Used like above all threads will

wake up, many of them just to be blocked again (e.g. all putters if the buffer is full)

43

Monitor Implementation

Lock=
Threads
. Waitset=
thread & public class Foo { ThieadE:
[™ symchronized methads ();
Ed synchronized methodB ();
thread B

An object implementation e.g. by the java virtual machine provides a lock flag
which the first thread which accesses a synchronized method or block will get. The
next thread is put into the waitset of threads waiting for the lock to become
available. Virtual machines try all kinds of optimizations to make monitors fast, c.g.
by checking whether a thread already owns alock or by doing atomic locks in user
space instead of using kernel system calls.

Sleep/Wakeup (Guarded wait)

traesd ® try to acquire counter
lock and wait
synchronized ... The lock owner calls:
while (counter <=0) { synchronized ..
wait(); countert+;
} notify All();

The slide shows a client being put to sleep because the lock is not available. In this case
it is essential that there is no chance for arace condition between lock owner and lock
requester. Therefore both methods are synchronized. The lock owner MUST call
wakeUpSleepers when it is done but the lock requester MUST NOT be put to sleep at
exactly this moment. Otherwise it will sleep forever because it missed the wakeup call.

44 46
Spin Lock Class Implementation Why guarded waits?
elass SpinLock { Notice VOLATILE keyword:
private volatile boolean busy = falze; it t;-::- th(e1 comptile(;" not to ; synchronized....
h ized id rel b = fal : op 1Z¢d repeated access o . . .
ynchronized void release() { busy = false) the busy variable away. Also: while (counter <= 0) // lock to object (re-) installed
void acguire]) throws InterruptedException | . : .
why is synchrom.zcd uscd m wait(); // lock to object released
for(;) { release but only internally in
if (Ibusy) acquire? This ai_xoids a ACCESS IESOUrce. ..
)) deadlock and still enforces a
synchrenized (thig) { memory synchronization.
if (Ibusy) { And last but not least:
busy = true; Thread.yield() is NOT There. is always. a possibility that several .tl.lreads have bee.n waiting on an obj?cF.
guaranteed to cause a thread A notify call will wake up one thread waiting — but there is no guarantee that it is
return; } scheduling to happen. really one of those threads that holds a resource the other threads are waiting for.
} E le slightl dified Sometimes the system can also generate SPURIOUS notifications which wakes
Thread.yield(); éam]g €s IL ycmo 1 t threads without the conditions being right. Of course, only one thread will get the
| after oug Led, Loneutreny lock to the object and then access the resource. But the other threads one after the
} Java Processing, See his . L.
other would access the resource later as well — without owning it.
} excellent helper classes for
synchronization (resources)
45 47

Why notifyAll?

synchronized ..
countert+;

notify All();

Again, if you wake up only one thread it might be the wrong one and deadlock
results. Also, priority inversion might happen if only one thread is notified to
continue.

Thread Interruption

ay {
waiting++;
wait();

} catch (InterruptedException ¢) {
throw ¢; }

finally { waiting--; notify All();}

Sometimes several threads are working together. If one gets interrupted it needs to
release a semaphore variable (here: waiting) and send a notify message to wake up
the other threads. They would wait forever without that notification. That‘s why
Tava enforces the InterruptedException as a checked exception.

48 50
Killing a Thread
Some nasty thread problems:
here the thread gets killed. To avoid a resource
leak the java virtual machine releases the lock
sunchronized and kills the thread. But the object may be in an
yn inconsistent state now because the thread did not
sthread interruption manipulate object finish.
killing threads end synchronization
*nested monitor problem
+serialization
+ deadlocks
+ atomic hardware operations
Remember: killing threads leads to an inconsistent system. Therefore the method
has been deprecated.
49 51

Nested Monitor Problem

Deadlock

ﬁlgﬁfﬂgﬁg? . thread & locks claject & theead B locks object B
Ohiject & Chject B
Thread B Thread £ - Jec Jec Thaead
Thread & Chject &
all from & t
zymhn:nmnizgdo thread B would like to call object &% thread & wants to lock thread B wants to lnck
method of B synchronized method bt the lock is object B chaject &
owned by thread & . Thread & is g g
unfortunately suspended in in Ohject - " Objeet B Object & Thiead B
B Theead & Object B oBb?:g ?I%Dhtjsmlleaiettohemlsg{ deadlock :
does & wait() v like situations.
and gets
suspended. Its
lnck on object
B iz released,
BUTTHE
LOCK ON & Titme
PERSISTS!!
A\
The second step will ereate a problem: each threads wants an object that the
other one already owns. No thread can progress and everything stalls. Think
Watch for chains of synchronized methods across objects. about solutions to this problem. Will your solution be stable? LE. work under
different conditions and after code changes as well? We will make some
exercises on this,
52 54
Serialization Deadlock Description with Petri Nets
call synchuonized thoead & theead B
rethod on ohject & @ @
Thread & L i Resonrce Resomce l
I b
Ohject & Ohject B Ohject C i l
unsynehronized calls between the other ohjects
Thread B Aecess to the application is i ; l
now ,seralized” for all
threads. Mo perforrmance i l
gains are possible through
ronlti-threading. O O
Threads only make sense if they can runin parallel — or quasi parallel. Titne
Too many synchronize statements will simply lead to complete
serialization of a program: It runs just like a single-threaded \j - — - -
application. Always. grep for ,synchronize® statements w.hen youdoa A petri nf; takdesiaa tra:’lllfllt;‘m lfhal'l Tpl?t Ph;lsles hz‘t’;t"k_etf_ls- Iﬂ thl: case.ll:i;)th
performance analysis. New programmers usually start using no reseurce A and b would lose thewr token. 1he next transition 1s not possible
synchronization. Then — after some mean bugs — they tend to put because the oFl}er resource token is not a.v:.nl:.ible. This deadlock depends on the
synchronization everywhere and slow things down until they learn how order of transitions which is non-deterministic — a property well expressed by
to use it properly. petri nets.. (see resources: Uwe Schoenig, Ideen der Informatik pg. 62 from
where this example was taken)
53 55

Atomic Test and Set Instructions

label: tset 10, memoryAddress
cmp 10, 1

jeq label

tset is a so-called atomic instruction. It takes the content of memoryAddress and puts it
in register r0. If register 10 has the value 0 it will put a ONE at the location
memoryAddress. If 10 was already one it leaves it as it is. The magie lies in the faet
that the hardware guarantees that swapping 0 and 1 ad memoryAddress IS AN
INDIVISIBLE or ATOMIC OPERATION. No other process can interfere here (e.g.
read or write to memorvAddress during this time). Multiprocessor systems rely on
those tset statements but they are usefully on any system. Please not that implemented
like this the code from above would do a busy wait on the lock. But this logic can be
coupled with a context switch and notification logic which gives us the concept of
semaphores.

Theory: Concurrency Models

+ Shared State Model (what you have scen on the previous slides. Some
people claim that this model is error prone. It works only on local

machines.)

* Message Passing Concurrency: basically the approach from distributed
computing ported back to local machines. It avoids sharing state
completely. Objects communicate via sending messages to ports.

+ Actor Model: Similiar to message passing concurrency. The symbian 0S8
uses the concept of active objects to avoid multithreading but it is non-
pre-emptive and requires design changes.

Many modern or research languages and operating systems use different concurrency
models. Take alook at the E-language or OZ (sce resources) for newer coneepts
(promises ete.). And take a look at the phantastic book by Peter van Horn and Seif
Haridi and the excellent web page which accompanies it)

56 58
A word of caution Resources (1)
Most synehronization mechanisms rely on the fact that all elients go through
those mechanisms to get ownership of a lock. In many cases it would be » Doug Lea, Concurrent Programming in Java, Second Edition. Uses design
possible for clients to simply try to access the resource directly, patterns. A threadpool implementation is available, together with other
bypassing the mutual exclusion mechanism. If this happens data synchronization primitives in Java. Do not mess with threads without this
mconsistencies are certain. If you experience strange inconsistencies and book.
your code looks absolutely proper: search for clients which go through http://gee.cs.oswego.edu/dl/classes/'EDU/oswego/cs/dl/util/concurrent/intro.
a) no locks at all to access the resource (shoot the developer) html . Please look at his excellent helper classes for all kinds of
b) go through a private locking mechanisms to access the resource (shoot _SynChromzat_lon problems and a high performance threadpool
the developer but torture him first) implementation.
» Raphael A. Finkel, An Operating System Vademecum, find it online at:
fip://ip.cs.uky.edu/cs/manuscripts/vade.mecum. 2. pdf
This is ba.sed on tllle experience of searching 2 month.for.a bug in a multi-processing « A good class on Operating Systems:
system with real-time slave controllers. The communication between host and slaves hitn:// doc.i uk/mwikiOperatineSvstems C ts/ with simp]
became inconsistent every once in a while. The reason was that a tty device driver used tp: -doc.1c.ac. Wik peralingsystemst-oncepts/ with sunple
a private lock mechanism to lock the system bus. If somebody used a terminal attached kernel tutorial (bochs)
to my test systems my dual-ported communication channel became inconsistent. ... * Alan Dix, Unix System Programming I and II, short course notes.
Needless to say that it takes an endless amount of debugging and testing until you start
questioning totally unrelated code...
57 59

60

Resources (2)

 Concurrency: State Models & Java Programs, Jeff Magee and Jeff Kramer,
hitp://www-dse.doc.ic.ac.uk/concurrency/ with nice applets and code for
various concurrency examples

* Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of
Computer Programming, MIT Press, Cambridge, MA, 2004. All sorts of
programming concepts using the OZ language. This book will make the
difference if you really want to understand computer science. Fundamental
like ,,Structure and Interpretation of computer programs®. There is a draft
available from wayback engine. (almost 1000 pages). Excellent additional
material {courses etc.} at:
http://www.info.ucl.ac.be/people/PVR/ds/mitbook html

* Active Objects in Symbian OS:
hitp://www. symbian.com/developer/techlib/papers/tp _active objects/active.ht
m . Gives an overview of multitasking concepts as well.

* Gerlicher/Rupp, Symbian OS. Very good introduction to Symbian O8 (with
active objects, communication etc.) GERMAN.

