
C Tools and Compile-Time Environment

I have to say thanks to Jason Maasson from Frije Universiteit Amsterdam for his excellent script and slides.
I've translated most of the slides and added some graphics and text.I would also like to thank Marshall Brain,
founder of "www.howstuffworks.com" for his wonderful article on "How C Programming Works" which
explains also the c-runtime environment.And last but not least Steven Simpson from Lancaster University for
pointing out the differences between both languages on a few excellent pages.Look at the resource section at
the end for links.

Introduction

2 / 36

1. Learn how a C program gets compiled (The flow from preprocessor through compiler
to linker and archiver)

2. Understand the necessary tools (Important compiler options, how to generate
assembly code etc.)

3. learn how to cope with problems (debugger etc.)
4. Learn important libraries (network programming, what's in the C library etc.)

Goals

Introduction 3 / 36

1. Overview of C processing
2. The preprocessor and how it is used for portability
3. The C compiler: generating object code or assembler output
4. The linker: combining object code and libraries into an executable
5. C archives and libraries
6. Using Makefiles to control compilation

Roadmap

Introduction 4 / 36

When a file with C code (usually with a .c extension) needs to be compiled it runs through
a number of tools. The main tool is called compiler (or driver) and it drives everything.

1. First the compiler reads the C file into memory. If it detects include files it starts the C
preprocessor which will read those files into memory as well.

2. Include files are macro files which need to be processed by a macro processor. This
used to be a generic macro processor like m4 but is nowadays aware of C syntax.

3. Header files are now concatenated with the processed code from the .c file. Now the
compiler can compile the whole code and the result is either a file with object code (a
.o extension) or an executable program.

4. If the goal is an executable program, the compiler calls the linker to resolve
unresolved externals (e.g. if your program code calls functions from other libraries or
other files (modules) in your program). Once the linker is done an executable file has
been generated.

5. In case of the object code (.o file) we now have a component that can go into an
archive waiting to be linked together with other object code to form a new executable
program.

6. Sometimes linking does not produce a big self-contained executable but an
executable that needs so called Dynamic Link Libraries (windows: .dll) or Shared
Object libraries (Unix: .so) at runtime.

Overview of C processing

5 / 36

Diagram of C processing

Overview of C processing 6 / 36

At compile time a C program usually consists of three kinds of components:

Header or Include
Files

They contain definitions of constants or declarations of
functions. Sometimes complete functions are implemented just
as a macro, i.e. the code of the macro gets inserted whereever
the macro is used. Header files collect information that is useful
for more than one C source code file. To avoid duplicated
informations with the associated maintenance problems this
information is kept in central header files.

C Files A C program can consist of one more more files with .c
extension. Only one file can have a "main" function. The C files
usually import ("include") header files with common
declarations. There is no C rule for organizing the functions
across files but usually related functions (e.g. those working on a
common data structure or those forming a certain higher level
function are kept together in one file which is called a module.

Libraries Libraries contain C function that are already compiled, so called
object code. Most C programs do not implement everything they
need by themselves. Instead, they use libraries like libsocket.a
for network communication or libc.a the standard C library for
input/output handling, string handling etc. C libraries are usually

Components of a C program

Overview of C processing 7 / 36

compatible across compilers. A special form of library are the
above mentioned dynamic link libraries where at linktime only a
stub for each function is linked to the program and the real
function is accessed through this stub at runtime.

Components of a C program (Continued)

Overview of C processing 8 / 36

Some things in Java work similiar to C and some others are radically different.

Header files Java does not have a preprocessor nor does it separate
declarations of classes or constants into separate files. But Java
still has the need to learn declarations of classes in other java
files when a new java file is compiled - if those classes should be
used in the new file. The "import" statement directs the Java
compiler to existing classes. The Java compiler can then extract
the declaration information directly from compiled classes
(.class files). This is a different mechanism for the same purpose.

Java Files A class per file is the usual Java rule. This is like the module
concept of C except that C does not enforce it.

Libraries Java libraries are collections of classes and packages (which are
again collections of classes in a separate namespace). All java
external references are dynamic: the code referenced is not
included in the compiled program. Instead, the Java classloader
loads classes at runtime dynamically into the virtual machine.
Note that the versioning problem of full dynamic link libraries
has now turned into a versioning problem for individual classes.

Comparing C with Java Components

Overview of C processing 9 / 36

myHeader.h:
#ifndef myHeader_h // protects header from being included
#define myHeader_h // multiple times

#include "stdio.h"
#define MAXARRAY 100 // a constant
#define add(a,b) a+b // an inline function

#define PRODUCTION // just sets PRODUCTION as true for ifdef
// could also be set via compiler arguments

#ifdef TEST // a conditional compilation example
#define FOO "bar"

#else
#define FOO "foobar"

#endif

extern int myFunction(char*, int); // function prototype
typedef struct { // declarations and type definitions

int i;
char* s;

} MyStruct;
#endif myHeader_h

An example C header file

Overview of C processing 10 / 36

• Removes comments of the form /* */ and //
• Reads preprocessing commands starting with the hash (#) sign. Examples are: #ifdef,

#if, #elsif, #endif, #define
• Replace macros for constants with the real value: #define SIZE 100 becomes 100.

The advantage of a preprocessing phase is e.g. that conditional compilation can take
place. This means that code that is exclude with a #ifdef#endif bracket is NOT compiled
and therefore does not show up in the final executable. This allows different code for
production and test versions or different platforms.

The C Preprocessor

Overview of C processing 11 / 36

file.java:
private static final boolean DEBUG = false; // this statement is now ALWAYS false
if (DEBUG) {System.out.println(.....); } // A good java compiler does NOT

// compile this into bytecode.

#undef DEBUG
#ifdef DEBUG

#define myPrint(a,b,c) printf(a,b,c)
#else

#define myPrint()
#endif

In both cases the code for the debug case should not be compiled. In the java case the
compiler should recognize that the if statement is always false and therefore the code
cannot be reached. This is of course an IMPLICIT mechanism relying on a good Java
compiler. The C case is clear: it depends on the macro variable DEBUG. A statement like
#define a //nothing will effectively just remove "a" from the source code and replace it
with empty space.

Conditional compilation with C and Java

Overview of C processing 12 / 36

in myCfile.c:
#include "myHeader.h" // searches for include files

// in include path

char myArray[MAXARRAY] =100; // allocates array of size 100

char* myString = "someString";

int main(int argc, char** argv) {
int result;

#ifdef TEST
result = add(2,4);

#else
result = myFunction(FOO,5);

#endif
return 0;

}

A C File using the above header

Overview of C processing 13 / 36

Typical C code uses the #include "filename" or #include <filename> syntax to include
the header files with definitions into the program. What really happens is a COPY of the
files referenced is placed at the top of the program, in the order of reference. You will need
to take care that nothing is included twice if it would cause a problem. This is why header
files are protected using the conditional compilation mechanism.

header.h:
#ifndef HEADERFILENAME_H
#define HEADERFILENAME_H
.....
#endif

cfile.c:
#include "header.h"

....
#include "header.h" // not included because HEADERFILENAME

// already defined from first include

Including header files

Overview of C processing 14 / 36

The header files belonging to a standard C environment are usually placed in /
usr/include/.. directories. They are referenced from within a C file using < and >
brackets. The following lists popular header files and what they contain.

stddef.h Macros and type declarations
stdlib.h access to environment, memory allocation (malloc..), utilities
stdio.h Streaming input and output of characters
string.h String function prototypes
ctype.h Character handling (upper/lower case, alpha/numeric etc.)
wchar.h wide characters for internationalization (I18n) and localization
wctype.h like ctype only for wide characters
limits.h says how big integer types are on THIS platform
float.h implementation limits for floating-point numbers
math.h math functions
assert.h diagnose problems using assert statements
errno.h many error codes. check it if you receive an error code from a program
locale.h important functions and constants for localization of programs (language

codes, message catalog functions)

Standard C include files

Overview of C processing 15 / 36

stdarg.h support for functions with variable arguments
signal.h run-time exceptions sent by the kernel

Usually there are also system related include files under /usr/include/sys which contain
device descriptions, kernel structure descriptions etc.

Note

These header files list a lot of function prototypes. Those prototypes are program code
(object code) and NOT contained in the header files. They are only declared there. The
functions themselves live in libraries which can be found under /usr/lib on many
platforms.

Standard C include files (Continued)

Overview of C processing 16 / 36

Note that the comments are removed, some source code pathes have been eliminated,
constant values are resolved.

in intermediate file:
typedef struct {

int i;
char* s;

} MyStruct;

char myArray[100]; // allocates array of size 100

int main(int argc, char** argv) {
int result;
result = myFunction("foobar",5);
return 0;

}

Program code after preprocessing

Overview of C processing 17 / 36

gcc -c file.c creates an object file file.o
gcc file.c -lm would create an executable a.out. If file.c uses math functions (e.g. inluded <math.h>) the compiler would tell the linker to use the math default library [lib]m.[a] with the parts in angel brackets being substituted automatically.

-c do not link yet. The resulting object code file can be put into an archive
(library) and later linked into a program.

-I<dir> look for include files also in <dir> Allows you to install e.g. a cross-
compilation environment for Lego Robots on your system and generate
code for this platform by directing the C compiler to use different header
files.

-l<lib> link the library <lib> to the program. If you have unresolved external errors
look for the library which contains the necessary functions. You can use
the nm <libxxxx.a> to search the libraries for those functions.a

-L<dir> look for libraries also in <dir>
-O Optimize code (usually differnt subparameters). Optimization can introduce

subtle bugs or require that all libraries have been compiled the same way.
That's why this is optional.

-g Create debugging code (needed e.g. for symbolic debugging)
-pg Create profiling code which tells you how much processing time functions

The compilation step

Overview of C processing 18 / 36

take. Required to optimize your code properly.
-S Tell compiler to stop after producing assembler code. Let's you see how

your code looks in assembler. Useful for debugging or device
programming.

The compilation step (Continued)

Overview of C processing 19 / 36

Most C compilers generate object code (processor dependent machine code) directly. It is
also possible to first generate assembler code and have the assembler generate the object
code. Tools like "nm" let you view the contents of an object file.

nm myCfile.o
00000000 b .bss
00000000 d .data
00000000 t .text

U ___main
U __alloca

00000012 T _main
00000000 D _myArray

U _myFunction
00000064 D _myString

Note the three memory segments of a program: text, data, bss (heap is dynamically
allocated during runtime). This object file is not yet executable because of the "U" parts:
These are undefined external refernces. One is pretty clear: the function myFunction() has
been used in myCfile.c but the code is not there. It must be in a library. It is in the next
step - linking - that those unresolved externals are found and resolved. Java does this
automatically at program start via the classloader. So all Java classes are in this senses
"unfinished" what you will soon learn when external classes are not in the classpath and
cannot be found at runtime, causing a ClassNotFoundException to be thrown.

The code after compilation but before linking

Overview of C processing 20 / 36

First the function has to be written and compiled into an object code file. Then it can be
put into an archive (library) which is added to the compilers commandline.

in myfunction.c:

int myFunction(char*, int) {
return 1;

}

This file gets compiled with gcc -c myfunction.o which looks like this when viewed with
nm myfunction.o : 00000000 b .bss 00000000 d .data 00000000 t .text 00000000 T
_myFunction . Note that myFunction now as a "T" in front meaning that it is defined and
resides in the text segment of a program, currently at address 0

Linking: Resolving the unresolved function

Overview of C processing 21 / 36

So far we have two .o files with object code. One has a main function and will become our
program. The other one contains only one function which is used by our program. We can
now decide to create a library and store all our helper functions there. This is done with ar
myStuff.a myfunction.o . Use ar -t myStuff.a to look at the contents of the archive
myStuff.a

ar -t myStuff.a:

myfunction..

That's the only function in our library for now. But there where more undefined externals
in myCfile.o: U ___main U __alloca . These are functions that live in the standard C
library libc.a. The compiler (gcc) will automatically search for unresolved symbols in this
library.

Creating a library

Overview of C processing 22 / 36

Beginning C programmers usually have a problem finding unresolved functions in
libraries. Experience tells you e.g. that socket calls are in libsocket.a. But what if you don't
know? You can use a combination of standard unix commands to locate those functions.
The most useful utilities are "nm" and "grep" together with the powerful "find" command.

at the top of directories with libraries (files with .a extension):
find . -name "*.a" -exec nm | grep yourUnresolvedFunction) {} \; -print

Look for the one line where your function name shows up with a "T" symbol in front. This
means your functions code is here in this text segment of this library. Of course you can
use a full-feaured Integrated Development Environment (IDE) but even then it is good to
know how things really work if things go wrong.

How to find unresolved functions in libraries

Overview of C processing 23 / 36

All in one go gcc -myCfile.c -lmystuff.a will generate myCfile.o and link it
to both our own library myStuff.a (to get myfunction.o) and the
default standard C library. This results in an executable file a.out
being created. Our header file would have to be in a standard
place to be found by gcc.

Incremental steps

gcc -c myCfile.c -> generates myCfile.o
gcc -c myfunction.c -> generates myfunction.o
gcc -o myProgram myCfile.o myfunction.o

-> generates myProgram executable

Generating a complete program

Overview of C processing 24 / 36

We have seen that a program consists of several different memory areas and it has a
startup function (not main, but something similiar). The operating system needs to
understand these things, that's why object file formats where invented. Those formats
describe exactly the structure of a program and how it is started. The operating system
will read the program file and perform the necessary steps to run the program.

Use objdump -x myProgram.exe to get a feeling for the information contained in object
files.

A look at /usr/include/elf.h shows you the structures of an object file in ELF format.
Compiler tools etc. need to know these structures.

Object file formats

Overview of C processing 25 / 36

Source Code Dependencies

Overview of C processing 26 / 36

By now it should be clear that C-programming involves sequential processing of several
different software artifacts. .C files import .h files. .o files go into libraries (.a files). .S files
need to become .o files. a.out programs depend on all those .xxx files. We can derive the
following rules:

1. If a header file changes, all C files including this header need to be recompiled to
object files or executables.

2. If a C file changes it depends on whether it is part of a library (in other words: it offers
public functions to other modules) or not. If it is independent then all executables
which use it should be removed and recompiled

3. If the c file is part of a library the library needs to be updated with the new object code
and ALL executables which use this library need to be generated.

Rules for compilation

Overview of C processing 27 / 36

It is already hard for an individual developer to keep track of those dependencies. But
once you develop as part of a team several even more critical issues arise:

• You might use header files from a colleague which change frequently. How do you
know when to recompile?

• When you integrate your parts with those of your colleagues to create the final product
it turns out that the parts do not fit together. Functions are defined in several different
incompatible ways (static integration problems). At runtime the program crashes. It
takes days to find the problems which turn out to be caused by incompatible compiler
options (alignment etc.) or duplicate dynamic link libraries installed in different
locations. The program just takes the first - perhaps outdated library - and crashes.

Note

Makefiles do not solve ALL those problems. It takes a full-blown build environment with
generated makefiles for this. But makefiles are a start.

Add Team development

Overview of C processing 28 / 36

file myMakefile:
This is a comment
myprogram is built from file1.c file2.c and headerfile file.h

set compile variables for tools and environment
use gnu compiler
CC = gcc
use full warnings
CFLAGS = -Wall
OBJS = file1.o file2.o
HEADERS = file.h

let make now that objs depend on headers. make knows what to do then.
$(HEADERS): $(OBJS)
the space before $(CC) MUST BE A TAB!!!
myprogram: $(OBJS)

$(CC) -o myprogram $(OBJS)

Makefile syntax

Overview of C processing 29 / 36

Try the makefile script. Let file1.c include file.h. Then use touch file.h to change the
date of your header file to a newer date than the dependent .c files. Now issue make -f
myMakefile and you should see gcc recompile file.c and create the executable
myprogram.

make -f myMakefile
gcc -Wall -c file1.c
gcc -Wall -c file2.c
gcc -o myprogram file1.o file2.o

make myprogram
make: 'myprogram' is up to date.

touch file.h
make myprogram
gcc -Wall -c file1.c
gcc -o myprogram file1.o file2.o

Use a Makefile

Overview of C processing 30 / 36

On Unix platforms if a program crashes a so called "core file" is created. It contains the
memory status of the program when it crashed. This information can be used for post-
mortem debugging using a debugger like gdb.

For best debugging results a program needs to be compiled with debugging turned on.
This creates additional debugging instructions in the object code of the program and
preserves all symbol and line information. This allows a debugger to show the proper
source code pieces.

man gcc lists a large number of debugging and optimization options. Some compilers do
not allow mixing debugging and optimization.

Program crashes and core files

Overview of C processing 31 / 36

Sometimes when you are working on a device driver or some kernel functions - or just if
you need to speed-up one small function in your program you might want to create the
function in assembler code. Writing assembler is hard but you can let the C compiler do
the hard stuff for you and then just optimize the result. Sometimes you might hit an
optimizer bug which forces you to look at the generated code to see where the problem is
- even compilers have bugs.

gcc -S myCfile.c

produces assembler output.

Generating assembler code

Overview of C processing 32 / 36

The resources cover freely available information as well as excellent books right to the
topic. All entries are commented to let you know what a paper or book is all about. I also
expect participants to use this literature in case of questions.

Resources

33 / 36

The following information is freely available and taken together is an excellent
introduction to the subject.

1. Jason Maassen, C for Java Programmers. A complete introduction to C for Java
people. I have used and extended his slides for this lecture but you should read the
background information here as well.60+ pages. Good if you need to prepare for a test
or need some more information about a feature from my slides. Find his C course with
other materials here: http://www.cs.vu.nl/~jason/course.html
[http://www.cs.vu.nl/~jason/course.html].

2. Steven Simpson, Learning C from Java. An experienced Java programmer will get the
most from this short paper focussing on the differences. Excellent.
http://www.comp.lancs.ac.uk/computing/users/ss/java2c/diffs.htm
[http://www.comp.lancs.ac.uk/computing/users/ss/java2c/diffs.html].

3. Marshal Brain, How C programming works. Another excellent paper from
www.howstuffworks.com. This really explains complicated memory problems using
pointers, how array overwriting can happen etc. And many useful pointers to other
computing related topics like memory organization, operating systems etc.
www.howstuffworks.com

Open Source Information on C programming

Resources 34 / 36

http://www.cs.vu.nl/~jason/course.html
http://www.comp.lancs.ac.uk/computing/users/ss/java2c/diffs.html

I always try to have all recommended books available in our library. Also take a look at my
special section there where I collect books which should be present at all times.

1. Kernighan/Ritchie, Programming in C. The bible of c-programming from the inventors.
A classic text. Very short- compare this to nowadays documentation bloat.

2. The C pocket reference. A short book covering the latest developments in C. In my
library.

3. The C Puzzle Book. Alan R. Feuer. A very short and nice book full of examples with C.

Books

Resources 35 / 36

I always use kind of code repositories for my work. I do NOT start with an empty page
writing a program. Instead, I try to find example code that works and then adjust it to my
purposes. It takes a long time to write something from scratch - you have to remember
every detail about APIs etc. Take something that works and change it.

1. David Flanagen, Java by Example. The best java examples in source I have found.
Need to know how to create a file or write to a socket? Go there. All examples are
downloadable from his web site.

2. Linux source tree. Download and install a linux source tree with kernel and utility
source. There is plenty of C code to browse and search.

Code Repositories

Resources 36 / 36

