Seminar on Secure Software






Agenda

XN R

Security as a Subset of Safety
Problem View: Beyond Attacks
Critical Trends and Developments
Root Causes

Architectures for Secure Software
Application Analysis

Modeling the Flow of Authority
Resources






SECTION 1

Theory: Security as a Subset of Safety







Functional Safety vs. System Security — a Real Difference?

Malicious intent

@ Software with Quality/

Causality Same fatal

consequences

Problems

Non-Malicious intent

Software quality problems are both safety AND security problems as we often
won'‘t be able to distinguish the intents in the consequences. (see Functional
Safety Standard: IEC 61508)






& - n L B N

Liveness and Safety

correcthess

safety liveness

Security

The correctness of a system consists of safety (expressed by things
that should NOT happen) and liveness (expressed as things that
SHOULD happen). Security issues can be expressed as both with the
addition of malicious intent.






SECTION 2

Problem View: Beyond Attacks







Vulnerabilities (1) : Cross-Site Scripting

User visits attacker
site and clicks on

link to (prefilled)
form

Script steals
cookie

Form post -

Form response

Cross-Site Scripting — one of many cases of bad input/output validation in applications. Where
are the frameworks to help developers? How many ways are there to express a ,<,, in
unicode? |s this problem really solvable? Think about the relation between input and
interpreter — one man's trash is another man's treasure! And exactly WHY is XSS so
dangerous? i







Vulnerabilities (2) : Butfer-Overtlow

Ouinput from the keyboard is now the address where the next instruction
should befead by the CPU. Now we know how to point the CPU to code we placed on

the stack

Exception: STATUS_ACCESS_VIOLATION a
eax=00000012 ebx=00000004 ecx=610E3038 edx=
edi=610E21AQ
ebp=61616161 esp=0022EF08
program=D:kriha\security\bufferoverflowlover.exe, pid 720, thread main
cs=001B ds=0023 es=0023 fs=003B gs=0000 ss=0023
Stack trace:
Frame Function Args

90087 [main] over 720 handle_exceptions: Exception:
STATUS ACCESS VIOLATION

104452 [main] over 720 handle_exceptions: Error while dumping state
(probably corrupted stack)

0000000 esi=004010AE

A program crash is a way into the system! But the real quality problem is much
deeper: Stick a finger in some code and figure out what you can do from there. What

functions can you reach from any point in code? Who's failure is that?






Vulnerabilities (3) : Dangerous Extensions

Network, Memory Management, File Access, Plugins

A
[ XPCOM l

XPConnect T

XML, CSS JavaScript

[ Gecko XBL&CSS [Spidermonkeyw

iy

iy

XUL Runner

Unprivileged

bt b wax L Patterns of the Mozilla framework i
HOCHSCHULE DEA MEDIEN Benjamin Mack, Chris Lindenmiiller, Thomas Miiller 22

Extensions are a necessity nowadays (eclipse, 3dsmax, firefox) get most of their
functions through plug-ins. Linux and XP use the same principles for the OS kernel.
But is it OK that every extension can take over the application or system? Will a

cimila mrivilamsad ve [Iinmsriviladasd massSa Asa?






Vulnerabilities (4) : Virus/Trojan Horse

,,.-*"'_
Intention: Do you really want
to read this mail
from your boss??

Action:
double-click -

One thing to remember when a virus or trojan ruins your computer: The operating
system WORKS AS SPECIFIED in this case. So it must be your fault, or?

read attachment

Effect:

Precion , [Program |
L

Effect. System
Calls with User X

rights

On getting used to something: do you hear talking regular people about which tools they
need to drive their cars? Why then talk regular people about firewalls, virus
scanners, privacy guards etc.? .






SECTION 3

Critical Trends and Developments







Giving up on Platform Security?

office home
' Security

SMS L] security it
based %H O tools ] Specialists
code PC with update  Analysig® %
control  DIRFOY tracking SW _ F%ftﬁ?”

‘ =

report
MS-Data
Center

—
L]
—

PC with tracking SW

Bill Gates is wrong: not the Internet is unsafe and dangerous — it is his platform. And the

solution will not be global data centers controlling the home computing platforms. Is there,
army reaacensn i acceiime that enftware ic inharantlv iineafa?






Sandboxes and the ,,AllPermission® Problem

-Java 2 Security ,AllPermission“
- .Net ,fully authorized“

-- Symbian OS ,*.* Permission®

Many platforms allow restrictions of authority on different levels of granularity (objects,
assemblies, dlis). Why are those mechanisms almost never used? Could it be the
consequences for architecture and design?






Ubiquitous computing

1 ~
| SN
™
% N
s \

|
|
I
J /

e /‘._ \\.

.- Sal=Top-Box

FireWire N

Diverse

I

UWB Fermseher I
I

Pratokolle I

Residential Gaseway
(WLAM DSL Router)

Ethernet

FireWire
LISE

Lcertified” software

,certified” software

[—]

Cars, personal appliances, shops and transport agents etc. will all communicate with each
other. How do we manage our privacy and intentions in this context? Autonomous agents
need power and independence to do their job — and there is no margin for error or

security holes.

13






Beyond Infrastructure Security: Distributed Security

Channel
> . based
security

infrastructure

Signed
Messages
travelling
across
intermediates

We will go from channel based security to a cryptographically based form of communication

that is modelled after real world security in our society. This will decouple infrastructure
and security better.

14






SECTION 4

Root Causes







Software Defects that threaten Safety

A common, havigable
filesystem with ambient

authority

Server
Application

(privileged)

Dangerous accounts, single | Global Administrator

audit and log features

Tons of unsafe but
privileged scripts
and utilities {(setUid)

=300 complex
system calls

Countless
dynamically
loadable modules

>100.000 drivers for
windows

Huge TCB, 2 modes only

Common Filesystem

Privileged Utilities
Huge Libraries
Unsafe Languages

System call Interface

Module Module Module

Unsafe extension mech.

Monolithic | egacy OS
Driver Driver Driver

Hardware (CPU etc.)

Same runtime for all
applications

Cycle stealing applications
create a problem for near-
realtime multimedia applications

Lots of unverified system
libraries with memory leaks etc.

Incomplete quota administration
(liveness problems)

Afttacks on random
number generation

Unsafe languages
(memory)

Unsafe extension
mechanisms

Covered channels
(cache, bios, CPU) 10






Some Reasons for Insecure Software

-Ambient Authority makes errors and attacks fatal (No Loader Isolation etc.)

-Missing frameworks for input validation based on a definition of the application language
-Extension concepts that do not provide loader isolation

-No authority reduction strategies within applications

-No granular delegation of rights

- Separation of designation from authority {confused deputy)

-A huge dependency on infrastructure security (. NET and J2EE)

-Bad testing approaches (no fuzzers, no automation etc.)

-Bad Shared-state multithreading

-Side-effects, global directories, global navigation, security modes etc.

Deploying an application into this environment can take month after month of
laborious testing. But how can you be sure that core security concepts (like
trust zones, end-to-end security, secrecy etc.) are met and maintained by the
software? Automation of tests is a key requirement! Execution of tests must be

fully traced. 1






Example: multi-threading hell

The object is at the
mercy of any thread /
that sees it.

Nothing can be done

to prevent method
iInvocation ...
count

... even If the object is

not in a fit state to service e
It. The objectis not In ready
control of its life. ::\

Now isnh‘t that a funny way to do encapsulation? From P. Welch, a CSP Library
for Java Threads. We see not only consistency and liveness problems with
shared-state multi-threading but also subtle time-of-check-to-time-of-use
(TOC2TOU) security problems.






Example: The designation problem

Open (char* filename, int mode) // application needs to transform the
/I symbolic filename into a ressource

Open (Filedescriptor fd) /f application receives an open resource without the
/I need to perform any rights-related operations

An API like this forces the transfer of all authority from the user to the
application because it is unclear what file will be opened at runtime. The
second APl does NOT require ambient authority!






Example: The Installation problem

System (with admin rights)

New Software:
Run with admin

rights - DIl files, config files
/" . N » - setup.exe

A system with such a software installation process does not need to wonder
about software artefacts being scattered througout the system. It is inherently
unsafe to call foreign code with admin privileges

it






SECTION &

Architectures for Secure Software — or why
Security 1s not an Aspect







Authority Reduction Mechanisms

« Access Control List and Reference Monitors (Operating Systems)

« Call-Trace and Reference Monitors (Java, .NET, distributed objects)
« Multi-Level Security (labels, tagging, tainting)

« Name-Space based isolation (O3GI)

« Object Capabilities (E, Singularity, capability systems)
 cryptographic methods: Contract, ticket, signature, power-of-attorney
« Mode-based Security (e.g. processor rings)

« Zohe-based Security (Internet Explorer Zones, Mozilla Chrome)

« Programmatic Security (if-then-else)

The mechanisms are very different along several dimensions: static/dynamic,
external/internal, architecture-sensitive vs. Insensitive, data-oriented vs. Code-
oriented, type vs. Object based, infrastructure-dependent vs. Independent,
granular vs. Global.

1z






Microarchitecture: Object Capabilities

Bob can communicate with Carol
because he got a reference to her.
He has NO ambient authority
enabling a call to Carol

Alice has a reference to
Bob and Carol and grants
Bob a reference to Carol

Object Capabilities reduce authority in a system: no access without a reference.
And references combine access right and access method (designation and
authority). They are a superior way to CONSTRAIN effects and are easier to
analyze than external permissions. The diagram is called ,,Granovetter-Diagram®
after the well known sociologist Granovetter).






Microarchitecture: Functional Principles

def makeRevokableAndFilteringForwarderTriple(ob)) -any {

: . . Initial authorit
var innerObj ;= ob] by creator

def forwarder {match [verb, args] {E call(innerObj, verb, args)}}

Protected use

def revoker {to revoke() {innerObj = null}} of authority

def somefunc {to somefunc() {innerObj.somefunc()}}

Granular acce
return [revoker, forwarder, somefunc] functions for

} different
receivers

Higher-order functions and closures have important security properties: they can
encapsulate authority and provide granular access to it. And they make authority
accessible only while they run (Execution environment). They behave like
mathematical functions with respect to predictable operations. Call by value
semantics makes life much easier. Creator and caller can have different privileges.
Are our students still learning the concepts behind other languages? 2






Security Components: Security by Behavior

How do we
model ¢1
behavior?

Behavior beyond
what simple
take/grant systems
can express

CT is a ,,caretaker” which allows Alice to revoke Bob's access to Carol.
Modelling security properties becomes much easier once we can include the
behavior of code into the security calculations. This allows us to narrow down
authority to actual effects.

5






Macro-Architecture:

[OC and Virtualization

Inject dependency
(DI principle)

Initiate Call
(IOC principle)

Node

Node Node

Declare
dependency
Init{Node)
Read() Use reference
Write() (object capability
principle)

Node does not allow traversal
and so plug-in cannot access
parent node

How do we make extensions safe? How do we achieve complicated business
requirements like multi-tenant abilities? The answer is in Inversion-Of-Control
architectures combined with strict control over references (no global crap for
Hflexibility” reasons...) which effectively virtualizes the plug-in runtime environment






Authority Reduction Architecture

Authority container for application with
dialog option

Designation of object Transformation of Granular Granular
and action by User names to capabilities distribution of delegation of
(trusted path + and creation of authorlF}f. au?horlty to single
. powerbox per (capabilities) to objects
authority by o
application program modules

designation)

We need to narrow authority down from the global rights matrix (ACLs or Access
Control Matrix) of a users rights to the minimum authority necessary to exectute a
function. Test: try to find how many rights you REALLY need to copy a file! 7






Semantics and Usability: Petname Systems

Externally
Global controlled nhame
Software- 4 ’7:';;;
controlled, b ) 2,
directional #  No Names ":%J
relation Land \ User Interface shows
Petname and warns of
PetNames 4 ambiguities or
Securely ' Memorable Key/nickname changes
Unique

The attacks of the future are against the brain. Software can help us detect
semantic attacks - if it speaks out language, automates difficult tasks and offers
us granular but workable control over authority. Diagram: zooko/miller

it}






SECTION 6

Application Analysis







Vulnerability Database of Mozilla/Firefox: Recurring Bug Patterns

Fixed in Firefox 1.0.8

Table Rebuilding Code Execution Yulnerability

Privilege escalation through Print Preview

Privilege escalation using crypto.generateCRMFRequest
MFSA 2006-23 File stealing by changing input type

CSS Letter-Spacing Heap Overflow Yulnerability

MFESA 2006-19 Cross-site scripting using .valueOf.call()

Mozilla Firefox Tag Order Yulnerability

MFSA 2006-17 cross-site scripting through window.controllers

Accessing XBL compilation scope via valueOf.call()

Privilege escalation using a JavaScript function's cloned parent
Privilege escalation via XBL.method.eval

MFSA 2006-13 Downloading executables with "Save Image As..."

MFSA 2006-12 Secure-site spoof (requires security warning dialog)
Crashes with evidence of memory corruption (rv:1.8)
JavaScript garbage-collection hazard audit

MFSA 2006-09 Cross-site JavaScript injection using event handlers
Localstore.rdf XML injection through XULDocument.persist()
MFSA 2006-03 Long document title causes startup denial of Service

MFS4 2006-01 JavaScript garbage-collection hazards

Fixed in Firefox 1.0.7

MFSA 2005-52 Command-line handling on Linux allows shell execution
Firefox 1.0.7 / Mozilla Suite 1.7.12 Yulnerahility Fizes
IDN heap overrun using soft-hyphens

Fixed in Firefox 1.0.5/1.0.6

MESA 2005°56 Code execution through shared function objects
MFSA 2005-55 XHTML node spoofing

MFSA 2005-54 Javascript prompt origin spoofing
Standalone applications can run arbitrary code through the browser
MFSA 2005-52 Same origin violation: frame calling top.focus()

il






& - n L B N

Evolution of Browser Security

Ur-Browser: Vulnerabilities

Browser with Hobbles: New Vulnerabilities

Browser with more Hobbles

Browser with Security Concepts: Same Origin

Browser with Security Mechanisms

Privilege Definitions/Policies/Sandbox
Data-lainting Code Signing (more Privileges for Trusted Code

Modern Browser: New Vulnerabilities

POLA Browser: Authority Reduction






S —

Interaction between privileged and non-privileged code

L B N

Content DOM

Page Script (using
eval or script object)
places code over

property:
Fix 1: call original
e automatically
ol
Fix 2: use
content

privileges

Chrome code calls
content script with full

privileges

Privilege
elevation

3z






SECTION 7

Modeling the Flow of Authority — Security
Analysis







V A N - n L B N

Access Control Matrix

Object1 Object2
Static Subjectt Right1 Right2
Rules
Subject2 Right3 Right1
Reference Monitor
Software fiaht1
Configuration J
————————————

The Access Control Matrix encodes access rights between subjects and objects.






& - n L B N

Primitives: create, delete [Subject|Object], enter, delete [Right]

createfile(subject, fileObject) {
create FileObject
enter Right=0wn in ACM[subject,fileObject]

/f more rights. ..

transerferRead(OwnerSubject, OtherSubject, fileObject) {
/f more conditions. ..
If (ACM[subject, fileObject] == ReadRight)
enter ReadRight in ACM[OtherSubject, fileObject]
}

Manipulations of the ACM cannot be verified computationally (halting problem)

i)






V A N - n L B N

Take/Grant Model for the Flow of Authority

Allow granting of Capability (g)

—
Take Capability (T)

e ——— 0= L0118

Grant Capability (G)

) Capability

Allow taking of Capability (t)

eCapabiIity

Possible subject behavior: T, G, t, g

36






V 4

Dimensions of extended Take/Grant Behavior Models

invoke

b

Capabilities

emit

Data

respond

collect

7






V A N - n L B N

Caretaker Model with extended Take/Grant semantics

RP: Do not expose Carol, only pass capabilities acquired through collaboration

]






V A N - n L B N

Simulation of *-properties with ext. Take/Grant

Read down

Write up

Read-Down Diode: "W/IR (L1< L2); Write-Up Diode: rR/IVW (L2 > L1)

Al Aats e a3 itbharitysy fearmabilitbvyyy e accirirmerti;mrne asbler ik 1 A1 7 baebhaviamr

]






V A N - n L B N

Authority Propagation (Bob gets access to Alice and
De-Jure can propagate that access

Inflience

access access
Take Right
De-Fakto Propagation of influence (Data from Alice can
Influence Hléj:)nce Bob but Bob does not get authority over
access ACCESS
Read Right Read Right







S —

L B N

Isolation with two passive objects

. Read Right

dCCesSs

dCCesSs

.R

ead Right

Isolation

access .
Write Right

dCCEsS

Write Right

4






V A N - n L B N

Can S1 give Sx some right?

. T . T . T . T . G .
Can &1 get some right from Sx?

.T.T.T.T.L‘.

T

42






SECTION 8

Security and Usability — Chances for a better
GUI on a reduced authority system.







Intentions and System Behavior

User concepts vs. Damage minimization
System concepts strategies in software

w)
)|

2

7

Manipulation of many
objects

Separation of concerns:
users vs. system \

&

Currently user expectations and system behavior do not match. How do we get
around useless warning dialogs?






Resources

L

11.
12.

13.

14.

Virtualization: Gerald J. Popek and Robert P. Goldberg {1974). "Formal Requirements for
Virtualizable Third Generation Architectures". Communications of the ACI 1T (7). 412 421.

Secure languages and Systems: www.erights.org

Alternative Multithreading Approaches: CSP, Event loops, Stefan Reich, Escape from Multi-
threaded Hell http:iliwww. drjava.dele-presentation/html-englishiimg0.html. Peter Welch, A
CSP Model for Java Threads www.cs.kent.ac.ukiprojectsiofaljcspicsp-java-model. pdf

Testing, Fuzzing: Month of the browser bug, Daniel Bachfeld, Die Axt im Walde
http:iiwww heise.delsecurityfartikeliprint/76512

Platform Security: Andy Tanenbaum et.al, can we make operating systems reliable and
secure’? www.computer.org

Robust Composition: Mark Miller Thesis, 2006 http:/iwww. erights.orgitalksithesislindex.html
Gates Talk RSA 2005 {www.rsa.com)

Darpa Browser Architecture (www.combex.com)

Authority Reduction, Theoretical Foundations and Decidability: www.combex.com {powerbox

Concept, secure desktop etc.

Concept Based Education: Peter van Roy, Saif Haridi, Concepts, Technologies and Models of
Computer Programs

Usability and Security, Simson Garfinkel Thesis 2005, Cranor and Garfinkel 2006

Petname Systems: http:l/zooko.com, Mark Stiegler, An Introduction to Petname Systems,
http :iwww. skvhunter.comimarcesipetnamesiintroPetNames.html

Safety Analysis: Fred Spiessens, Peter Van Roy, A Practical Formal Model for Safety Analysis
in Capability Based Systems

Functional Safety Standard: IEC 61508, International Electrotechnical Commission
Functional safety of electricalielectroniciprogrammable electronic safety-related systems.

http:ihwww.iee.orgloncommsipnifunctionalsafe ty/HLD.pdf




