Operating Systems - Introduction

Lecture on

Operating Systems
An Introduction

Walter Kriha

Goals for this class

« Understand the structure and workings of an operating
system (OS) — 1n other words: resource management!

* Learn how to write C-language programs which use the
features provided by the OS (System Programming)

e [.earn how to use and administrate the Linux OS

* Learn how to monitor your application, 1ts environment and
the hardware

* Understand the limits of hardware and how to design fast and
reliable applications running on top of the OS

Thig class will NOT turn yvou into a kernel guru. After the class vou should have a
much better understanding of the system software that you a using indirectly
through different applications.

The Future: How should 1t be?

Computing will be transformed. It's not just that our problems are big,
they are big and obvious. It's not just that the solutions are simple,
they are simple and right under our noses. It's not just that hardware is
more advanced than software; the last big operating-systems
breakthrough was the Macintosh, sixteen vears ago, and today's hottest
item is Linux, which is a version of Unix, which was new in 1976. Users
react to the hard truth that commerical software applications tend to be
badly-designed, badly-made, incomprehensible and obsolete by
blaming themsefves ("Computers for Morons," "Operating Systems for
Livestock"), and meanwhile, money surges through our communal
imagination like beer from burst barrels. Billions. Naturally the
atmosphere is a little strange; change is coming, soon.

from David Gelernter, the second coming — a manifesto.
http://www.edge.org/documents/archive/edge70.html . We will come back again
and again to compare what we have learned with Gelernters ideas. He may be right
after all — look at what 1s coming with all those PDA s, wireless computing etc.

Why learn about Operating Systems?

Operating Systems used to be complicated and advanced pieces of software.
They had to deal with concurrency, resource allocation and performance
and security. Applications were considered to be simpler because they
could rely for the critical functions on operating system features. But in the
last 10 years we have seen a lot of function move from OS to applications

Modern applications no longer run as a single process. They are multi-
process engines using lots of internal threading. They use shared memory
and large scale storage areas — resources they have to maintain.

And 1f the application programmer moves to new fields like embedded
control application then an understanding of those systems and how they
are different to comfortable big operating systems 1s necessary.

The result 1s that application programmers now need to understand .. system
thinking®™, e.g. how to program concurrent processes using monitors
and semaphors or when to use other forms of concurrency.

General System Building Knowledge

Concurrency: how to avoid data corruption through concurrent
processes and how to achieve maximum speed or throughput

Resource management: how to manage large resources effectively.

How to avoid allocation problems. How to keep resources consistens
across the lifecycle.

Architectural know how: layers and abstractions
Design for scalability across users and machines

Learn to fear and respect nonfunctional requirements (size, time,
independence, energy consumption, quotas)

Learn to use caching to improve performance while still keeping data
consistent

Understand trade-ofts in designs and algorithms
Get an unterstandmng of the , physical side* of programs and systems

Non-Goals

* Writing device drivers. We will look at the design patterns
behind device drivers but writing one 1s reserved for advanced
classes

* This 1s not a kernel algorithm class. We will look at resource
management strategics but we don’t implement kernel code
yet.

* This 1s (no longer) a C-language class. We will focus on the
runtime system aspects only. We will use C down to the
assembly code level but becoming a guru will take more time.

At the end of thig class you should know how to how to use OS tools to profile and
monitor the programs and in general be able to design an application with a
resonable , .guestimate™ on where performance problems could be and how they

could be avoided.

= M

e

10.

Lecture:
OS Introduction

Linux Architecture
File Management

Memory Management and
Parallel Programming

Processes and Concurrency

C runtime system and
assembler

Unix System Programming
Computer Organization

Virtual Machines

Monitoring

Schedule

Exercises:

» Linux Certification I, an
introduction to self-learming

Use debugger, tracer, logger

System Programming
Examples

Momitoring tools and concepts

This is a very tight schedule and some
reading 18 constantly expected.

Show Cases

1. How does bootstrapping an OS work?
2. How does the interface between an application and an OS work?

3. How many layers and abstractions are needed for convenient
management of resources like files or memory?

How to execute a program (through all layers into the kernel)
How to trace and track a program with the help of the OS

4
5
6. What 1s happening in the kemnel of an OS during a system call?
7. How to extend a system (e.g. with new hardware)?

8

How to manage resources securely and efficiently

After this class vou should be able to diagnose problems (OS, environment) by
using the proper analytical tools. You should also have a much better understanding
of how computing works.

A short history of operating systems

1970z 1980z 1590z 20005 2008
Arccounting ZIO0E, linux Fame frame
’ = DB =390 1 ’ :
large scale apps Epies Wiz mainframes
multics TDPRI11 vax sysy Unix, silicon graphics m1d;1r{ang§,
uniz VMSUltriz Mach workstations
M java Wi
MDOS windows NTIWZESXT PCs
commeodore . wireless
apple GlIs linuz fbluetooth -
CAN bus PDAs, mobile phones -
X : lessibluetooth
| | o Symbion OS, Palm OF D HEO
Microcontroller with p303, cExecutive, WindEiver, O35 Embedded,
ete. realtime 05 T2ME platform TP,
game consoles
WMac/OS 10 Playstation, xbox, wii,

Iphone/Opentdoke

v

Fact 1g that most 1ideas in computing are rather old. A good idea needs the nght hardware
and users to blogsom.

Trends (1)

From single computer OS to internet-worked systems: Microsoft vs. Google

Mobile computing platforms with desktop capabilities abound: Iphone SDK,
OpenMoko, Symbian OS, integrated into enterprise infrastructures.

Embedded control applications form the ,,ambient intelligence™ cloud, creating a
huge demand for software.

The PC becomes a CC (company computer) losing rapidly its importance in the
private area.

RAS (reliabiltiy,availability, security) are getting more important: mainframes
are high-availability clusters running Linux VMs. Perfect workload
management.

Workstations are Risc computers or PCs running gome Unix or PCs with high
end graphics. Are they getting replaced by high-end game consoles running cell
chips?

From single-owner to single-user to multi-user operating systems, mostly forced
by security problems since PCs got networked/Internet.

Some of those trends have started long ago and some are quite new like the Linux VMs
on mainframes. Some things don‘t change: users want fast and reliable programs and
services. Today mobility and interconnection is key.

Trends (2)

1. Kernel threads replace processes. Multi-Core CPUs will have 80+
cores, creating the need for new programming models.

2. Virtual Machines dominate Operating Systems (Java, .NET)
3. Databases for transactional software still hot.

4. Filesystems get atomic updates and become stable. They are
implemented using database technology.

5. File names and hierarchies are replaced by attributes and better search
engines

6. New security concepts a MUST for embedded control and ambient
mtelligence.

The demand for software will be very high due to ,,ubiquitous computing™ — the change of
our world to a completely computerized one.

What 1s an operating system?

|
- Local Users
Applications
Remote Users
Applications
[
a
Devices
Applications
‘: — i) i DOperating Systetn n
Applications

An Operating System 1s an INTERACTIVE SYSTEM which balances events and requests
coming from different sources. It has to keep internal state of applications and of itself
consistent while at the same time making sure that users still get responses. An Operating
System GENERALIZES over many different use cases, sometimes making necessary

compromises e.g. with respect to realtime requirements. Operating Systems are unable to
make the same guarantees as reactive or transformative systems.

Other Systems

Eequest

L 3

A reactive systems behavior is
completely driven by requests.
Requester C 05 Rgsponses have to happen
within predefined clock cycles.
The memory subsystem 15 an
exatnple of this.

F 3

Eesponse within time limit

A transformative system takes
some input and performs
Cutput i i
Transformer te transfo.rmatmns ot it, thereby
Data Data producing an output. A
compiler 15 an example of this

type.

Input

Y
Y

Both types of systems, reactive and transformative, are much less critical with respect
to response time and reliable behavior. Unfortunately they are not fit to do an
Operating Systems job.

Operating System Functions

» Encapsulate hardware details to keep applications independent from hardware
and hardware changes.

» Allow applications easy and abstract access to hardware and services through
a uniform interface

* Provide services every application will need like authentication

* Provide resource management functions: allocation, use and control,
accounting, garbage collection of resources

* Protect computing resources, apphications and users from destruction and each
other

*Support inter-process communication and networking

An OS usually provides generic functions. Functions that a lot of applications will need.
The OS does this by offering a special interface called the system call interface to
applications. An OS designer must judge whether a function is a) really a kernel function
which cannot be implemented otherwise and b) whether the function 1s general enough to
be useful for many applications.

Operating System Structure (1)

- -‘— —
TTzer hlode

Eernel
Iode

Wotkstation with MIPS Eise CFTIs PC Hardware: timer, disk, networle, graphic, kevboard, mouse etc.

At first glance an Operating System follows the LAYER architectural design pattern. But
there 15 also a lot of inter-component re-use. Please note that an Operating System has
kernel mode and user mode parts. E.g. Tools like file manager belong to the OS even
though technically they are user mode apphlications. Most everything within an operating
system needs to be extensible or replaceable. New devices need new device drivers, not a
new operating system releases.

16 /41

Operating System Structure (2)

register new device drivers

immtialize drivers at boottime or _
dynamically
‘ init, read, write

devices need
different managers

init, read, write

device types need
different drivers

events events
Eeyboard Hardware: ports and memory Hardware: ports and memory 6

Operating Systems are software FRAMEWORKS. They use interfaces to abstract
differences in implementation or funtion. A typical example 1s the device driver interface of
an OS which allows new devices to be supported after the OS has been shipped. A new
device driver which conforms to the interfaces (template/hook pattern) defined by the OS
can be installed (statically or dynamically). The OS will call the driver functions at the
proper times. E.g. at boottime the probe() function of each driver is called to see if a certain
hardware 1s present (in case there is no automatic configuration information available)

17 /41

CPU Protection Levels

State of protected mode bat:

1 = protected/kernel mode

0 = application/user mode

Sensing operations (I/0)

Regular compute
Control operations (halt, «— operations (add, mul)

memory mgmt.)

Most CPUs offer a simple protetion scheme. Dangerous operations (sensing, control) are
only allowed when the CPU has been put in kernel mode (protection bit 1s set).
Applications can NOT change the state of the CPU arbitrarily. They MUST use certain
controlled gates (software interrupts) to change the mode. From then on, operating
system code runs!

Switching to Kernel Mode

Applicati L
PPHEAHO Application
User Mode, stack used
CPU doing C Language Library
harmless
things System Call Library
Software Interrupt — Kernel Trap
(CPU instruction)
Kernel
Operating Syst
Mgde, CPU peratimng sSystem Kernel
doing critical
_ stack used
things
Hardware (CPU, I/O)

Only in kernel mode will the CPU allow critical instructions. The application will be
terminated if it tries to execute critical instructions without changing through kernel traps
mnto protected mode.

Kernel vs. User Mode

Application 1
Application 2
TTzer Ilode X
o AN
Eernel @@ @
Iode

User services are much easier to develop, replace, monitor and debug than kernel
services. But this comes at a price: Inter-process communication means going through
the kernel which usually means context switches (CS) between processes and copying
data back and forth from application to kernel and back to the other application or
service. The good news: applications bugs usually do not crash services. And if, then
services can be restarted without rebooting the kernel. Internal kernal functions are fast
AND DANGEROUS: nothing prevents a kernel mode function from wrecking the
system. They run usually with full CPU privileges and can access everything anytime. In
times of weak hardware people put every service into the kernel. Nowadays most
services are placed in user space.

20/ 41

Monolithic Kernels

Lpplication 1

TTzer hlode

tuntime loadable

oo®

cotmnpiletime

Eernel
Iode

the kernel with dependencies and no protection between.

Monolithic kernels run all operating system functions in kernel mode. The kernel itself
either contains all necessary code already (compile time extension) or modules can be
loaded dynamically (e.g. linux). All kernel code has the same criticality: a bug and the
kernel crashes! Performance 1s good because internal calls are simple procedure calls and
not system calls with traps. Maintenance 1s bad because of millions of lines of code for

21/41

Microkernels

IEMory

managment

file Jp— process

management tnanagement

SErVEL . SETVEr
security

Lpplication 1
management
SErVEr
Tser Mode @ /

N2

Eernel basic

Idode security basic
device memery
drivers management

Microkernels run most of the traditional kernel functions outside in user mode services.
Only the most basic functions like device control and some security and memory
handling i1s performed in kernel mode. This make 1s easy to change e.g. to a different file
management implementation by starting a new service. The price 1s paid in overhead due
to mcreased numbers of context switches for a single function called.

Single Tasking vs. Multi-Tasking OS

* Only one task runs at any time

* A tagk 1s not pre-empted but
can give up control

« If a task needs input it usvally
does a busy wait (polling) for
data.

» Several tasks can run concurrently
(multi-processor) or quasi-concurrently
(single-CPU) by getting a timeslice of
CPU time to run. Alternatively
priorities decide which task does run
(realtime OS)

e If a task needs to wait for data, 1t
blocks (gives up the CPU voluntarily)
and the scheduler runs another task

*There are non-interactive background
tasks and mteractive user oriented tasks

Single tasking operating systems are e.g. MSDOS. This makes e.g. a modern GUI
with window technology impossible. The software structure of a single tasking
system 18 much simpler (and safer, that‘s why in some mission critical areas
asynchronous, interrupt driven multi-tasking systems where not allowed)

Single User Operating Systems

* The system does not identify the
user

» Every task runs with the same

built-in authority

» No separate User profiles
maintained by the operating
system.

Typical examples are MS-DOS, WINDOWS 9.xx and embedded control
operating systems. The most critical feature is definitely the lack of a role
concept that would allow privilege de-escalation for most tasks. When those
types of operating systems are connected to networks or the Internet horrible
things happen because the OS has no concept of principals and roles (not to
mention capabilities). If user profiles exist then they are created and maintained
by applications, creating a data gravevard of personal settings in different
applications.

Pseudo Multi-User Operating Systems

* The system does identify the user and keeps different user profiles
» Some tasks run with system and some with user authornity

» Resources are protected by Access Control Lists with different user
having different rights.

» Usually only one User 1s the owner and current user of the machine. This
user can shutdown the machine. They can change date and time. No quotas
are usually set

Typical examples are Windows NT/2000 and some Linux desktop versions.
Those systems do much better when connected to networks. Still, knowing that
the single user 1s most often the only user, 1.e. for convenience reasons, some
system security 1s reduced. The rationale 1s: why should the user have to log-out
and log-in as admin just to shut the machine down? Or: if the user wants to fill
his disk to the brim, why stop her?

True Multi-User Operating Systems

* The system does identify the user and keeps different user profiles

* Tasks run with different user authorities ranging from admin over sub-admin roles to
regular users.

» Resources are protected by Access Control Lists with different user having different
rights.

» Many users or background tasks are active at any time. Regular users cannot shutdown
the machine because this would interrupt other peoples work. Quotas are set for all
resources on this system to prevent one user excluding others from service.

» Accounting is performed either for control or charging reasons

* New hardware, device drivers or applications do NOT require a reboot

There 15 still some technical difference to pseudo systems because of resource
protection necessary due to many concurrent users. Mainframes are high end
systems with perfect resource management (do you want to reboot a system with
2000+ concurrent users to install a printer driver? One hour downtime costs you
2000 times 150 Dollar). Umx systems are not so perfect with respect to resource
management (they are much cheaper as well).

The true difference

What really distinguishes multitasking and multi-user systems today
1§ not so much technology. Instead, it is the set of security policies
implemented and enforced. Most systems could run as true multi-
user systems but it is a fact that a system used by only one user will
be very akward to use if it 15 run like a full multi-user system with
separate identities and roles for administration and regular use. But
the truth 1s: it 18 security tha t makes the difference. In this there
really 1s a difference between a single-user system or a server/multi-
user system.

In the end there 18 no technical difference — just security (or
usability) and licensing.

Realtime systems are technically different.

S
I

KN‘

e

Real-time Operating Systems

Inertial Measurement
Uit

-

oooo

» The system needs to react on
events within a certain time.

» Tasks need to finish (provide a
regponse) within a certain time

» Hardware and software are
redundant (voting, backups etc.)

Real-time systems do not use timeslices like interactive systems. They assign
priorities to processes. Whenever a high-priority process becomes runnable the
scheduler will immediately preempt a low-priority process. A large amount of
simulation goes into those systems (see www.1logics.com for simulation
software). Soft real-time systems are regular interactive systems with enough
CPU power to generally fulfill timing requirements. The design of the OS kernel
decides about whether a system qualifies for real-time requirements.

Latency

Non - Realtime Java

ls
Linux 2.4 Kernel
Realtime Java with GC
Linux 2.6 Kernel LS
Realtime Java without GC
Linux -rt Patchset >
Speciality RTOSes
1 us
100 ns
igital Hafdware 10 ns
1ns

Custom Analog Hardware

The following diagrams are from P.Klabinus thesis on Realtime-Extensions to Linux,

architecture and performance (see resources) based on Paul Kenney, SMP and embedded
realtime

Latency compared across kernel versions

Intel Pentium 4

2,6 GHz mit HT
10000
2 1000
>
O 100 -
o
Min
2 10- -
- al il B o
Max
1 | 1 1 I | .
) 5) = T -) =
= 8§ = § = &8 = 8
3 = & ¥ o4 3 ¥ 2
{Us] 'LD‘ o [N ~ —i 1
o O ™~ ~ ™ o~
™~ ~ o O
™~ o~
Kernel

from P.Klabinus thesis on Realtime-Extensions to Linux, architecture and performance (see

resources)

30/41

Preemption

Userspace
Application - Level preemptible
vertical
preemption Kernel - Level preemptible
Soft - IRQ - Level not - preemptible
\J
Kernel
- >

horizontal preemption

Large blocks of code where the caller cannot be preempted make a quick reaction to external
events impossible. One solution 1s to create kernel threads und allow preemption on that
level. This 1s what the Linux RT extension does. From E.Kunst et.al, see resources)

31/41

Priority Inversion Problem

Latenzzeit ohne Prioritatsvererbung ’|

A wird |lauffahig und

B wird lauffahig und
blockiert damit C und damit
gleichzeitig auch A,

A beginnt mit der
Verarbeitung

unterbricht damit C.

& wartet auf das Mutex,
gehalten von C.

C verlasst den
kritischen Abschnitt.

Prioritat: . hoch mittel El niedrig

Notice how C is preempted but holds an important resource that 1s needed by
higher priority processes. (Klabinus/Kunst et.al)

Priority Inheritance

Latenzzeit mit
Prioritatsvererbung

A beginnt mit der

A wird lauffahig und Verarbeitung.

unterbricht damit C.

B wird lauffahig und
blockiert, da C hdhere

Prioritat hat.
A wartet auf das Mutex, C verlasst den
gehalten von C. kritschen &bschnitt
A vererbt die hohe und bekommt die alte
Prioritat an C.

Prioritat zuruck,

Prioritat: . hoch mittel EI niedrig

Now C gets temporarily a higher priority to fimsh processing. This will release the
mutex held by C and allow high-priority process A to continue. (Klabinus/Kunst et.al)

Other embedded control platforms

-
-

T

The Lego Mindstorms robot package is an example of a small embedded control platform. Several operating
systems exist for this device, e.g. LegOS (ct++) and Lejos (Java). A small Hitachi microprocessor and 32k of
ram are available. We will use it as an example for embedded control programming (Using cross-

compilation, firmware download and subsumption architecture). See hitp://www.jugs. org/protokolle/02-09-
12/1eJOS-v1.1.pdf

System Philosophies and Business (1)

Application o
PP Lpplication
> GUI
baclend
Frontent
Application o
LApplication .
*-] Cperating Svstem
baclend F &Y
Frontent
Application o
s TP LApplication
GUI
baclend
Frontent

The most popular systems today are the windows type desktop operating systems. Those
systems have a mostly user centric view. They provide a graphical user interface for
most tagks and make it very easy to learn the tools. New functions are usually
implemented either ag extensions of existing applications or a new applications. Users of
those systems are usually relatively inexperienced computer users and the knowledge
they acquire 1s mostly in knowing how to use certain applications. No programming 1s
done by users. Software companies serving this customer and technology sector usually
depend on updates for applications which bring new features. Automation 1s very low,
everything hag to happen manually through the GUI. Most applications get into total
feature overload because there 1s no functional composition used which would require
user tramning.

System Philosophies and Business (2)

9
9

O O COperating System

L4

Unix systems have traditionally favored a composition pattern. Instead of creating huge
applications with hundreds of features small programs were built with very limited
capabilities. But those modules could be linked together (via pipes) to generate processing
pipelines. Or the shell language could be used to further connect those modules via scripts.
This reduced the need to always extend existing modules at the price of the user now
having to understand how this composition works — a form of programming. Inexperienced
users soon found this challenging. But even worse: the business modell behind favors NOT
buying new software with a new feature. Instead, building new solutions by combining
existing modules 1s favored. I believe this ig at the core of the decade old Unix vs.
Windows discussion. Different user groups and business models. As a side effect Umix
modules are NOT supposed to produce output for users. They need to produce output that
becomes mput for other modules and must therefore be careful not to contain presentation
oriented features. That‘s why Unix programs operate . silently*.

Components of Operating Systems

+ File management

 Memory management

* Process management (threads, multiprocessing)
« User and Security management

« GUI (window system)

« Command Interpreter (shell)

« Loadable Modules

« Utilities

The next sessions will introduce you to all these subsystems or components.

Compatibility

Programs written for a wvirtual machine are independent of
- CPTT and OF. Some system characteristics (e g EAM size)

can still prevent compatibility

A Cprogram does not guarantee comp atibility because C does
not cover all necessary services. In many cases O programs
can be ported to other operating systems with a lot of effort.
CPT dependency 15 small but exists {integer size etc.)

special ©OF functions and are hard to port to another OF.

Computers, especially small ones, differ a lot with respect to
EAM size, MM support etc. This makes i1t hard to run

programs unchanged.

- Programs written for different operating systems make use of

Programs written for different CPUs cannot be run on all
- platforms. But sometunes only are-compile 15 necessary if the
platform is the same otherwise (operating system, computer,
language)

Operating Systems are always a hot political and economic topic — resulting
from the fact that compatibility of applications 1s so much tied to the operating
system. The only layer that really makes a program largely independent of
platform and OS 1s the virtual machine.

Resources (1)

Modem Operating Systems, Andrew 3. Tanenbaum. The bible of operating
systems. If you need to build low-level system code this 1s your book. Its
content stays valid a long time...

Jean Bacon, Tim Harris, Operating Systems. Concurrent and Distributed
Software Design. If you need to understand the concepts behind complex
applications, perhaps even distributed, this 1s a very good book. Not so
implementation centric as Tanenbaum. Includes Transactions. I like 1t better
if there 1s more implementation but ymmyv....

Maurice J. Bach, The design of the Unix Operating System. 1996. At that
time I was waiting for this book desperately... Take to 1t if you need to
understand how signals work, how Unix does this and that. Kernel
implementation centric.

Gary Nutt, Operating Systems, A modern perspective, Lab Update. Nice
code examples and explanations for Linux and Windows system
programming. Covers computer organization as well. Good!

Resources (2)

«Jochen Hiller, Lego Mindstorms — Introduction. An excellent overview
of the lego platform and the lejos java operating system which rung on this
device. http://www jugs.org/protokolle/02-09-12/1eJOS-v1.1.pdf . This 1s
an 1ideal chance to see a java virtual machine in source code and a small
footprint.

*The lejos homepage, www .lejos.org
*The LegOS homepage, www.legos.org
 Unix Skriptum (Deutsch) — HDM

* http://webcast.berkeley.edu/courses/archive . php?seriesid=1906978284
Berkley lecture "CS 162 Operating Systems and System Programming"
either as video stream or mp3 for download. (thanks to Marc Seeger for

the link)

Resources (3) Realtime

- McKenney, Paul: Smp and embedded real time. January 2007.
http://www linuxjournal.com/node/9361 (overview of latencies)

- Love, Robert: Linux-Kernel-Handbuch. Addison-Wesley, 1. Auflage,
(process models, syscalls)

- Eva-Katharina Kunst, Jirgen Quade: Kern-Technik - Folge 34 - Das
Realtime-Preemption-Patch. Juli 2007

http://hinux-magazin.de/heft abo/ausgaben/2007/07/kern_techmik
(Linux preemption model, priority inversion and inheritance)

- Philip Klabinus, Linux Realtime Extension — architecture and
performance (Thesis HDM 2008)

