Seminar on Complex-Event-Processing
(CEP) in Distributed Systems

Complex-Event-Processing (CPE)

-The big Why of bad things happening in IT-Systems
-Detecting patterns of events

-Defining and using causal relations between events
-Aggregating events to higher-level events

-Layered architectures and CPE

-CPE languages and pattern matching

The following slides are mostly based on ,,complex event
processing”“ by Luckham and , event-driven Systems*“ by Muhl et.al.

Why CEP? Case 1: Logfile Analysis of an Installation problem

Installation started

Service X: could not start

No license server detected
Component Y: f not found
Server Z up and|| running
Service H reporfls size problem
Service |G running

|
Componment U déactivated

©® 0 N o o kA o0 Np =

Component | OK

The complex event is that the newly installed system does not work. A look
at the log file shows several events and comments. Some parts of the system
seem to be running, some seem to be non-functional. The events shown in
the log probably have some causal relationship. But we don‘t know it. It has
to be recovered manually. We would like to know what caused the problems.

Case 2: End-to-End Performance and Failure Reporting and Analysis

Business 1

Process

services

compon
ents

machines

Network

/“ \ Vertical
causality
N
> Horizontal
A causality
Frontend Middle tier Backend]

Events of different semantic level travel through layered architectures. Events
at the same level express vertical causality, events between different levels
express vertical causality. We want to trace the causality relation in both
directions: what does an event cause? What has caused a certain event?

Hierarchical Views (looks like topic maps)

view

Business » I
process ‘ Bus.
. Process X

\ T view
services °
compon / “—“‘—j r—
ents . _‘ Component

“‘\ N performance

machines

Lo
/ \ / __\
Network J

Frontend Middle tier Backend

.
L

A hierarchical event view filters and categorizes events under a certain
perspective. Those views can be created at all levels. Vertical navigation within
a view is required to work in both ways. This implies that the dependencies
between events are known (see causality later). Luckham pg. 57ff.

Sequential Busiiness Process Design

-

Order processing activities

Select Ship Bill
New Order Vendor | | Order | | Customer
valid select belected‘ ship shlpped bill Pald
! i
Rule: / Rule: / Rule: /
Select Ship Bill End
vendor order client

A typical sequence of activities using an imperative style: do this,
do that. Steps are wired together. The relation between activity and

business rule is not really clear. Are explicit command like triggers
really needed (select, ship, bill)?

Event-Driven Business Process Design

=

p

~

~

Select Ship Bill
S (R s Product Order Customer
Comp.
Comp. Comp. comp
A -
| | | |
Valid Order Selected P. shipped paid
I I “] ;
Customer details Credit OK Event bus
Customer Credit
Info. Com
Comp. P-

.

/

A true event-based process hides the rules within components. All
actions are triggered by result-type events. Components listen for
events that trigger their behavior.

Event-Driven Business Process Design

1. A new order has been validated and is posted in the system

2. A customer information component posts customer detail
information including shipping address

3. A customer credit check component posts an event which
states the credit rating for this customer

4. A product selection component checks type and availability of
the product ordered

9. A shipping compeonent ships the product and posts arrival at
the customer

6. A billing component sends a bill and waits for payment. Then it
posts that the customer paid the bill.

Much of the information posting is done in an asynchronous fashion in
parallel and independent of other processing in the system.

Process including external service components

=

p

~

~

Select Ship Bill
New Order Vendor Order Customer
Comp.
Comp. Comp. comp
N A
| | | |
Valid Order Selected V. shipped paid
I l — :
Event bus

Customer details

.

Customer
Info.
Comp.

External Command

External
Service
Interface

/

The external service interface is a technical artifact that would not

be needed in a global event bus.

Asynchronous Subprocesses

] O]

L]

/ B < \
Select Ship Bill
New Order Vendor Order Customer
Comp.
Comp. Comp. comp
N A
! ! ! !
Valid Order Selected V. shipped paid
¢ ¢ l l
Event bus
. J/

Components can internally use asynchronous events e.g. to run an

auction for a bid. Sometimes the front component is called

synchronously and works internally in an asynchronous way - the

so called half-sync half-async pattern (Starbucks).

Select Vendor Subprocess with scope and filters

?

~

Vendord

N

Select
Component
|
RFQ bid2
|
Event bus
bid1
Vendor1 Vendor3

4

~

/

Only vendors with a certain on-time-delivery history should be selected. This
can be achieved through scopes: an administrative component creates a
controlled subsystem of the event bus where only selected partners can
send and receive events. This can be done through the installation of filters.
Vendor3 is in scope but was not able to bid. Vendor 4 did not see the RFQ.

Timing Process steps

((I
Select _ _
Vendor Reglftter timer
Component event to
terminate
| auction
RFQ
|
Event bus
)

o
-

Time limits for process steps can easily be created by registering timer
events. Many systems model time based effects this way (see VRNML timers

for 3D effects etc.)

The Business Process Abstraction

- Business Planning frequently uses the process abstraction to
describe business operations and goals.

- Event-driven systems seem to dissolve the notion of a
sequential process.

-The interesting question is: Is there still a concept of
,business process” in this system?

- And if not, is it needed and how could it be created?

- How are events correlated to form a higher-level abstraction?

Extensions

G New ECA | O\

rules

I I \

Event bus

New event
[

New

\ Comp. /

Due to their de-coupled nature event-driven systems can easily be
extended with new actions. A new component can easily receive
events and produce new events. Of course, the new events might
need rule changes within existing components to become effective.

Exceptions

N
9%

\
Select T Register timer
Vendor Comp. event to
Component terminate
auction
Exception
Event bus
_ 4

. /

Luckham argues for exceptions as first class citizens. This means that
exceptions should be handled in the same way as regular events. An external
timer component can raise an event that indicates that still no proper vendor

has been selected and that the criteria have to change now. The select
vendor component will now change the criteria and select a vendor.

(Luckham pg. 38)

State in Event-Driven Designs

~

/ /,,m-'"'_'—'_“"'-m\
N A Ship Bill
New Order Customer Order Customer
Comp. details Comp. comp
| N~ | |
Valid Order shipped paid
l 3 l i
Event bus

Customer details

.

Customer

Info.
Comp.

/

Components can remember events and keep their own database. An
important question: when should a component invalidate this
information?

Monitoring and Causal Tracking: To Do‘s

A component or process failing needs:

1. A way to detect events (mostly lower level events) that
led to the situation

2. A determination of the ,root“ cause

3. A way to trace the consequences for higher level
components or processes

4. A way to predict consequences on the same or higher
levels as the failing components/processes

Event: A record of an Activity

Type: shippedProductEvent

- ID: 234897895

- Time: 11.11.2011

- Customer and Product Data

- Causality Information: E3, E89, E..

- Aggregation Information

Message: product X shipped

to customer Y
Shipping

Process

According to Luckham an event is much more than just a message. It
include vital meta-data on what caused it, correlation information, time etc.

This means that events need to be specially created.

Event Sources

Synthetic events derived from
processing other events

CEP

/

Events derived
~— from logging Events d.eriv.ed from
~— /| (instrumentation) Shipping communication
i Component i
~__

The differences in communication channels are not relevant. Messages
and events can flow through the same system, e.g. a MOM (Luckham pg
91ff)

Event

Synthectic events through CEP detection
Business 1
process “
Y f. i I,-‘ —] L
services)
ey ™~)
compon ‘ g . —)
ents)
Y T & ,-(__',—r .--__'_..-—_"".n
Ta— N
. L=
machines > > >
/ X il f
/ \ /
Network

Events on different levels of the architecture are aggregated into more abstract events. Those abhstract
events can simply be representations of a concept (e.g. an attack) which are not normally part of the
event chain within a company. But they can be fed back into hormal event processing, e.g. causing the
shutdown of a process or machine. Should only aggregate events be forwarded? The propagation of all
events will probably cause to much data.

Event Aggregation and Complex Events

| Activity
|
D
A
B Fc
C

-
o

Fc is a complex event that represents a certain activity over a timer interval.
Once detected/created, Fc is a new event in its own right. Rule: if (first{A) AND
then(B parallel to C) AND then(D) create(Fc). ,,B parallel to C“ is a constraint for
this rule. Or: Timestamp(D)-Timestamp(A) < 10sec.

Relationships between events are transitive and asymmetric (Luckham pg. 95ff)
and partially ordered

Event creation: Timestamps and Causal Vectors

Message: product X shipped

to customer Y
Shipping =
Process 1

Event (+ time, causality,
aggregation etc.)

Y

Event CEP

AR Creation

Event creation includes observation and enrichment. A special adapter observes
regular messages and forwards it to components which add vital information that
finally creates an event. This event is then forwarded to further CEP processing.
Timestamp and causality information are called ,,genetic parameters”. (Luckham).
A causal vector is the set of events that caused the current event. It allows causal

tracing between events.

Computational Causality

~Cause: If the activity signified by event A had to happen in order for the activity signified by
event B to happen, then A caused B. Causality as defined here is a dependency relationship
hetween activities in a system. [..] An event depends upon other events if it happened only
hecause the other events happened. [..] if event B depends upon event A, the A caused B (This
is computational causality which depends only upon properties of the target system. Itis a
much more limited concept than philosophical or statistical notions of cause and effect”
(Luckham, 93)

The dependency relationships are defined by the properties of the
target system. This means that the causal rules used to create the
event sets for historical causality express the BELIEVES of those
people who built the system. Actual system behavior may be based
on different rules.

Another point: Each event has a causal vector with events that were
instrumental in causing the event. But what about different
perspectives for system observations? Theoretically we should be
able to keep the causal vectors also independent of the events.

The CPE examples below: are they really convincing with respect to
causality?

Additional causal information

Prepared Prepared Prepared
P1_2_C P2_2 C P3_2 C
Commit Commit Commit
C_2_P1 C_2 P2 C_ 2 P3

Each input event to the coordinator C is causally responsible for the
commit command to every process. Otherwise the coordinator would send
a commit command to one process without having the agreement of all
three processes. Luckham argues that without the causal relations made
explicit a defective logic in the system would not be detected because the
system itself behaves correctly in this case. Example form Luckham, pg. 48

Partially Ordered Sets of Events (Posets)

Deposit(5, A1) Deposit(10.A2)

Transfer(5,A1->A2)
Deposit(10,A1 Deposit(..A2)
ithdraw(15, A1 Deposit(..,A2)

Posets express causality relations between events. This is mostly
done using a DAG. Once causality is expressed it can help to reduce
the huge numbers of events to find those who are responsible for a
certain effect. The causal history of an event includes its ancestors

and their causal history. (Luckham 101)

Explanations from causal history

Deposit(5, A1) Deposit(10,A2)

Transfer(5,A1->A2)
Deposit(10,A1 Deposit(..A2)
ithdraw(15, A1 Deposit(..,A2)

The withdraw event fails because of the previous transfer. Luckham (102)
argues that the Deposit(10,A2) belongs to the history of A1 because of the
transfer request and the account being a sequentially accessed ressource.
The later deposits on A2 are ,,causally after” the transfer (why?). Even with
an earlier timestamp they would clearly not belong to the causes of the
failure. The example is not really convincing.

Alternating Bit Protocol Example

Re-Ack
M1
" Send || Rec. _[Ack Rec. Ack
M1 M1 M1 MO 7| MO \.
send | [wait | [Timout| [Resend) [Rec. Ack | [Re-Ack
MO MO MO MO Mo | Mo MO

Luckham pg. 103ff. But was the second RecMO a duplicate during the
re-send or a late arriving package? Should the timeout value change?

Causal Models

Rules for event
transformation

/\

- -

System A ||CM CM| | SystemB

Causal models can be retrofitted to monitor incoming and

outgoing requests between collaborating enterprises. Models can
use correlation ideas if they exist or create their own causal
identifiers.

Event creation Il: Causal Models and Maps

Message: product X shipped

to customer Y
Shipping
Process

e
-

Event (+ time, causality,

aggregation etc.)

., Causal Map)
Adapter (message/event | CEP
store=)

Causal Model
(rules, event pattern,
constraints)

A causal model allows a causal map to process messages and create events.
Depending on the available message information and the requested patterns
this can be very demanding.

Event Patterns

-Content sensitive (look into event text and timestamp etc.)

-Context sensitive (the matching state plays arole, e.g. a
database lookup is needed)

- Causal filter (e.g. use a reference ID to select only certain
events — think about an advertisement which requires to
mention a ref. Number in order to get a discount) The

ref. Number connects the advertisement with the following
orders causally (computational causality)

- complex event-relationship patterns (an order, a discount
announcement and following that a request for reduction

from customers who ordered before the discount was
announced

Luckham, pg. 115ff.

OLAP vs. CEP

Y
L/
Y
L/

Y
L/
Y
L/

/O O
Causal

Models and
Maps

-Both nheed causal rules and theories

-CEP can do real-time analysis and
feedback to the system

- Both can store the events

System

/J*g

~_

Data
Warehouse

~_

'

Rules and
Analytics

|

Events and
results

Interval Timestamps

T = |Tlow; Thigh|

Total order: T1 << T2 if T1high < T2low

T2

T1

Partial order: T1 < T2 if (T1high < T2high) V (T1high = T2high AND
T1low < T2low)

T2
T1 T1

T2

Event Detection States

Publish
external
event

Generative

Initial
State

Ordinary
State

Y

State

Publish
internal
timer event

Weak and Strong Event Transitions

A B e
Strong transition with Weak transition with
timestamps of B events timestamps of C events
following totally following partially

ordered those of A ordered those of A

Composite Event Language

Atom: detect individual events in the input stream and switch to a
generative state

Negation: detect all events except the ones negated and switch to a
generative state

Concatenation: a composite event is detected where e2 weakly follows
el

Sequence: a composite event is detected where e2 strongly follows e1
(timestamps do not overlap)

Iteration: a composite event is detected where a generative state
repeatedly transitions back to the intital state

Alternation: One of two possible composite events is detected. The e-
transitions introduce non-determinism.

Timing: a certain time after a composite event a timer event is generated.
This timer event is then detected by another composite event.

Parallelization: two composite events are detected in parallel

See Muhl, pg. 238ff.

Detection Policies

Early consumption of events:

best effort. Can cause wrong or failed detections because events
with older timestamps are still being delayed e.g. in the network

Guaranteed Detection: must wait for totally ordered events. Lost
events can cause the detector to wait forever in asynchronous,
distributed systems because the delay is unbound. If the network
does not re-order events the detection of an event with a newer
timestamp allows the detector to conclude that no older events are
still in the network.

Distributed Event Detection

_— 1 \
D D D D
T / “
P

P P P

Complex event expressions are de-composed and distributed to
individual detectors which can be much closer to event sources.
Unneeded event atoms can be thrown away close to the source.

Resources

-Judea Pearl, Causality, hitp://bayes.cs.ucla.edu/BOOK-2K/index.html

- David Luckham, The power of events,

- CEP Portal http:/liwmww.complexevents.com/

- Mihl et.al. Distributed Event-Based Systems

- John Sowa, Process and Causality, http://www.jfsowa.com/ontology/causal.htm

- Ken Birman, Reliable Distributed Systems

