File Systems - Namespaces
and Implementation Aspects

Lecture on

File Systems
Name Spaces and Implementation Aspects

Walter Kriha

(Goals

* Understand the importance of the filesystem metaphor and
how 1t 1s presented (API) and implemented (Kernel
structures/driver)

« Understand the problems of concurrent access, linking and
references

« Understand the special problems of large video or audio data
with respect to filesystem storage.

* See how the metaphor can be used to map different data (proc
filesystems, webdav etc.)

Files and directories are an illusion created by the operating systems. After a while
they tend to become so natural that the almost seem to ,,materialize.

Procedure

We will learn what makes a file. How we organize files into
higher structures

-The file API provided by the operating system and 1st
promises for the programmer.

-File system organization 1n user and kernel space.
- What 1s a namespace?

- How are files protected? Concurrency and security.

Many of the patterns and techniques discussed here can also be applhed for memory
management and in general resource management of spatial resources.

The file-cabinet metaphor

27. Modern computing is based on an analogy between computers and file cabinets that is
fundamentally wrong and affects nearly every move we make. (We store "files" on disks, write
"records," organize files into "folders" — file-cabinet language.) Computers are fundamentally unfite
file cabinets because they can take action.

28, Metaphors have a profound effect on computing: the file-cabinet metaphor traps us in a
"passive" instead of "active" view of information management that is fundamentally wrong for
computers,

29, The rigid file and directory system vou are stuck with on vour Mac or PC was designed by
programmers for programmers — and is still a good system for programmers, It is no good for non-
programmers. It never was, and was never intended to be.

30, If yvou have three pet dogs, give them names. If you have 10,000 head of cattle, don't bother,
MNowadays the idea of giving a name to every file on vour computer is ridiculous.

32, You shouldn't have to put files in directories. The directories should reach out and take them. If
a file belongs in six directories, all six should reach out and grab it automatically, simultanecusly.

33, A file should be allowed to have no name, one name or many names. Many files should be
allowed to share one name. A file should be allowed to be in no directory, one directory, or many
directories. Many files should be allowed to share one directory, Of these eight possibilities, only
three are legal and the other five are banned — for no good reason.

from David Gelernter, the second coming — a manifesto.
http://www . edge.org/documents/archive/edge70.html . Gelernters critique will
guide us while we learn what files are and how filesystems work.

So what 1s a file?

- an unstructured container for bytes with a name and a size

- a resource maintained both by applications and the operating
system

- an abstract data type with an interface to read/write content
-a resource owned by some principal

- a resource that 1s persistent (survives shutdowns)

- a metaphor that allows us to organize our content

- a program or some data

Thig shows that ,,file* 15 (probably together with ,,process™) THE metaphor
provided by operating systems. Are there any OS without ,,files*?

Why ., unstructured?

A walter kritha 4711 foo
B fritz mueller 1122 bar
2 Andy meyer 2956 foobar

read(file, number, buffer)
- —_

<Tzml 7= <customers>
Zname=lkriha</name><name>me
yer</name></customer>

write (file, number, buffer) - «— %

The contents of a file certainly can have , structure® but the only means to get to this
structure is through the file interface which means to read and write streams of
bytes. Positioniong is also possible but 1t has to happen in numbers of bytes from a
starting location. In other words the file interface does not use the fact that there
may be a structure within the file. It 1s generic. A concept that makes this property
quite clear 1s the term ,,stream. A stream 1s a sequence of bytes which has to be
read sequentially. It can contain structure as well but the stream does not know.
Unix 18 based on everything is a file/stream meaning every utility should be able to
handle files/streams and the OS itgelf can be maintained using this simple metaphor.

And a filesystem?

A resource manager which provides access to files and
maintaines certain qualities-of-service (QOS)

-create namespace for resources (e.g. path names)
-maintain unique system file identifiers

-control access to file resources (user rights, concurrency)
-create a capability (file descriptor) for repeated file access

-allow container structures (directories)

-store changes 1n files to persistent storage

QOS means e.g. guarantees that a file change has been written to persistent storage
when the call returns to an application.

The file hierarchy (1)

filenames: ftmp/bar ftmpiludge ps Mfoobar/fs pdf findex lst fusrflocalice fust'manfcludge pe fmylcludge ps

j _— namespace root
e .'II :'-'_- —

directory (containeri—m tmp usr mykludge ps

har kludge ps local tnat

e kludge ps

a filesystem provides several abstractions like | file*, | directory*, and ._root*. These
abstractions are combined into a namespace which starts at the ,.root” of a
filesystem. The operating system can easily check if all objects are still connected to
the namespace and navigation 1s simple because the tree contains no cycles. We
distinguish relative names of a node (e.g. kludge.ps) from the absolute name
(/usr/man/kludge.ps) which makes it unique within the whole namespace. A client
which supplies this absolute name will be directed to kludge.ps by going through
the container nodes _,usr* and ,,man‘

Hierarchies: Tree vs. DAG vs. Graph

- A tree contains only unique files distinguished by absolute
pathname.

-A directed acyclic graph allows links to files but not to
directories. Some cycle detection needed.

- A generic graph allows links to directories and can therefore
create navigation cycles

So why do we want links or aliases or symbolic links? It turns out that a strict
hierarchy can express only one way of organizing things. This is often not enough
and could lead to endless copies of resources. This 1s a basic problem of
categorization (in a tree a file can only be in one place) and the concept of
references can solve it (whilst introducing a host of new problems...)

The file hierarchy (2)

filenames: ftmp/bar ftmpiludge ps Mfoobar/fs pdf findex lst fusrflocalice fust'manfcludge pe fmylcludge ps

tnamespace root

directory (container—m tmp usr mykludge ps
har kludge ps local tnat
hard link / \
e kludge ps 4 file

a filesystem provides several abstractions besides .. file*, e.g. . directory*, | ink*,
»symbolic-link* and ,.,root*. Different operating systems use sometimes different
names (e.g. alias for link, or shortcut for symbolic link) but the properties of a
filesystem as a directed graph of resources are very similiar across systems. Except
perhaps for links to directories which are critical anyway.

Why links to directories are critical (1)

filenames: ftmp Andex st fustflocalfce fustfmandludge ps fmykludge ps

means: plEElSE — tmp usr

follow the link to
ust,

symbolic link

local

cc

tnamespace root

marn

symhﬁjic link

mykludge ps

S

kludge ps 4 file

Navigating to /tmp/usr would work ag expected. Navigating from there one level up
brings us to .,/ instead of ,tmp*. Yes, symbolic links do not work backwards!
Otherwise the filesystem would need to remember through which path the user
navigated to the target! What happens 1f the whole of ,,usr* gets deleted? Nothing,
tmp* 18 now a dangling reference. Also if stuff inside of ,,usr 1s deleted there is no
way to inform ,.tmp“. And last but not least applications need to be aware that
navigating to and from resources can lead to different start and end-places.

Why hard links to directories are critical

namespace root

means: please —» tmp
tollow the link to
usr.

hard linl

mykludge ps

With a ,,hard link* the system guarantees that two filenames pointing to the same
file (inode) will not create a dangling reference if one of the filenames 1s deleted.
The system detects that the hinkcount 1s still larger than 0. But how should the
system treat children of a linked directory? A hard link is a hard promise and
therefor mykludge.ps should probably not simply disappear if tmp still has a hard
link to the usr directory, or?

Resource Management Basics: References

node or resource

hard link with reference count o
two (one for itzelf symbolic link
and ond for the
hard link) /
ldudge ps P . mykludge ps)
| [am zoft link to the file kludge ps

If you are an application please do
whatever you want to | kludge ps®

hardkludge ps

Both hardhink and symbolic link are REFERENCES. They introduce a number of
complicated problems: what happens to both when somebody does a delete
operation on kludge.ps? the directory entry kludge.ps will disappear. Hardkludge.ps
still exists and mykludge.ps 1s now a dangling reference pointing nowhere. Notice
that there 15 no backlink to mykludge.ps so the filesystem does NOT know about
this reference. In case of hardlink the filesystem knows exactly that there are two
references to this SFID and makes sure that no dangling references are created. But
this works ONLY within the filesystems own namespace and therefore hardlinks
cannot cross filesystems.

Garbage Collection of Resources

namespace root

directory (Container—m

tmp

=

bar

Hudge ps

garbage because /

nodes are no longer

accessible

usr

local

cC

man

mykludge ps

N

Hudge ps I file

References always raise the question of when the original resources can be deleted.
To be safe one has to track existing references which can become very difficult if
references can be on other machines or the internet. Mechanisms used are reference
counting, mark and sweep garbage collection or deactivation of resources instead of
deletion (servers do this). Notice the similarites in resource management between
file systems, objects in OO-languages and as we will see later memory resources.

Namespaces

http://www.google.com/index.html

ISBN: 23-234234-8983

subdomain.kriha.de

\igerver\software\someprogram.exe

<enc:key xmlns:enc= www.w3.org/ ..

package foo; public class bar {...}

A namespace 1s a collection of resources and an authority which can perform
operations on this namespace. Today the best known namespace is probably the
www space created by URI‘s.

Namespace Operations

* COpPY

* IMove
» delete
* create

» status

Sounds simple. But who 1s allowed to do those operations? what are the semantics
behind copy? delete? If your namespace allows symbolic (soft) links, what should a
delete on the symbolic link do? remove the link target or the symbolic link 1tself?
For a good discussion on namespace operations see the ,,webdav book of why* by
the creator of webdav Yoland Garon at www.webdav.org. Very good reading!

Should users know about files?

Editor

nsr

local

Bartzt | |Foo doc

man

\ Eecently used:

Eludge
Foo
Foo
Bar

Hudgeps|[Foo doc

Applications sometimes hide the fact that ressources are files and make users believe that the
applications contain them (,,my files are IN Word, in Excel®). This illusion breaks down
when users are supposed to create a backup of their ressources. Suddenly they need to know
where the application stored the ressources (fileg). Either ALL applications operate on ONE
namespace which need not be the filesystem namespace or users will suffer from different
semantics of access layers. Ever tried to explain filesystem locations to an Itunes user?

Filesystem Implementation

An ocean of bits
Organize storage media (format)
Create block level interface (driver)

= =

Create filesystem (inodes, empty block list, meta-
information 1n super-block)

Lh

Create container/leaf separation (directories/files)

N

Decide on naming convention (namespace)
7. Maintain consistency during operations

We will see how an ocean of bits on some storage medium is transformed into a
concept of files and directories

An Ocean of Bits

heads

spindle ~_

L
tracks /@ controller
C with cache

Drives are large but slow! (10
s average access time). File
arganization may affect
retrieval times (zequential

access ws. random)

cable

Y

platter EC disk area close to all
heads

Host controller
(IDE or SCST)

Imtially a harddisk 1s just an ocean of bits. Via the harddisk controller one can move the
heads over the platters and read or write bits at cylinders. Some performance hints: Since
heads can only be moved together it could be beneficial to distribute a file over many
platters but around the same cylinders. Notice that reading speed differs between center and

border of platters (angular velocity). Nowadays the drive geometry can be radically

different to how a drive looks for a dnive controller. Modern drives can use block
addressing directly and they know how to share a fast bus (SCSI). Increasingly they are

accessed serially instead of parallel. A special problem of modern drives 1s the size:

Different filesystem algorithms had to be developed to deal with huge storage ares
(journaling filesystemsg). In multi-media applications watch out for special operation phases

where the maximum sustained throughput 18 not reached.

About interfaces and abstraction

platters, heads and A typical interface:
tracks: -move head to track/cylinder Device

.
-put down head, start reading o

-select platter to read from J

sl
-

: platters, heads,
read/write Simulation of low fracks:
lewel harddisk ACKS!
Compact Flash b].DCkS interface to) Device

comply with old Driver

drivers. Makes it
lool like a

Card (solid state memory,
ho moving parts)

harddisk J

The first example above exposes low-level system internals (platters, heads, tracks) through
the interface to software outside of the drive. If one wanted to change the implementation of
the storage to a solid state medium one would be forced to simulate an old-style drive
interface or introduce a new kind of interface. This type of adapters are frequently used in
the PC hardware to be comphant with older software but still be able to change the internal
implementation. Be careful what you expose in your interfaces!! Modern drives use a block
oriented interface directly. For older drives this 1s created through the device drivers.

from bits to blocks (1): low-level formatting

P N
e

QLD diske

Controller

sectors and

tracks created

Pl N
A

BIOS

DIES 5251 dask

DIE/=CET
Controller

cotnmatds

BIOS

Every management of a huge unstructured spatial resource starts with creating higher
level abstractions. In the case of older disks first level management structures: tracks
and cylinders are created with a so-called low level format, usually performed by the
BIOS or a dnive utility. Modern drives are all initialized by the factory and do not need
low level format. .. Zero-fill* utilities can be used to delete data from disks but be aware
of the fact that agencies with enough money can easily reconstruct your data even after
a low-level format or zero fill. (See www . privacy.org)

a

from bits to blocks (2): driver interface

P N
~—

QLD diske

Controller

Diriver

sectors and

tracks created

P N
A

DIE! 5251 disk

DIE/MSCET
Controller

commands

Diriver

Interface to driver 18 now
(logical) block oriented, e.g.

-read block number 4567

-write block number 4711
with data

Device drivers create an abstraction over the storage device: numbered blocks to read or
write. This 1s considerably easier than dealing with tracks, sectors, heads and platters if you
want to store a file. The block size can be the same as the one used by the hardware or it can
be determined by software only. Block size 1s quite critical because 1t determines storage
waste and fragmentation. Modern systems use larger block sizes, e.g. 4 or 8 kb. Using two
different block sizes creates lots of overhead and makes management very difficult.

from logical blocks to files (1)

super
block: :
mode blocks >
index node
F g "“-\ structure
block block
L 2 / index node
structure
black block block
< . 3 index node
structure
black block block
& g 8 index node
\#/ structure
free blocks block 1 and 2 filled with index node structures

(inodes)

Now some blocks are filled with an index of nodes (files). These nodes are finally
what we call files. They hold all the meta-data necessary to create the illusion of a
file as a continuous stream of data. The disk 1s now split into a number of blocks
containing those modes and the rest of unused blocks. The number of inodes and
the number of free blocks as well as a bitmap of free blocks is stored in the first
block on the filesystem: the super block.

from blocks to files (2): inode structure

-owner Identity (ID)
- Permissions (read/write/exec)
- Type of entry (file, directory, device etc.)

- Access and modification times
- Size of allocated storage

- Pointers to disk blocks containing file data.

- Number of links (directory entries) pointing to this node

this information 1s returned by the stat()
system call.

Notice that NO symbolic names (filename, directory name etc.) are held there.
Thig information 1s only available in directory files. The inode table 1s read into
memory (partially) to speed-up disk access. This 1s why files need to be closed()
so that the inode can be released in memory. If the link count reaches zero, the
blocks allocated for the file are released to the free block list or bitmap and the
mode can be re-used.

from blocks to files (3): indirect blocks

indesx node
structure
double
indirect
bloclk
/ \s Y
double deuble single
indirect indirect indirect
block bloclk bloclk
‘/A/ //d// \A // \ ¥ v ¥ v
data data data data data data data data data
block blaclk blaclk blaclk block block block bloclk bloclk

Indirect tables are a classic means of combining speed and performance. A few blocks are
directly accessed for speed (small files will not need indirect blocks). Larger files use double
indirect blocks which contain the numbers of direct blocks. Really huge files pay for their
size with triple indirection which causes disk-lookups just to find the double and triple
indirect blocks to determine the real data blocks. As always, caching helps a lot. See buffer
cache later. (Triple indirect blocks not shown here)

Design Alternatives and Forces

static allocation of Drwnamic allocation of static allocation of management space for
management space for management space for exactly different possible file sizes
mazximum possible file size the needed file size

Speed: Speed: -- Speed: H

PR --mmme- Size; HHHHH sizer --

Dynamics: +H+++ Dwnamics: ----—-- Dynamics: ----—-

=ome wasted space, much owerhead when files

& huge waste of space A killer in case of growing files = pEL . _
outgrow their initial inode size

27 160

speed

Design Space Dimensions

h

dynamics

¥

Good

. g17e
COmpromises

Good resource management algorithms try to avoid extremes in any dimension,
especially negative extremes. Experience shows that positive extremes tend to show
up only with negative extremes in other dimensions. Go for the middle ground.

from files to directories (1)

indesx node
structure

directory entry

directory entry

data
block

Just like inodes describe files do directories describe file names. For the system directories
are simple files — they are represented by an inode. The directory files contain one entry per
file which contains the filename etc.

from files to directories (2): directory entry

- Inode number of file
- size of directory entry to find next entry
- type of file

- filename size

- filename 1tself

this information 1s returned by directory

related system calls (readdir). Other calls are
hnk/unlink, mkdir, rmdir etc.

Notice that a user cannot write directly to a directory file. This has several
advantages: First 15 of course reliability — errors in directories can easily cause loss
of data. The second point 18 more subtle: By forcing all access to directories
through a system call interface (readdir etc.) the OS can later change the
implementation of the directory entries (e.g. file ordering, caching) to whatever it
wants without affecting applications. Modern filesystems do a lot of caching of
directory entries.

Blocks, Inodes and Directories

modes first block
of directo
first directoy entry pointing to file
index node foobar with inode 15
sp M] —
for directoy foo - /
d d] second directoy entry pointing to file
indesx node ol £
bar with inode 20
W —
— / dizl blocl:
15 index node

structure ﬁW

20 indesx node

structure file bar

The first level of storage management are blocks. Inodes structure blocks and
create the illusion of files. Directories use files to create file indexesmn a
hierarchical order. The filesystem hierarchy is created through directory files, not
through nodes.

In Memory Structures

+ Cached Inodes

« Per Process Filedescriptors

+ (Global Open Filedescriptor Table
+ Disk Buffer Cache

Every file operation needs access to the corresponding Inode, e.g. to find the
location of file data blocks. The operating system kernel therefore caches Inodes
which are currently used. A final close() on a file — if 1t 15 the last close() —
allows the kernel to delete the Inode from memory and make room for new
Inodes.

Disk blocks are also cached in a disk buffer cache in the kernel. This allows
frequently used blocks to reside in memory instead of being read from disk
every time.

Filedescriptors are per process data structures which e.g. contain process access
rights. The global open filedescriptor table keeps read-write positions into files.
Processes can share those. (see Tanenbaum pg. 743 1))

Filedescriptors, open File Table and Inodes

pEr process open filedescriptors cached Inodes Disk Tnodes
filedescriptor shared between parent
(capability) and child processes

0

1 .
pareft - T File

Pozition

Inode 15

L
¥

S/ File Tnode 25 _

Pozition

child

e File T

Pozition

unrelated
process

[f unix processes would not share file read/write positions the filedescriptors could keep
the current position per process. Tanenbaum explains this nicely with the example of a
shell script with two commands in sequence which redirects output to one file and
expects both commands to sequentially write into the file. (Tanenbaum pg. 743)

Resource management Problems

1. Recoverability after crashes

Transactional guarantees with concurrent access
fragmentation

performance problems with large media files

huge storage devices

AR

several levels of caching in mission critical apps

These problems are the same as those for memory management or the design
of database systems. We will therefore take a closer look at them. To
understand the problems it 18 necessary to see how files or directories are

created.

How to know when you have a transaction problem

Whenever you see an operation that
a) consists of SEVERAL steps

b) can be interrupted or aborted or somehow disturbed
by other operations

¢) leaves the system in an inconsistent state 1f
something of the above (b) happens

you can assume that you have a transaction problem.

Do you remember the days when a crash of an application or operating system caused a
corrupted filesystem? Possibly a total loss of data? The reason this happened is that in those
days filesystems were not transactionally save. Specifically filesystem operations were not
atomic (several steps) but no transaction log was kept which would have allowed the system
to recover after a crash by either completing an interrupted operation or by rolling 1t back to
the previous state. Today the borders between filesystems and databases are getting more
and more fuzzy. BE-OS and AS/400 do not have a filesystem. They use a database which
creates a file 1llusion. Oracle supports . virtual internet filesystems®. Today we want the easy
file interface (so our tools work) with the transactional guarantees of a database.

Creating a file: several steps

a) Allocate a free imnode

b) write the data to the blocks and register the blocks
within the inode
¢) get the directory file and create a directory entry for

the new file. Wrnite down the inode of the file, name
etc.

This means several operations of different data structures: inode table, free blocks and
directory blocks. At any time the system can crash, leaving those structures in an
mconsistent state. E.g. if we have written all file data but crash before the directory entry is
written the file is not accessible but the blocks are allocated.

Repairing a filesystem: fsck, scandisk etc. (1)

free bloclk free inode

directory
hitm ap hitm ap

files

After a crash these four structures may not be consistent. In the previous example the
filesystem checker would create a list of all blocks and then go through all directory files
beginning at root to check for missing entries. In our case there would be a difference
between the free block bitmap and the used block count created by reading all directories

and following their inode pointers. The checker program would release the blocks from the
last file (or store them under lost+found).

Performance Considerations

« Read-ahead of next disk blocks during sequential reads
« Caching of disk blocks 1n memory
* Organmizing disk format to minimize disk arm movement

« Use of journaling filesystems to speed-up writes

Tanenbaum has some interesting numbers on the cost of a single byte write: It can
be almost a million times slower than a single byte write on memory (10 ns). The
reason being that to the time needed to write a single byte (which 1s almost
nothing) a large setup time for disk revolution and disk arm movement must be
added which are counted in milliseconds. (Tanenbaum pg. 424)

Overall time:

Amdabhls law...

constant {setup)

variable

Overall compute time 18 constant (setup) time plus variable time. The relation of
constant to variable time 1s very important. Small variable times lead to a bad
overall performance because constant time dominates. Improvements in the variable
time can only improve the overall performance at the ratio of variable/constant time.

The same holds if the constant part 1s equal to the part that is performed in sequence
and the vaniable part is equal to running multithreaded. Adding more CPUs will
mcrease overall performance only at the ratio of vanable/constant time. We will
discuss this in more detail in the session about virtual machines and garbage

collection.

Fragmentation: Problems and Solutions

Fragmentation 1s a problem for most resource managers. One possibility
to fight fragmentation 1s to perform combine adjacent free memory
blocks into larger blocks immediately. This approach has limits and
when allocated memory goes against storage limits the system may not
find proper free space for new allocations. The ,,buddy system®
algorithm 1s an example.

Another solution to fragmentation 1s compacting the used memory,
thereby getting rid of unused (free) memory automatically. Those
allocators copy only the memory still in use to a new memory area.
The leftovers are automatically free. This mechanism requires one
indirection because memory addresses change due to the copy process.
(more on this 1n the virtual machmes and memory management
SE$8101)

Repairing a File System

1. Compare directory entries with

existing inodes directory

files

2. Make sure all blocks mentioned in

modes are marked busy in the free

block map free block free inode

_ _ bittmagp bitmmap

3. Ensure that no block 18 mentioned

twice 1n different mnodes

4. andsoon....

Checking the consistency of a filesystem requires a complete check of all meta data on disk.
Thig can take hours on a large multi-gigabyte disk. A regular filesystem has no way to tell
the OS where the last modifications happened and whether they where completed. The
implementations are optimized to flush caches from memory to disk frequently and to treat
directory information gpecially. Compare this with a busy manager who 1s interrupted
frequently but does not keep a log about her current activity. She would have to check all
work pending to find the one that might be incomplete.

write(buffer)

Journaling Filesystems: Unit of Work

start p}/
TAQ

fil EE— journaling log metadata (and
lte block data) » - Journal
Sysiet dewvice {current

activities)

p/

(free)

The filesystem keeps a log which records all current activities and results. Some only record
the metadata (reiser-fs), some can record everything (ext3-fs). In case of a crash the system
only needs to check the last operation and not the whole filesystem. This makes those huge
disks nowadays usable. Otherwise a filesystem check would take hours. Of course, read()
now needs to check whether the journal contains more recent data for a block. Please note
that this feature makes single system calls transactional but not writing several buffers to
disk. From: Daniel P. Bovet et.al, Understanding the ‘Linux ‘Kernel, OReilly, Chapter 17

A Journal

log record

atotnic oferation

handle

transaction

The smallest units of work are log records which represent disk block changes. Several of
those can be needed to represent one high level system call through an atomic operation
handle. For performance reasons several system calls can be combined into one transaction.
When a physical failure occurs the journal is checked for incomplete transactions which are
either completed or — 1f the data or metadata are incomplete — discarded. This may result in
loss of data but not in a corrupt file system.(from Bovet et.al,)

UsEr Space

File Systems and Drives

Filename: c\vwalter\foo

'

System Call Interface: create, open, close, read, write, delete, createdir, removedir

|

file
descriptor

Wirtual file system switch

|
EF= A F=E F=C @
kernel

local file system

networlk file system

IDE

Diriver

WV
A

sl

Diriver

sl

drive partitions A B, C, D

Every partition gets mapped to a different filesystem, in windows
expressed with dnive letters, e.g. ¢: to

names are unique only within each filesystem.

Virtual Filesystems and Volumes

'._._._'_._____'___._._-—-P

o oo —_—
dicdromlarcades \-_\

elwinhostimy directory
flonizhostmydire ctory g
-

glinternetsitehmydavimy stuff html C ——]

Several different local and remote filesystems can all be assembled into one namespace
(with some restrictions for those qualities which cannot be mapped properly (think about
filename lenght, special character differences in filenames etc.). These systems are
.-mounted™ into one super (virtual) filesystem. Notice the drive letter mechanism used here.

Virtual Filesystems and Volumes (unix)

_,____-—-——"""_'—H-P

oo —_—

Wwrinhosthmydirectory
Wwnizhostimydirectory

Wnternetsitelmy davimyst timl

S ATT

) a5

3
=
@P

No drive letters are used. Instead a logical name 15 used to denote a filesystem. The big
advantage of this mechanism 1s that filesystem internal path names stay the same no matter
in which order the filesystems are ,,mounted. Otherwise file references break.

46 / 60

LStrange™ Filesystems or the power of APIs

\proc

Werochipltop
Filename

‘nprocl‘uprocesses

v

System Call Interface: create, open, close, read, write, delete, createdir, removedir

F 3
/e

v descriptor

kernel Directory Service
up to this point the kernel data
File Storage System look like files!
v 4
Eernel Properties Device Driver

There is no ,,real” proc directory. But the file API (open, close, read, write) is so well
known and convenient for programmers that even kernel configuration data are offered as
files. Even though the kernel ,,make them up* as files by generating the data on the fly. The

advantage 1s that a zillion of file based utilities can be used to view and manipulate those
kernel configurations or informations.

Multi-Tiered Storage Architecture

ftmp oo

'

Swstemn Call Interface

F

Storage Xdmission System

l

Virtual File System
|

N
v

SAT Server (global names,
Duplicate detection, DEM

L 4

File Ztorage System

MAS éngage Systetmn

HNAS Server (file IO

L

Y

SAD Storage System |,

)

=AM Berver (block /O

!t

Disle Block Driver

=AM Block Driver

_.*- — _ '-.‘*
Metworl Card Driver

A layer architecture distributed over machines constitutes a tier architecture. The logical
level where the splits are made decide about the functionality provided by the servers. This
goes from low-level block I/O up to the application being aware of the storage architecture
and shows extreme differences in transparency, independence and performance)

Design Decisions 1n Multi-Tier Architectures

* How much does the application know about the architecture? Changes
will then require application changes as well.

* Can requests be chained (forwarded) to other systems? This is essential
for scalability

* What does a node know about a storage system (again: can we vary
storage system and nodes independently or is there a maintenance effort
needed?

* On which layer/tier do we place ,meta“ functions like globally unique
names, search, compression and duplicate detection, rights management
etc.

* On which level do we create backup and archive facilities? How much
replication is needed?

WEBDAYV

Server

» Server takes out a lock.

returns the properties defined

onl the resource, and then

returns the source of the resource.

» Server stores the new value of

Client
File... Open LOCK
< PROPFIND
' GET
<
| File... Save PUT
UNLOCK

Y File... Close

the resource.

» Server unlocks the resource,

From: http://www.cs.unibo.it/~fabio/webdav/webdav_flyer.pdf. The WEBDAY http protocol
Extension allows web clients to write and update web resources. Included are access control
and versioning. L.ocks are held through leases. Metadata (properties) are kept on server side.

See www.webdav.org

File System Components

UsEr Space

Filename: fusrfwalter/foo

'

System Call Interface: create, open, close, read, write, delete, createdir, removedir

T,
file
v descriptor
kernel Directory Service

File Storage Service

v t

Disk Storage Service

A user specifies a filename for one of the filesystem system calls. The kernel based
directory service maps this filename to a filesystem-uniqe identifier which 1s then mapped
to real blocks on a storage device. The kernel also creates a user file descriptor which 1s a

user specific handle for this file object. It encapsulates access nights and also holds the
current read or write position per user.

File and Filesystem Interfaces

« C-library API for files

« memory mapped files

A close look at filesystem implementations shows that a lot of copying between
user and kernel space happens. Using memory management techniques to map
kernel blocks into user space avoids those copies. Applications can then just use
regular memory access to manipulate files. This interface did not really become
very popular. The reasons are probably that so many file utilities already exist
which need the regular file interface to work and that most programmers are
very much familiar with the file API and not so much with memory mapped

files.

g.

10,

C file API

fd = creat(,.filename™, mode) // exclusive access etc.

fd = opend, filename*, mode, ..) // open file for read and/ or
write

status = close(fd); // no name, only handle

number =read(fd, buffer, nbytes) // reads bytes into buffer
from file

number = write(fd, buffer, nbytes) // writes bytes from buffer
into file

position = lseek({fd, offset, whence) // move file pointer (no
real disk seek)

status = stat(name, &buf) // read file status into buf structure
status = fstat(fd, &buf) // same with file descriptor

status = pipe(&Ld[0]) // create a pipe

status = fentl(fd, cmd,..) // used for locking file access

This table (after Tanenbaum pg. 738) shows the file related system calls. Every object with
this type of interface can be treated as a regular file by countless unix utilities.

The ,,cat™ utility

int main{int argc, char**argv) {

/f check arguments for filenames for input or output. If none, just juse stdin and
stcdout.

raw_cat(rfd, wfd);
return 0;
}
static void raw_cat{int rfd, int wfd) {
int off, wfd; ssize_t nr, nw;
static char *buf = NULL;
buf = malloc(sizeof{int) *1024);

while {{nr = read(rfd, buf, 1024})) = 0) {
for (off = 0; nr; nr -= nw, off += nw)
write(wfd, buf + off, (size_t)nr);

}

}

error checking not shown. Notice that the main read/write function has no clue about
filenames or where data come and go. It simply reads data from a file using a file descriptor
and writes them to some other file.

Network File Systems

host &, application (e. g cat) [

cat ‘homefwalter/foo txt

l fwalterffoo tat
Hetwork Filesystem
aystem Call Interface: create, open, close, read, write, . daemon

[
ol

¥
Wirtual Filesystem Switch

kernel l .Eead” message:
. Eead T
Hetwork Filesystem
path
- user credentials 4t

the remote filesystem 1s mounted under ,.,/home*. A read request i1s transformed into a
message for the remote filesystem daemon. It performs the operation and returns the file
blocks. The whole operation 18 TRANSPARENT for the client application. It has no
knowledge about the file actually being read from a remote location. While locking like a
local operation a distributed computing step 1s performed.

The Price of Transparency

host &, application (e. g cat) file server host [
grep ,sotestring” fhomefwalterfoo tat
l fwralterifoo txt
Hetwork Filesystem
System Call Interface: create, open, close, read, write, daemon >

foo txt

&

When grep does a search for the requested string in foo.txt, the WHOLE file 1s pulled
acrogs the network towards the application. The search 18 performed locally. This can cause
bandwidth problems.

Stateless or Statefull Network Filesystems?

Stateless . Read™ Stateful ,,Read*
message: message:
Eead Read
path .
handle (file descriptor)
starting at: 2000 how many: 512

how many bytes: 212

uszer credentials

In the stateless case the remote file server does NOT keep any information about previous
requests. Every request message contains ALL information needed to perform a request by
the server. In the statefull case a . handle* 1s shared between chient and server. The handle 1s
an index into client information stored at the server side, e.g. how many bytes the client has
already read (1.e. where the next read will start). Notice the lack of ,,starting at™ information
in the stateful case. Stateless servers are much simpler and recover better from network
problems. Stateful servers come closer to local APIs (like the file interface which 1s also
stateful). How does a stateless server perform locking?

A Better API

host &, application [

remotesearch somestring” fhomefwalter/foo txt
l faralter/foo txt

Hetwork Filesystem
daermon

[
ol

Eemote Procedure Call Interface

soclet Interface
Search T
Loearch™ message: path
user credentials

Instead of bringing the file to the local client a remote API 1s defined which allows the
utility remotesearch to send a ., search™ request to the remote server. The server performs the
search in the local filesystem and returns any results. This can be much faster due to the low
bandwidth requirements. But it can put a lot of load on the server 1f many clients perform
searches concurrently. Another price we pay 1s that we cannot use the file API anymore, 1.¢.
no standard applications like cat, grep etc. will work because they do not know our search

APIL

A Better API

host &, application [

remotesearch somestring” fhomefwalter/foo txt
l faralter/foo txt

Hetwork Filesystem
daermon

[
ol

Eemote Procedure Call Interface

soclet Interface
Search T
Loearch™ message: path
user credentials

Instead of bringing the file to the local client a remote API 1s defined which allows the
utility remotesearch to send a ., search™ request to the remote server. The server performs the
search in the local filesystem and returns any results. This can be much faster due to the low
bandwidth requirements. But it can put a lot of load on the server 1f many clients perform
searches concurrently. Another price we pay 1s that we cannot use the file API anymore, 1.¢.
no standard applications like cat, grep etc. will work because they do not know our search

APIL

A Better API

host &, application [

remotesearch somestring” fhomefwalter/foo txt
l faralter/foo txt

Hetwork Filesystem
daermon

[
ol

Eemote Procedure Call Interface

soclet Interface
Search T
Loearch™ message: path
user credentials

Instead of bringing the file to the local client a remote API 1s defined which allows the
utility remotesearch to send a ., search™ request to the remote server. The server performs the
search in the local filesystem and returns any results. This can be much faster due to the low
bandwidth requirements. But it can put a lot of load on the server 1f many clients perform
searches concurrently. Another price we pay 1s that we cannot use the file API anymore, 1.¢.
no standard applications like cat, grep etc. will work because they do not know our search

APIL

