lecture

Workshop on

XML and Web Service Security

How to secure XML documents, messages and
SESS10MS

Walter Kriha

Goals

1. Attacks on XML tools and processes

2. Use of digital signatures and encryption with XML
documents.

3. Canonical XML (like DER/BER 1n asn.1)

4. New business models for web services and what kind of
seourity they need: message based vs. channel based
seourity

5. The web services security stack (secure messages, trust,
federation, policy)

Web Services use XML documents or fragments for communication. They rely on
security mechanisms developed for XML documents. And they rely heavily on XML
mechanisms like namespaces. The first part of the talk introduces those XML concepts.

Overview

Tzing L for security

el

KL processing problems

L encryption and signatures

Web Services Security

Logical vs.
physical validity
Are XSL scripts
code?

Can entities be
used to steal
information?

DOS attacks
using entities

» Create canonical
XML documents

» Sign XML
documents or
fragments

*» Encrypt XML
documents or
fragments

» Namespaces

Secure requests
through

mtermediates

Implementation
independent
security

Channel based
vs. document
based security

The XML tools and processing steps can create a security problem by themselves. Don‘t
get fooled by the ,, XML 1s only text™ assumption! Web Services are expressed with text but
have the power of an RPC system like CORBA or DCOM.

Malicious documents?

Other host

If vou offer a
rendering service you
might be abused to

create artificial hits on
some host.

Entity

L

file with entity reference

result document with
embedded entity

Y

&

Receiver

Parzer

l

H5LT

proc,

Does your XML
processing system
check the URIs of
entity references
BEFORE accessing
them?

XML has some mechanisms that pose security problems by themselves — e.g.
entities which are referenced automatically by a parser and which could be used to
create denial-of-service attacks through the construction of a large number of those
references. Or worse: those references could point anywhere on the target server
and might pull secret information from such a server. Those problems are NOT the
main focus of this lecture but they remind us on common vulnerabilities. Both
examples have been taken from the XML-DEV mailing list (Miles Sabin, R.Tobin)

Extension Functions in XSLT

<?uml wversion="1.077>
<zszl:stvlesheet zmlns:zsl=http:/ www.w3.org/ 1999/X8L/ Transform version="1.0">

<xzl:output method="html, encoding="IZ0-885%9-1, indent="no"/>

<xzl:script language=,java®™ implements-prefix=,sv" sro=,Jjava:java.util.system™/>
<sl:template match="*">
<xslimessages
<usl:text>No template matches </xzl:text>
<xzl:value-of select=_=v:iexec () "/ >
<xsl:text>. < xsl:text>

</uzl:imessage>

Calling extension functions from XSLT 1s easy. Several language bindings are supported
(Java, javascript etc.). What userid and rights 1s your XSLT processor using when you do
server side processing of requests? (M.Kay, XSLT 2 edition, page 568ff))

Suppressing Validation

Other host

Receiver

foul

schema
-59-—_.___.________
‘‘_‘_‘_‘__'_'_‘—-—u.
| Parser |4
AT

file with foul schema

Y

H5LT

proc,

result document with
embedded entity

&

James Clark mentioned recently an especially evil way to work around validation: ,,Suppose
an application is trying to use validation to protect itself from bad input. It carefully loads the
schema cache with the namespaces it knows about, and calls validate(). Now the bad guy
comes along and uses a root element from some other namespace and uses
xs1:schemal.ocation to point to his own schema that that has a declaration for that element
and uses <xs:any namespace="##any,, processContents="skip"/>. Won't they just have
almost completely undermined any protection that was supposed to come from validation?*

Overview

Tzing L for security

KL processing problems

* Logical vs.
physical validity

* Are XSL scripts
code?

 (Can entities be
used to steal
imnformation?

» DOS attacks
using entities

L encryption and signatures

Create canomnical
XML documents
Sign XML
documents or
fragments

Encrypt XML
documents or

fragments

Namespaces

e

Web Services Security

Secure requests
through

mtermediates

Implementation
independent
security

Channel based vs.
document based
security

At the base of web services security are mechanisms which provide integrity and
confidentiality for XML documents and fragments. XML-DSIG and XML-ENC are
standards which allow digital signatures and encrypted areas to be embedded in XML

documents

XML Standards related to Security

» XML Digital Signatures
* XML Encryption
» Canonical XML (C14N)

» related XML basic standards (XML Infoset, Namespaces
etc.)

We will see how all these technologies are needed to solve the securnity problems
caused by the new internet based, distributed and collaborative business model of
web services. But first a look at XML processing of documents is in order.

Sending XML Securely (Today)

Sender Receiver

File
Stream

L I:> Appl
file cation

Application ::> WML file ::> -

Today the easiest solution to send an XML file securely (with authentication, integrity and
confidentiality provided by the transport-level protocol) 1s to use SSL/TLS. There are a
number of disadvantages associated with this solution:

Problems with the SSL based solution

1. Security is provided by runtime code (SSL middleware etc.) NOT tied to the document itself. If
the document is forwarded to another receiver its security is depending on the new security
context. This poses a major problem for web services later.

2. The receiver does not have non-repudiation: no signature attached.

3. Worse vet: if signatures would be used, how would the signer know what the receiver is able to
understand and process? How would we communicate the keys etc. used for it to our receiver?

4. Same problem with encryption.

5. Encryption of parts of the document 1s possible but there is no mechanism to create several
signatures and encrypted blocks for multi-party document exchange.

6. Theuse of signatures 1s problematic because sender and receiver can treat the same logical XML
content in a physically different way — thus voiding all signatures.

These problems are pretty much the same as for secure e-mail. They are caused by the same
reagon: using something that is SESSION onented to transport single MESSAGES or
DOCUMENTS. Eric Rescorla shows the problems with SSL when used for to secure e-mail.
His ,,SMTP over TLS“ chapter sets the stage for most of the things in this lecture.
Surprisingly Web Services seem to fall much more into the message/document model than
the connection oriented model. Solutions for messages/documents are usually closer to the
application (end-to-end argument in security). The latest securnty related proposals from the
Web Services Industry seem to confirm thig trend.

Sending and receiving XML documents

Parzer

DTD or Schema DTD or Schema

| |

4 e | N

. sertalization
certalization

_ Logical I:> - > Eyte :: I:>Logica1 :> Appli
Application :> Tree merializer Stream > Parser Tree | et

Both sender and recerver create or validate an xml instance using a schema or DTD which
controls the LOGICAL content of the xml file. Different physical content can result in the
SAME logical content. Unfortunately signatures e.g. work on the PHYSICAL content of an
XML instance. Since serializers and parsers have considerable freedom with respect to
physical content this means that a signature created over physical representation 1 (sender)
may not fit to the physical representation 2 (receiver) re-created by the parser even though the
logical content 18 the same: Signatures work on bit-level, not on XML element level (This 1s
comparable to the C++ concept of ,,const™ methods which guarantee BITWISE constness of
an object: you cannot even cash something in a const method)

Logical vs. Physical Representation

LTDVSchema:

<IELEMENT article (name, number)
<|ELEMENT name (#PCDATA)
Z|[ELEMENT number (#ENMPTT)

IATTLIST article version CDATA
#EEQUIRED

article

/\

Logical Eep.

:> nAtmne number

l l

text VEFS1011

Physical instance I / \ Fhysical instance [T

<|— article part from catalog=>

<atticle>< name =foo &nbip;< fname ><number
bar=,4711%=<farticle>

zarticle><name=>foo &#F1E0 < name><number
bar= 4711 ==/number></farticle=

Watch the small differences in instances: whitespace in element names, character
entities vs. character codes, special ,,empty* syntax for number or not, whitespace in
attributes, double quotes vs. single quotes etc. Please note: BOTH instances are a valid
representation of the DTD or Schema because they both fit to the logical model above.
For most applications the differences will not matter. But they will definitely matter if
signatures over those representations are created. But XML itself has problems with it

too ag we will see,

Signatures over XML Instances

=ender side instance:

signature: 47af22b1100c989874d.

<|— article part from catalog=>

<article>< name =foo &nbip;< fname ><number
bar=, 4711 =< article>

—

Eecetver side
reconstruction:

Eeconstructed Signature: a70023bcdfS 17553

L]

zarticle><name=>foo &#F1E0 </ name><number
bar= 4711 ==/number></farticle=

Once the signature 1s reconstructed on the receiver side it does not fit to the onginally
created signature — due to the differences in physical representation that serializer and
parser used. It does not matter that the logical content is exactly the same.

Canonicalization of XML Instances

L _ Canonicalized form:
=ender side instance:

<|— article part from catalog=> =atticle=<name=foo < name><number
:> bar=4711°></number></article>

<article>< name =foo &nbip;< fname ><number
bar=, 4711 =< article>

Canonical XML defines how a canomical mnstance needs to look like:
-UTF-8 encoding, line breaks normalized to #xA, attribute values normalized

-character references expanded, CDATA replaced with content, DTD and XML
declaration removed, empty tags (<e/>) replaced with tag pairs (<e=</e>)

-special characters replaced with character references, redundant namespaces removed,
fixed attributes expanded, sorted according to defined order for attributes and
namespaces

-(from Michael Kay, XSLT 2nd edition, pg. 71)

Signatures over canonical XML Instances

L Eecetver side
=ender side instance:

reconstruction:
Signature: Eeconstructed
Alaf32b 1100989 signature:
87dd..... 47af32b110cco89

<l— article part from

Zarticle=<name>foo
catalog—=

#1160 </name=><numb
Er
bar=4711"></number>
=farticle=

Zatticle=< name *foo
 < fname ><number
bar= 4711"=<article=

Signatures are constructed and compared based on the CANONICAL form of the
mstance. (see www.w3.org) for the C14N standard.

16 /76

XML Signatures

XML instance with XML instance with
ENVELOPING signature DETACHED signature

Signature Data Signature Data —

i Signed part

|

signed part

. XML DSIG (www.w3.org/Signature) defines a signature element which allows a signer
to specify a signature over selected parts of the document. Web Services will use this
feature e.g. to tie message content and message header together.

The XML DSIG ,,Signature” Element

Each resource to be signed has its own <Reference>
element, identified by the URI attnbute

<Signature>
<Signedinfo> /
(CanonicalizationMethod)
(SignatureMethod)
(<Referende (URI=)? >
(Transforms)?«.____ | The <Transtorm> element specifies an
(DigestMethod) ordered list of processing steps that were
{Digest'ﬂ’aluo).\ applied to the referencad resource's content

before it was digested

</Reference>)+
</Signedinfo> The <DigestValue> element cames the value of
(SignatureValue) the digest of the referenced resource
(Keylinfo)?
(Object)* The <SignatureValue> element carnes
</Signature> the value of the encrypted digest of the
<Signedinfo> element

The <Keylnfo> element indicates the key 1o be used to
validate the signature. Possible forms for identification
include cerihcates, kéy names, and key agreement
algonthms and information

From Ed Simon et.al, (see Resources). Note that . object™ will only be there if the signature 1s
-enveloping* otherwise the reference element will point with the URI to an out-of-document
object. Transforms defines e.g. that the object has been canonicalized. Information that the
receiver needs for verification is contained in the DigestMethod, SignatureValue and
possibly also in the KeyInfo element (e.g. which public key was used to sign the disgest)

Encrypting XML documents

Original .
Completely encrypted . Dafferent parts encrypted
_ Document in different ways
mstance
Encryption Metadata Iletadata
: ¥
patt
Encryption
Encrypted part Ifetadata
Encrypted part Encrypted
patt

Especially in a multi-party communication system encryption is difficult to realize. The
core problem 1§ how to authorize and control the viewing of different parts by different
parties. There 1s also the problem of known plain-text attacks if the tags are well known
because the DTD 1s known. Web Services use this feature when passing messages via

several imntermediates.

The EncryptedData Element

o

<EncryptedData 1d? Type? MimeType? Encoding?> Type = element or content

=Encryptionhfethod/>? o =~ AlgDI'l] used
<ds KeyInfo=

iEncryptedKey?'?““

<AgreementMethod>7 key information element from XML DSIG

<ds EeylMame="

<dsEetrievalldethod=7

g H=7
<fds Eevinfo=7
<CipherData>
:Zi:i:::ﬂ; 'L;RI?; ST T T maw encrypted data (by value or reference)

<fCipherData=>

: 1 '? P . .
“EncryptienProperties™fe————____ gdditional info about generation of encrypted
</EncryptedData typ e

EncryptedData element which contains (via one of its children's content) or identifies (via a
URI reference) the cipher data. When encrypting an XML element or element content the
EncryptedData element replaces the element or conten (respectively) in the encrypted
version of the XML document. (from XML Encryption spec.
http://www.w3.org/Encryption/2001/Drafts/xmlenc-core/

Coding Example of XML Encryption

<txzinl version='1.0""=
<PaymentInfo zmlns="http: Mezample orglpaymentv2'>
<Mame=>John Smith</Tlame=
<CreditCard Limit="5,000" Currency="TI5D"=
<EncryptedD ata zmlns="http /fwww w3 org/200 104 zmlenc#’

Type="http Mwww w3 orgl200 104 zmlenc# Content'>
<CipherData>
<CipherValue=A23BASCI6<CipherV alus>
<(CipherData=

<EncryptedData>
<fCreditCard>

<PaymentInfo>

In this example form the XML encryption specification only the CONTENT of the
credit card information has been encrypted and is enclosed in the CipherValue element.
The specification also defines rule about the relation between encryption and signatures,
e.g. in which order they should be applied. When data 1s encrypted, any digest or
signature over that data should be encrypted as well to avoid guessing attacks.

XML Namespaces

<schema zmlns="http Sfwww w3 orgl2001/ X MMLSchema' version="1.00'
zmlns: ds="http Sivrwrw w3 or gl 2000009 zml ds1 g
zmlns zenc="http fvww w3 orgl2001/04/ zmlenc#
targetMamespac e="http fwrwrw w3 orgl 200104 fxmlenc#
elementFormDefault='qualified'>
<import namespace="http Swww w3 org 200009 zml dsi g

schemalocation="http Siwww w2 or g TES2002/BEEC-zmldsig-
core-20020212fmldsig-core-schema xsd'f>

&

http wwrw w2 orgl2001/04 zmlenc#tripledes-che

namespace used to denote

a schema and how
mstance and schemas are

related

namespace used to define

different encryption
algorithms

<ds KeyInfo xmilns ds="http fwww w3 orgl2000/0%9 zmldsig#'>
<pay.PaymentInfo zmlns: pay="http /lexzample orgfpaymentva'>

<dummy
zmlns:foo="http Mlexzample orgffoo " =<pay:One=<foo Onel></pay. One></dummy>

namespace used within
mstances to avoid name
. clashes between elements
of different schemas

Despite an ongoing discussion about their value, namespaces are increasingly used to denote
all kinds of things. If yvou want to work with XML vou will need to understand namespaces.
Important: There is absolutely NO requirement that a namespace URI really points to a web
resource. In most cases the URI 1s just used to make definitions unique (basically by using
the DNS name system which already has unique names). Combine the URI with the tag

name to get the fully qualified element name.

Frequently used Namespaces

The following namespaces are frequently used in Web Service Security:

Prefix Namespace

511 http://schemas. xmlsoap. org/soap/envelope/

512 http:/fwiww, w3, 0rg/2003/05/s0ap-envelope

=y http://docs. ocasis-open.org/wss/2004/01 /0asis-200401 -wss-wssecurity-utility-1.0. xsd
WSSe http://docs.oasis-open.org/wss/2004/01 /oasis-200401 -wss-wssecurity-secext-1.0.xsd
st http://schemas. xmlsoap. org/ws,/2004/04 /trust

ds http:/fwiww, w3, 0rg/2000/09 /xmldsig#

Kenc http:/fwiww, w3, org/2001 /04 =mlenc#

WS http.//schemas. xmlsoap. org/ws/2002/12/policy

WSa http://schemas. xmlsoap. orgfws,/2004/03/addressing

H5 http:/fwiww, w3, 0rg/ 2001 X MLSchema

Please note that the prefix 1s not part of the namespace and will be replaced by the
namespace URI. An element <foo> in namespace with prefix ,,ds* will finally
become: http://www.w3.0org/2000/09/xmldsig:foo

Are Signatures and Encryption all that 1s needed?

Please note that we still have other unsolved problems. Our view
right now was very static and document centric. In a more
message oriented environment one has e.g. to solve the problem
of securnty context negotiation

-what kind of secunity and encryption 1s required by the provider
of a service?

-How does a potential requester know about those requirements?

-How do we establish mitial trust?

Web Services intend to do business transactions over the Web and therefore need to
have an answer for those problems as well.

Overview

Tzing L for security

KL processing problems

L encryption and signatures

el

* Logical vs.
physical validity

* Are XSL scripts
code?

» (Can entities be
used to steal
information?

« DOS attacks
using entities

» Create canonical
XML documents

» Sign XML
documents or
fragments

*» Encrypt XML
documents or

fragments

» Namespaces

Web Services Security

Secure requests
through

mtermediates

Implementation
independent
security

Channel based vs.
document based
security

Be prepared for a whole lot of new terminology as Web Services security tries to convert
existing security technology into new business models for the internet!

Goals

1. Demonstrate the Web Services business model and 1ts
implications for security models: secure delegation over
intermediaries, secure messaging

2. Develop a concept of secure messaging

3. Have a look at Single S1gn-On realized with the new
security

4. Investigate interoperability of security mechanisms

We will denive the requirements for new security models by looking at the business
model for web services. This model asks for interoperable security — quite different
to the closed security domains within companies.

Web Services Security Standards and

Technologies
* SOAP, WSDL, UDDI: Message Envelope, * WS-Policy (How to express security
Interfaces Definition and Registry requirements)
« WS-Secunty: Secure Messaging Secure AssociationsMarkup Language (a
Definitions langnage to express security related
« WS-Trust: How to get Security Tokens statements)
(1ssuing, validation etc.) » WS-Reli (Rights management)
» WS-Federation (How to make security « WS-Util (Helper elements)

interoperable between trust domains) « WS-Authorization (express access

rights)

WS-Security 1s the foundation of Web Services Security. We will take a close look at this
specification and WS-Trust. Soap and WSDL are basic Web Services standards for
messaging. If you are not familiar with them, you can find an introduction here:

http://www kriha.de/krihaorg/docs/lectures/distributedsystems/webservices/webser
vices.html. For a list of all Web Services standards go to:

www. webservicessummit.com) Please NOTE: few of those standards are available
in implementations. E.g. Web Services Enhancement 2.0 from Microsoft covers
only basic Web Services security features.

The Web Services Business Model

.loosely-coupled, langnage-neutral, platform independent way of hinking
applications within organizations, across enterprises, and across the Internet™
(from the roadmap to web services security, see Resources)

Scenar1os (1): Direct Trust

e

This 18 what 1s possible today. It suffers from a number of problems as we will
see. The endpoint needs to implement security mechanisms as well ag all
administrative information to either allow the request or reject it. Business logic
and security functions are both at the endpoint

Scenarios (2): Issued Security Token

Request for token I i

- R— — -

This shows authentication by a trusted third part. The endpoint trusts the security
token issuer. Advantage: the endpoint need not carry administrative and
technical burdens of secure authentication. Changes in technology will not affect
endpoint. But the even bigger advantage 1s that this scheme opens the possibility
for FEDERATION of security contexts. Please note that the token could also
contain claims about authorization. In that case the endpoint would even accept
authorization decisions of a security token issuer. A concept that might be used

for Single Sign-on as well. Continuation tokens might be issued by the endpoint
itself.

Scenarios (3): Federation

B 15 accepted by

requester asks B endpoint

to map token from
A to token from B

A 18 requesters
1dentity service

The endpoint won‘t accept a token from identity service A. But the endpoint
trusts issuer B. So the requester asks B to map her token from A to one that will
be accepted by the endpoint. This implies that 1ssuer B trusts issuer A. How
would endpoint declare that it accepts such mappings to happen? An alternative
would be if requestor sends her A token directly to endpoint which forwards it to
1gsuer B (which he trusts) and B tries to map the token to one of his own. The
token issuers would probably exchange certificates from each other.

Scenarios (4): Crossing security domains

B 15 accepted by

requester asks B endpoint

to map token from
A 18 requesters A to token from B

1dentity service

The endpoint will only accept a kerberos token from identity service B. So the
requester asks B to map her certificate token from A to a kerberos symmetric
key token accepted by the endpoint. This would also work between two kerberos
token 1ssuers or a kerberos key distribution center (KDC) and a PKI based
1ssuer. In the case of two kerberos KDCs there are different levels of mutual
trust possible.

Scenar10s (J5): Token based delegated authorization

calender service verifies all 3 scheduler gets token from privacy service which

tokens and allows scheduler asserts that scheduler respects privacy
to change & s calender

«%::ﬂ_ﬂ-
‘_
calender scheduler
web service web service
1
requsts token
that allows B E delegates 4A's
to access tolcen to scheduler,
calender of A together with his
i arestricted _ owh token
A gives tokento B
way

COwamer A > Colleague B

This 18 an example from the roadmap for ws-security. Please note that it depends on
expiration data in the tokens how often A needs to re-1ssue an access token for B. If B
needs to access the calender frequently 1t might be better to use endpoint access control

to restrict and control B*s access. See next page. Just extending the expiration dates
causes problems with revocation.

Scenar10s (6): Endpoint based authorization

calender serwvice werifies the 2

scheduler gets token from privacy service which
tokens and allows scheduler :
; asserts that scheduler respects privacy
to change & s calender
‘_
calender scheduler
web service web service
r's
A instructs
calender E gives his own token to
SEFVICE to scheduler which allows
allow B to scheduler to act for B
arcess the {restrictions defined by
calender (with foken)
restrictions)
Crgmer A

Colleague B

Now B no longer needs a new token for every access. B still needs to identify himself

and scheduler must provide proof of privacy. A can now revoke B‘s access right any
time.

Problems (1): Intermediates

Security Security "['ll"lanspmr[l'i ltevel (siecurit}ftdnbes not
Context A Context B allow end-to-end security because a

new security context is established
between each pair of
Security Application level security {e.g.
Context secure messages) does allow end-
to-end security because the end-

point can validate the original
claims made by the requester

In a multi-party system secure messages are of much greater importance than transport

level secunity. Example: Business process composition in supply-chain management.
The composition can be done by an intermediate.

35/76

Problems (2): message authentication

(signed, encrypted,
possibly
with encrypted key)

- "
o

A secure message alone does NOT provide sender authentication. It takes some means
to prohibit replay attacks. Digital signatures only are not enough. Secure messages also
need to provide support for different key mechanisms, e.g. shared secret key (not
contained 1n message) or random generated symmetric key, encrypted with receivers

public key and part of the message. A key reference contained in the message may also
be OK.

Problems (3):Interoperability Problems

Interoperability requires mutual understanding on SEVERAL layers: Policies must be
known 1n advance and fit mutually. A common mechanism must exist (or a transformation
service) and last but not least if security information travels across domain borders (e.g.
companies) it must be transported in a format that allows reconstruction on the other side
without loss of security context. And last but not least a language must exist that allows
properties and attributes to be expressed in a standard way.

37176

Traditional interoperability 1ssues with distributed

Interface Security { Interface TA {
getPrincipal () Join TAD
1 Interface foo { 1
dolt ;
}
Set security and :
Check secunty and
TA context toxct ty
CONntex
X.doIt))
OFEE one > DEE two
SECUrtY Transaction

Contesxt

Context
foo instance X

Associated with a remote message call are security and transaction contexts which need to
flow to the receiving ORB, e.g. to enable access control. As long as we use only one
middleware vendor (e.g. CORBA or EJB vendor) there should be little problem: the securty
and TA information is encoded binary but both sides use the exact same binary format. No
problem. Once we try to couple products from different vendors we will learn the meaning
of .. Implementation dependent™ and ,,wire format“. Many times interoperability breaks
down because a specification has only defined interfaces and not implementation. This 1s
OK as long we do not cross domains (vendor domains or business domains).

Why Interfaces alone don't work across domains

Interface Principal {
getFirstMame)
getLasttlame()
}
Check secunty and
TA context:
X.doIt)) Kriha, Walter

CEER one

OER two

Y

The problem 1s that even though both ORBs understand the interface they disagree on
how the information of the implementation (firstname, lastname) has to be serialized
and transmitted. ORB two cannot use ORB ones principal information. Internet
protocols have reckognized this and from early on defined WIRE FORMATS for
mteroperability. The Secure Association Markup Language (SAML) tries to do the
same for web services. Now you should understand why 1t 1s possible to deploy an EJB
in two EJB container but not necessanly that these containers can talk to each other!

Web Services Security Architecture

Secure messages!

Currently only ws-security has been implemented. The other building blocks are both
very ambitious and important for the business model of web services. But they have to
solve tough problems like trust federation between domains or security context exchange
which goes down to the implementation level as we will see. Just think about the
problems to provide a seamless security level across PKI and Kerberos infrastructures.

40/ 76

1.

WS-Security

Creates a secure messaging platform with support for message integrity
(digital signatures), message confidentiality (encryption) and transport
of binary security tokens

WS-Security defines the basic security infrastructure needed to achieve secure
(single) messaging. The other parts of Web Services Secunty will build on this
platform. WS-Trust e.g. needs to define how secunty tokens are acquired and

validated.

Using a service on the web (Today)

Sender Receiver

Appli
LApplication usertdipassword cation

Today the easiest solution to using a service on the web 1s to perform some kind of login to
establish trust and run the whole session over SSL/TLS.

Problems using a transport-level protocol

There are a number of disadvantages associated with the SSL/TLS solution:

-How is trust established between both applications? A userid/password combination does not only
expose the secret but also needs a PRE-ESTABLISHED trust relation between communicating
partners.

-How does the sender know that the receiver will not abuse the password?

-How would delegation of the request to different endpoints be handled?

Some of these problems are the result of the web services business model that changes the
whole environment in which security has to play: interoperable web services, defined trust
relations, delegation of requests to other partners, business processes leaving the company
border and cross into other domains via internet.

The SOAP Security Element

SOAP envelope <g:Security s:actor=,,somebody* .=

<g:BinarySecurityToken ValueType=,,s:X509v3*
Id=,,X509Token*

Encoding Type=,.s:Base64Binary >
KLJefj2343451kjafdlok3eq45rkjkl4354545235
</g:BinarySecurityToken=>

SOAP header

<xenc:EncryptedKey=>.........
<ds:Signature=........

\ </g:Security=

SOAP body |

The Security Element is part of the SOAP header and contains key definition elements
from XML encryption and signature elements from XML digital signature. A SOAP
specifc element 1s BinarySecurityToken which contains e.g an X509 certificate
encoded in base64. Or UserNameToken which contains user ID and optional
encrypted password information. Security elements can be specific for/from certain
actors.

UserName Token

<Securlty>
<UgernameToken Id="., . .":>
cUJgername: . . . < -Uzername:

<Pasgssword

type="... "> .. </ Password>

¢ sUgernameTolken s

This element 1s part of the security element. WS-Secunity recommends that it should
only be used with a secure transport (channel). Other tokens are of type
BinarySecurnityToken (e.g. Certificates or Kerberos tickets) and will typically use
some form of <encrypted...> element.

Encrypted Keys in WS-Security

SwWssemecurity™
=xzenc: ReferenceList=
zxenc:DataFeference TRI= #foo™ /=
<fzenc EeferencelList=
SWEIEISECUrty>
<z Body=>
<zenc:EncryptedData Id=_foo™>
<ds EeyInfo=
<ds EeyName>CHN=Walter Eriha, C=DE</ds EevlName=>
<fds Eeylnto=
<xzenc:CipherData=
<zenc.CipherValueade349cddb 1243, <fzenc CipherValue>
<xzenc:CipherData=

<fzenc: EncryptedData></s:Body=>

Swssesecurity™ <zenc: EncryptedEey>
=ds KeyInfo=
<xzenc:CipherData>
<xzenc:CipherValue=78ef3dabc3412 <fzenc: CipherValue=
=zenc: CipherData>
<xzenc: EeferenceList>
<xenc: DataReference TTEI= #foo™ /=
<fzenc: Eeferencelist> <wsse: Security>
<z Body> <xenc EncryptedData Id=_foo™>
=ds Eeylnfo=
=dz KeyMame=CHN=Walter Kriha, C=DE</ds EeylName>
=fds Eevlnfo>
zxenc:CipherData=
<zenc:CipherValue=ade34%cddb 1243, <izenc CipherValue>
=xzenc: CipherData=

=fzenc: EncryptedData>=</s: Body>

The message on the left side assumes a shared symmetric key between receiver and
sender. Therefore no key 1s embedded or referenced. Only the key names are associated
with the encrypted parts. The right side embeds an encrypted key in the message -
probably encrypted using the receivers public key. The key points to the encrypted part.

Mechanisms for single message verification

Document-Eey validation: Has the document changed after having been
signed with the authors private kex?. This 15 done by creating an
independent new hashwalue for the document and comparing it with the one

Document content: in the digital signature.

aldflélkja jfskly

adldifsllkeasd;fal Key-Tdentity walidation: Was it the key of avthor 3 that was used to sign the
i ey document? The answer here comes from the authors certificate, e. g s1gned
alladifslasdf

by Thawte CA

Digital Signature:

ah3A9feR0765 Document-Eey checlk for iveness: Was the kevy reveled? Inthis case a
request against the CAs certificate revocation list would show wheter the
key used to sign the document is still valid

Verifying a signed document includes the three steps from above. (The SAML
document on security and privacy describes these steps micely, cs-sste-sec-consider-
01). We still do not know WHO SENT the document. Author and sender may be
different. And we don‘t know for sure WHEN the document was signed.

Mechanisms for single message authentication

-timestamp: Not recommended because of time base attacks (see
Tanenbaum or Dollimore, Distributed Systems)

- sequence numbers with random start: OK

- Expirations: Causes the problem of revocation. The longer the
expiration date the longer a stolen message can be abused for replay
attacks. Same 1s true for permission tokens.

- Message Correlation

Please not that these mechanisms are NOT enough if the sender identity 1s in question.
In this case the sender needs to prove the possession of the key — e.g. by answering an
additional challenge with the proper response generated by her key. But this turns our

single message authentication into client authentication as well and requires more
messages.

Mechanisms for sender authentication

Author
(signer) Dagitally signed
document or message

Eeceiver

Fy
Y

Sender

+—— | PublicEeyZSender(hashichallenge))

PublicEevyEeceiver(hashiresponse)) —

[t 18 important to realize that sender and author could be different. This can happen
both with legal transactions through legal middleman or through replay or man-in-the-
middle attacks. Secure messages are susceptible exactly for those two attack forms.
The solution could be an validation of sender identity through extra channels
(telephone: ,.did you send me that?**) or by forcing the sender to use SSL with client
authentication. In this case the sender 18 FORCED to use her key to prove in realtime
who she 1s (or better: that the sender has the secret key of a certain person).

If the sender can generate the proper response, the receiver can assume her identity as
sender and possible author. Leaving this authentication step opens up the possibility of
replay attacks or man in the middle attacks. We will cover this in our Single-Sign-On

SESS101.

Using XML DSIG and XML XENC i SOAP

SOAP envelope
ds:Signature elements

xenc:Referencelists,

SOAP header———

xenc:EncryptedKeys

xenc:EncryptedData

SOAP body

signed blocks

T

To make DSIG and XENC compatible with SOAP ws-security defines a number of rules,
most of them having to do with the fact that Web Services are explicitely designed for use
with intermediates. Those intermediates can add signatures or encryption to the SOAP
envelop, e.g. to create a chain of trust. The rule here is that new signatures or encryption
mnformation 1s always PREPENDED to already existing information. No encryption of
envelope, header or body tag is allowed. Signatures need to respect the night of intermediates

to change the envelope or some header information. Again, these restrictions are the results
of SOAP processing by intermediates.

New requirements for XML based messages

Please note that we still have other unsolved problems. We can
now guarantee integrity and confidentiality of Web Service
messages but we still have a number of open issues:

-what kind of security and encryption is required by the provider
of a service? (policies)

-How do potential requester know about those requirements?
(registries, negotiation)

-How do we establish initial trust? (Security token issuing,
validation)

- How do we federate trust across domains?

Example Cypher-Specification

SSL, DHE DSS EXPORT WITH DES40 CBC SHA

key exchange
protocal

ENCT. hash
algorithm |algorithm

encryption key length

With secure messages sender and receiver cannot agree dynamically on a
certain cipher specification. To achieve successful decryption the
receiver should be able to advertise her encryption/decryption
capabilities so that a sender can chose somethink apropnate for both. For
WebServices the service description file WSDL would be such a place

Web Services: Claims, Policies and Security Tokens

Un-endorged claim Endorsed claim

Claim: Eriha owns Claim: I am Walter
kriha de Enha

A claim 1s a statement about something. Only authorities can endorse claims. If a receiver trusts an
authority then the claim is valid. An endorsed claim like the one about sender identity needs an

additional proof of possession process (claim validation) to validate the claim during an
authentication process

53/76

Claims (Assertions, Statements)

Asgsertion Element: meta data about the assertion itself (issuer, signature etc.)
Conditions: valid until, valid not before etc.
Advice: additional information provided by issuer

Subject Statement: Information about the subject of the security token, how it
can be 1dentified, name etc.

Authentication Statement: 1ssuer has identified the subject at a certain time.
Authentication method, location etc.

Authorization Decision Statement: a request by the subjects has been either
granted or denied by the issuer. Contains requested resource, action and the
evidence that has been provided by the subject (requester)

Attribute Statement: 1ssuer confirms that the subject owns the attributes
mentioned in the token.

Examples from the SAML assertion langunage.

Secure Association Markup Language
(SAML)

e
=

S AW assertions “*-H optional check with assertion
. _ 1zsuer if token does not contain
| T ... signatures
request and -
quest SAML
credentials .
assertions

optional: proof-of-possession step

.‘ ... -
»
Eequest with
S AWML assertions

SAML allows to EXTERNALIZE all policies and mechanisms with respect to
authentication, authorization and attribute assertion. The access control point needs to
check only the assertions but does not have to implement all these mechanisms. On top of
this, SAML makes all these statements interchangeable between different services because

the format of the assertions 18 fixed.

55/76

Terminology

SAML WS-Security

Assertion Claim

Credential endorsed (signed) security token
Authority Security Token Issuer

WS-Security introduced a couple of new security terms. The intention was to create a
conceptual framework wide enough to cover very different security policies and
mechanisms. Unfortunately the terms defined by the Secure Association Markup
Language are again different and need to be mapped. For the terms in SAML see:

Assertions and Protocol for the OASIS Security Assertion Markup Language, 31 May
2002.

Authorities (Security Token Issuer)

Attribute Authority Authentication Authority Authonization Authority

security Tolen: Attribute security Token: mecurity Token:
Statement Authentication Statement Authorization Statement
Claim: WE has Claim: WE has Claim: WE 12
mailboz o, 4711 been 1dentified allowed to order
bools
signature of authority signature of authority signature of avthority

Any authornty can assert claims and package them into a security token. Several
claims can be contained in one security token. Web Services generalize that principle
into the concept of Securnity Token Issuer: Web Services which can offer signed
security tokens which contain claims. This 1s the major building block for federation

and Single Sign-on in Web Services. Note that authorization tokens externalize
previously internal authorization decisions.

Pros

Cons

Security Tokens

-Allow excellent delegation of rights
-can contain authorization information as well

-can be validated without interaction to securnity token 1ssuer
(signatures)

-Are perfect support for single message authentication

-Are perfect in a loosely-coupled environment when no trust
has been established between receiver and endpoint yet.

-Need to be protected against replay attacks
-can be stolen and used
-suffer from expiration date and revocation problems

-are not sufficient to prove sender identity

Security tokens are collections of claims. A Signed Security Token 1s a token that 1s

cryptographically signed by an authornity (e.g. X.509 certificate)

WS-Trust

1. Defines how secunity tokens are requested and obtained from security
token 1ssuers.

2. Allow trust engines to verify and broker tokens

3. Dafferentiates transport level trust mechanisms vs. secure messaging
level trust mechanisms

Security Token Issuers (or services) are designed as Web Services themselves.
Therefore WS-Trust defines not only XML elements for token request/response and
token qualities but also the WSDL messages needed to perform the requests.

Security Token Issuer

credentials token request

validate tolren
gend rECEIVE and allow

send message with token

A requester knows from the WSDL description of the web service at endpoint that a
certain secunty token is required to access the service. It contacts the security token
1ssuer who can create such tokens and supphes claims/proof-of-possession tokens. If
they validate, the service creates a security token which the requester will use to access
the Web Service at endpoint. There are considerable benefits for requester (does give
her password only to one actor e.g.) or endpoint (does not need to know about the
mechamsms of authentication and authorization used at the security token issuer.

60/ 76

WS-Trust Scenarios

1. Requester wants a token with an embedded session key encrypted fora
third party. This allows the third party to use a service on behalf of the
requester but does not require the third party to know the requesters key
shared with the service.

2. Requester want a token created that ties some attribute to her public
key. Her private key serves as a proof-of-possession key later.

3. Web Service endpoint wants a token issuer service to validate a certain
token

4. Many more key exchange protocols, renewal requests etc.

5. A token receiver wants to perform an additional challenge/response
check for token liveness (freshness)

Usually token requester will be able to treat the returned token as an opaque entity
without the need for interpretation. Tokens can be returned either in binary encoding
(assuming a secure channel) or in encrypted form.

Security Token Request Element

<RequestfecurityToken | which token 1z requested?

<TokenTyper...</TokenType> _ e
| Isthis an issuing request or

<RegquestTyper. . .</RegquestTypesr ——— "= — a validationfrenewal?

<Baser...</Baser ———_ _

on which security tolens 15

<5 tings>...</5 ting> .
HPpOERLnG / Suppox 1:19: . this request based (e.g own

i certificate 7)

<wsp: AppliesTo>...</wsp: AppliesTo™==--—1 _ 1 additional claims provided
~— desired scope (use)

<Claimz Dialect="..."»...</Claims>
<Entropy> T additional claims recquested
<BinarySecret>...<BinarvZecret>
</ Entropy> ———.. . own key material provided
<Lifetimel

<wsu: Created>. . </ weu:iCreated>
<wsu: Expires>. .. </wsu:Expires>
</Lifetime>

</ RequestSecurityToken>

Note: if key matenial is transported as a ,,binarySecret™ a confidential channel is
required! This seems to be a critical point in WS-Trust which could cause security
problems due to programmer errors. More elements are available for delegation,
forwarding and to specifiy specific token properties (encryption types etc.)

Security Token Response

<Request SecurityvTokenResponse > : : :
4 ¥ P which toleen 15 provided?

<TokenTyvper...</TokenType= e

<RequestedfecurityToken>...</RequestedSecuri tyTaoken> — — — — The token provided

] desired scope (use)
<wap: AppliesTo>. . . </wsp: AppliesTor—""— —

<RequestedTokenReference>. . .</RequestedTokenReference>

<RequestedProcfToken>. .. </RequestedProofToken> - —)
— optional proof of

<Entropy> possession token

<BinarySecret>...<BinarySecret> -
WV Y T key material from the token

</Entropy> 1551Er
<Lifetime>...</Lifetime>

</Request SecurityTokenResponse>

Note: both, request and response elements are part of the SOAP body element, not the
header element which containg digital signature and encryption information for the

secure message itself. But security token elements can have references to the security
elements in the SOAP header.

WSDL Sample for WS-Trust Requests

<wadl:message name="RequestSecurityTokenMsg">

<wsdl: part name="request" element="wst:RequsstSecurityToken"™ />

<fwedlimeszage>

<wzdl:message name="RequestSecurityTokenResponselsg">
N ~—a

<wsdl:part name="response, element="wst:RequestfecurityTockenResponse" />

</wedl:imessage>

<wedl: portType name="WSZecuritvRequestor™s

<wsdl:operation name="SscurityTokenResponse">

<wzdl:input message="tnz:RequestfecurityTokenResponseMsg™/ >

</wsdl:operation>

<wzdl: operation name="Challenge">

<wedl:input message="tns:RequestSecurityTokenResponseMsg™/ >

<wadl: cutput message="tns: RequestSecurityTokenResponseM=g"/ >

<fwedlioperation>

</wadl:portType>

WSDL creates a hierachy of portType which contain operationsg, operations contain
messages and messages define xml elements which are exchanged.. As shown here this
does not include binding information yet which will bind a logical service at a physical
location (protocol, address etc.). By keeping logical service descriptions separate,
differnent physical bindings can be offered and dynamically negotiated by the client.

WS-Policy

1. The Web Services Policy Framework, or WS-Policy, 18 a specification
that allows a Web service to have a set of rules that must be met, or
consumed.

2. The goal of WS-Policy: to specify policy information that Web service
consumers must adhere to.

From: Tyler Anderson, Understanding Web Services specifications, Part 5: WS-
Policy

WS-Policy Terminology

Policy: A list of policy alternatives.

Policy alternative: Contains policy assertions. In normal form, a policy contains a list of
policy alternatives specified in wsp: All tags, meaning that a client following the

policy can choose to follow either of the available policy alternatives. It can

choose which one, but it must adhere to all policies with an alternative. You will

see more about how this works later in this section.

Policy assertion: Represents a requirement or capability. For example, a policy assertion
could require that a certain type of encryption be used in encrypting transmitted data.

In normal form, policy assertions are listed within a policy alternative.

Policy assertion tvpe: A class of policy assertions. For example, <sec:SecurityToken= is an
example of a policy assertion type.

Policy expression: The XML representation of a policy, as shown in Listing 1, in normal or
compact form.

Policy subject: An entity or object to which a policy can be applied.

Policy scope: The set of objects to which a policy can be applied.

Policy attachment: The way policies are associated with one or more policy scopes.

From: Tyler Anderson, Understanding Web Services specifications, Part 5: WS-
Policy

WS-Policy Assertion Types

SignedParts: Specifies which parts of a message, such as header, body, and so on,
must be signed.

SignedElements: Specifies which elements within a message must be signed.
EncryptedParts: Same ag SignedParts, except encryption is required.
EncryptedElements: Same as SignedElements, except encryption 1s required.
Token assertions: Several Token assertions are listed in the WS-SecurityPolicy
document that define what type of token to include in messages.

Properties: Several properties can be set also, such as encryption algorithms, or a
timestamp requirement.

From: Tyler Anderson, Understanding Web Services specifications, Part 5: WS-
Policy

WS-Policy Example

<wsp:Policy

xmins:wsp="http://schemas. xmlsoap.org/ws/2004/09/policy”
xmins:sp="http://schemas.xmlsoap. org/ws/2002/12/secext"
=

</sp:SecurityToken=

<gp:UsernameToken

=

<gp:SignedParts /= <!— all of document must be signed --=

<gp:EncryptedPartz> <sp:Body/></sp:EncryptedParts> <!— only body of document must be encrypted -->

<gp:TransportBinding= <!— messages must have timestamp --=

<gp:IncludeTimeStamp
=
</sp:TransportBinding=
</wsp:All=
</wsp:ExactlyOne>
</wap:Policy>=

From: Tyler Anderson, Understanding Web Services specifications, Part 5: WS-
Policy

Attacks against WS-Security

XML Level signatures over plain text, encrypted plain text.
Guessing attacks

Message level Signature misses security tokens used. Token
replacement attacks

Key Exchange level | Same keys used for authentication and message

(ws-trust) encryption allows key attacks.

Secure Message Replay attacks. Message (or message parts)

level copied and sent again by attacker

Secure Channel Message uses unencrypted binary key material

confusion (password etc.) under the assumption of a secure
transport/channel. Channel not secure.

Sender/author Application or trust engine forgets to check

confusion liveness of token. Author is not sender.

Certificate level Trust engine does not verify validity of
certificates

Here we assume that traditional attacks against confidentiality and integrity are
prevented by proper use of signatures and encryption. Man-in-the-middle attacks are
prevented through mutual authentication and random numbers are generated properly.
Applications and users are aware of identity mix-up problems with certificates. For a list
of threats and challenges see WS-I Security Scenarios (resources).

A Management View on Web Service Security

,1his framework and syntax by itself does not
provide any guarantee of security.

It is not feasible to provide a comprehensive list
of security considerations for such an extensible
set of mechanisms. A complete security analysis
MUST be conducted on specific solutions based
on this specification. ,, (from WS-| Security
Scenarios)

The second part above sounds almost apologetically. It promises nothing good for
implementations using web service security mechamsms. Each one will have to
evaluated (signed-off) independently.

A Management View cont'd

1. WS Security implementations will be
complicated and error prone.

2. Therefore only few packages will be
available (e.g. WSE from Microsoft)

3. These packages will take a long time to

provide complete coverage of WS-XX
standards.

4. Security weaknesses contained in those
packages will be exploited and affect large
numbers of hosts.

After all: business as usual. ..

Resources (1)

Murdoch Mactaggart, Enabling XML security — an introduction to XML encryption
and XML signature. If you are too lazy to read the original specs from w3c¢, at least
read these 6 pages. Excellent introduction and easy to read too. Shows you with
pieces of xml how to sign or encrypt parts of xml documents or messages. Not
SOAP related. http://www-106.1bm.com/developerworks/xml/library/s-
xmlsec.html/index . html

An Introduction to XML Dagital Signatures, By Ed Simon, Paul Madsen, Carlisle
Adams http://www.xml.com/lpt/a/2001/08/08/xmldsig. html . Good and short. Shows
the <signature> element and children of it clearly.

www.w3.org/Signature, www.w3.org/Encryption . Find the latest specifications here.

Michael Kay, XSLT 2nd edition for a real good introduction to XSLT and
extensions.

Uche Ogbuji, Use XML namespaces with care. Some excellent info on how to use
namespaces. Starts with basic principles and explains how namespaces work. Short
and good. from developerworks.

Web Services Platform Architecture: SOAP, WSDL, WS-Policy, WS-
Addressing, WS-BPEL, WS-Reliable Messaging, and More
by S. Weerawarana et.al,

Resources (2)

Steve DeRose, David Durand, Making Hypermedia work. A good introduction to
HyTime, the SGML based hypermedia architecture. If you want to understand what
computer science really 1s about: Naming, addressing, linking, get this book.

Eliot Kimber, Practical HyTime. Eliot sent this out as a draft but never finished it.
VERY good. Explains the concept of an ,,enabling architecture* by giving us the
logical structures necessary for naming, addressing and linking. If you want to get
mto Topic maps etc., get these books first. I learnt more from these HyTime books
than I did from reading most other computer science literature.

Paul Prescott on Groves, Property Sets etc. Paul wrote a number of very good
articles about the concept of Property Sets. I always wondered how e.g. LDAP
models are somehow related to property sets and nodes???

Resources (4)

If yvou are not famihar with Web Services yet: go through the slides of my Web
Services lecture for distributed systems:

http://www kriha.de/krthaorg/docs/lectures/distributedsystems/webservices/webservic
es.html

Eric Rescorla, SSL and TLS, Designing and building secure systems. Chapter 10:
SMTP over TLS. Makes the principles of , .object based™ security clear. Makes you
understand the end-to-end problems of security in a multi-hop environment and
shows some solutions. Interestingly, there is NO real solution to secure e-mail over
session-oriented SSL/TLS. Best to read before getting into webservices.

IBM Websphere 4.0 Advanced Edition Security. Chapter 9, Securing Web Services.
Get it from www.redbooks.ibm.com . Shows you how web services can be secured in
todays J2EE environment.

M.Hondo, N.Nagaratnam, A.Nadalin, Securing Web Services, IBM Systems Journal
Vol.41, No.2, 2002. A very good introduction into the problems of the vision of
webservices as interoperable B2B mechanisms true. Shows interoperability problems
related to secunity. Shows explicit vs. implicit security, implementation differences
etc. Excellent glossary. A few pages well worth to read. Also covers web services in
J2EE environments.

Resources (5)

Web Services Security (SOAP Message Security), March, 2004, OASIS Standard
200401. Extends SOAP with signatures, encryption and binary security tokens. The
basis for most Web Services Security. Download from www.oasis-open.org

Security in a Web Services World: A proposed architecture and roadmap, IBM and
Microsoft joint paper, April 7, 2002, V1. Introduces the web services philosophy
with respect to secunity. Discusses all future standards and has business show cases
to demonstrate how 1t will work. A must read.

Security Assertion Markup Language (SAML). An OASIS headed specification to
achieve interoperable security with XML. Allows single-sign-on. Unclear relation to
the new web services specs published by IBM and MS. Very good chapter on
security and privacy considerations.

SAML advances single sign-on prospects, www.fawcette.com. Shows how a SSO
can be made with SAML.

Resources (6)

Securing Web Services with Single Sign-On, Systinet. Nice article showing how a
security token issuer service could be used to implement a SSO solution. But leaves
the details out (how to secure the token etc.)

Webservices portals: http://www.webservicessummit.com (containg WS-I security
paper eic.)

WS-I-Security Scenarios, Feb. 14, 2004

