Ultra-large-scale Sites
<working title>

— Scalability, Availability and Performance
In Social Media Sites

(picture from social network visualization?)

Walter Kriha
With a forword by << >>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 1 03/12/2010

Copyright
<<ISBN Number, Copyright, open access>>

©2010 Walter Kriha

This selection and arrangement of content is licensed under the Creative Commons Attribution
License:
http://creativecommons.org/licenses/by/3.0/

online:www.kriha.de/krihaorq!/.

<img
alt="Creative Commons License" style="border-wi@th:
src="http://i.creativecommons.org/l/by/3.0/de/88x81g" />
<span
xmins:dc="http://purl.org/dc/elements/1.1/"
href="http://purl.org/dc/dcmitype/Text" property=<title" rel="dc:type">
Building Scalable Social Media Sites by <a
xmins:cc="http://creativecommons.org/ns#"
href="wwww.kriha.de/krihaorg/books/ultra.pdf" prape="cc:attributionName"
rel="cc:attributionURL">Walter Kriha is licendainder a <a rel="license"
href="http://creativecommons.org/licenses/by/3.0f€reative Commons
Attribution 3.0 Germany License.
Permissideyond the scope of this
license may be available at <a xmins:cc="http:Ativecommons.org/ns#"
href="www.kriha.org" rel="cc:morePermissions">wwwiha.org.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 2 03/12/2010

Acknowledgements

<<master course, Todd Hoff/highscalability.com..>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 3 03/12/2010

ToDo’s

- The role of ultra fast networks (Infiniband) ontdisuted algorithms and
behaviour with respect to failure models

- more on group behaviour from Clay Shirky etc. itite first part (also
modelling of social groups and data)

- OpenSocial as a modelling example. Does it scale?

- finish chapter of popular sites and their architeet

- alternative architectures better explained (spapss,es)

- cloud APIs (coming)

- consensus algs for the lowest parts explained

- failure models (empirical and theoretical, in cortien with consensus
algs)

- practical part: ideas for monitoring, experimemrtgending a site into a
community site as an example, darkstar/wonderlaathbility

- feature management as a core technique (exampled Gl

- ..and soon...

- Time in virtual machines

- The effect of virtual machines on distributed aitjons, e.g. consensus
- Modelling performance with palladio

- Space based architecture alternative

- eventbasierte Frameworks (node.js / eventmachmkQi

- client side optimization hints

- gueuing with data baselst{p://www.slideshare.net/postwait/postgresql-
meet-your-queye

- spanner: googles next infrastructungp://www.royans.net/arch/spanner-
googles-next-massive-storage-and-computation-itntreisire

- CAP explanation:
http://www.instapaper.com/text?u=http%3A%2F%2Fwwilignbrowne.com%?2
Farticle%2Fviewer%2Fbrewers-cap-theorem

- Puppet config management:

- http://bitfieldconsulting.com/puppet-vs-chef

- Agile but extremely large systems configurationipems!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 4 03/12/2010

Foreword

<<by ?>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 5 03/12/2010

Copyright 2

Acknowledgements 3

ToDo's 4

Foreword5

Introduction 13

Part I. Media, People and Distributed Systems 17
Media 18

Meaning across Space and Time 18
Partitioning 18

Social Media 19

Being digital, distributed and social 19

Short Digression: The fragile concept of ownershidigital times 20
Superstructures 24

Social Media and their Price 24

People — communicating, participating, collabomgtin
25

Coordination 26

Where is the Money? 29

Findability 30

Epidemics 31

Group Behavior 31

Social Graphs 32

Superstructures 32

The API Web — the Sensor Web — the Open Web? 33
Supersize Me — on network effects and endless growt33
Security 34

Federated Access Control to Private Data 36
De-Anonymization of Private Data 37

Identity Spoofing in Social Networks 38

Scams 39

Bootstrapping a large community 40

Part Il: Distributed Systems 41
Basics of Distributed Computing Systems 42

Remoteness, Concurrency and Interactions 42

Functions of distributed systems 43

Manifestation: Middleware and Programming Models 45
Theoretical Underpinnings 47

Topologies and Communication Styles 49
Classic Client/Server Computing 49

The Web Success Model 49

REST Architecture of the Web 50

Web2.0 and beyond 53

Web-Services and SOA 56

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 6 03/12/2010

Peer networks 59

Distributed Hashtable Approaches 60

Bittorrent Example 63

Special Hierarchies 64

Compute Grids 65

Event-Driven Application Architectures and Systems 66

Reliability, Availability, Scalability, Performance
(RASP) 71

Resilience and Dependability71

Scalability 72

Availability 75

Concepts and Replication Topologies 79
Failure Modes and Detection 85

J2EE Clustering for Scalability and Availability = 89
Reliability 97

Deployment 97

Reliability and Scalability Tradeoff in Replicatigroups 98
Performance 98

Monitoring and Logging 99

Distribution in Media Applications 99
Storage Subsystems for HDTV media 99

Audio Server for Interactive Rooms 103

Distributed Rendering in 3DSMAX 105

Understanding the Rendering Network ComponentslsMax 105
Using partitioning to speed things up 107

Part Ill: Ultra Large Scale Distributed Media
Architectures 109
Analysis Framework 110

Examples of Large Scale Social Sites 113
Wikipedia 113

Myspace 113

Flickr 115

Facebook 118

PlentyOfFish 118

Twitter — “A short messaging layer for the inter(@&tPayne)” 118
Digg 119

Google 119

YouTube 119

Amazon 120

LiveJournal Architecture 120

LavaBit E-mail Provider 120

Stack Overflow 120

Massively Multiplayer Online Games (MMOGs)122
On Shards, Shattering and Parallel Worlds 124

Shard Architecture and visible partitioning 125

Shardless Architecture and Dynamic Reconfiguration127

Feature and Social Management 129

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 7 03/12/2010

Security in MMOGs 131

Methodologies in Building Large-Scale Sites 131

Limits in Hardware and Software — on prices, perfance etc. 131

A History of Large Scale Site Technology 133

Growing Pains — How to start small and grow big 133

Feature Management 134

Patterns and Anti-Patterns of Scalability 134

Test and Deployment Methodology 135

Client-Side Optimizations 136

A Model for RASP in Large Scale Distribution 138

Canonical or Classic Site Architecture 138

Classic Document-Oriented Large Site ArchitectMidk{pedia) 140

Message Queuing System (Twitter) 140

Social Data Distributor (Facebook) 140

Space-Based Programming 141

Queuing theory, OR 141

Basic Concepts 141

Applications of QT concepts in multi-tier SystemS11

Service Demand Reduction: Batching and Caching 151

Service Demand Reduction: Data-in-Index 153

Service Demand Measurements 153

The n-tier funnel architecture154

Cost of slow machines in mid- or end-tier 154

Queue length and Residence Time 156

Output traffic shaping 156

The realism of Queuing Theory based Models foritisted systems 157

Request Processing: Asynchronous and/or fixed setime 157

Heterogeneous hardware and self-balancing algosithni58

Dispatch in Multi-Queue Servers 158

Unfair Dispatch: Shortest Remaining Processing Thingt 158

Request Design Alternatives 159

Heijunka 160

Tools for QT-Analysis 161

Applicability of QT in large-scale multi-tier ardectures 162

Combinatorial Reliability and Availability Analysis 162

Stochastic Availability Analysis 168

Guerilla Capacity Planning 168

Concurreny and Coherence 169

Calculation of contention and coherence parameters 172

Client Distribution over Day/Week/Year 175

Simulation 175

Tools for statistical analysis, queuing models sinaulation 176

Architectural Principles and Metrics 177

Architectural Principles 178

Metrics 178

Changes in Perspective 178

Part IV: System Components179

System Components for Distributed Media 179

Component Interaction and Hierarchy 179
Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 8 03/12/2010

Latency, Responsiveness and Distribution Architectu 179
Adaptations to media 184

Content Delivery Networks (CDN) 186
HA-Service Distributor 188

Distributed Load Balancers 189

Distributed Caching — not an Optimization 191
Caching and Application Architecture 191
Caching Strategies 192

When not to cache 192

Invalidation Events vs. Timeout 193
Operational Criticality 193

Pre-Loading of Caches 193

Local or distributed caches 193

Partitioning Schemes 194

Memory or Disk 194

Distribution of values 194

Granularity 194

Statistics 194

Size and Replacement Algorithms 195
Cache Hierarchies 195

Memcached 195

Fragment Architecture and Processor 197
Compression 201
Local or predictive processing 202

Search Engine Architecture and Integration 202
Special Web Servers (light-weight) 203

A pull based Web Server Design? 203

Scheduler and parallel Processor 204
High-availability failure detector 204

and lock service 204

Buffering and compensation for networked audio 204

Data Center Architecture 205

Geographically Dispersed Data Centers and Topologp05
Scale-out vs. Scale-up 206

Data Stores 208

Requirements and Criteria 209
virtualized storage: 209

External Storage Sub-Systems 210
Grid-Storage/Distributed File Systems 210
Distributed Clustered Storage 214

ZFS 215

Database Partitioning and Sharding 215

Cache concepts with shards and partitions 222
Why Sharding is Bad 223

Social data examples and modeling: 224
Partitioning concepts and consequences 224
Data Grids and their rules of usage 224
Database based Message Queues 226

Read Replication 226

Non-SQL Stores 226

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 9 03/12/2010

Key/Value Stores 229
Semi-structured Databases 229
Scalaris 231

A new database architecture 232

Part V: Algorithms for Scalability 233
I/O Models 233

I/O Concepts and Terminology 235
Connections 235

The Asynchronous Web 236

The Keep-Alive Problem 237

I/O Processing Models Overview 238

Thread per Connection Model 238
Non-Blocking I/O Model 240

Synchronous Notification (Multiplexing) Model 240
Digression: APl is Ul or "Why API matters" 244
Asynchronous I/O Model 246

Java Asynchronous NIO 249

Virtual Machine Level Asynchronous I/O 249
Staged Event-Driven Architecture (SEDA) 251
Building Maintainable and Efficient Servers 253
Zero-Copy 254

Context-Switching Costs 254

Memory Allocation/De-Allocation 257

Locking Strategies 257

I/O Strategies and Programming Models 258
Libevent — an example event-notification library 026
Node.js —a new async. lib 260

Concurrency 260

Classic shared state 262

Consistency Failures 263

Performance Failures 263

coarse grain locking of top-level functions or dstiaictures 263
pre-emption with locks held 264

thundering herd problems 264

False Sharing 265

Liveness Failures 265

Software Composition/Engineering Failures265

Visible lock owners: mutex vs. semaphore use 266

composable systems in spite of shared state camyrwith locks? 266
Performance impact of test-and swap with lock-Bygechronization 266
Provable correctness? 266

Classic Techniques and Methods to deal with shsts#d concurrency 266
Fighting Context-Switch Overhead: Spin-locks 267

lock breaking in time: generation lock and swapimuogy retiring 267

lock breaking in space: per CPU locking 267

lock breaking by calling frequency: hot path/coltlp 268

threading problem detection with postmortem debug 68 2
Transactional Memory and Lock-free techniques 268

Generational Techniques 273

Task vs. Data Parallelism 275

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 10 03/12/2010

Java Concurrency 278

Active Objects 278
The Erlang Way 281
Multicore and large-scale sites 286

Scale agnostic algorithms and data structures 286
Partitioned lteration: Map/Reduce 287

Incremental algorithms 289
Fragment algorithms 289
Long-tail optimization 289

consistent hashing 289

beyond transactions, large scale media processBg) 2

mostly consistent/correct approaches: 293

Failure Detection 293

algorithms dealing with heterogeneous hardwarerenments 293
Shortlived Information 294

Sharding Logic 294

Scheduling and Messaging 294

Task and processing Granularity with same block,gesk time etc. 294
Collaborative Filtering and Classification 294

Clustering Algorithms 294

Number Crunching 294

Consensus: Group Communication for Availability &whsistency 295
Paxos: Quorum based totally ordered agreement 295

Paxos Implementation Aspects 297
Agreement based on virtual synchrony 300
Optimistic Replication 300

Failure Models 303

Time in virtually hosted distributed systems 303

Part VI: New Architectures 304
Cassandra and Co. 305
Adaptive, Self-Managed ULS Platforms 307

“Human-in-the-loop” 307

Self-management with interacting, hierarchical fesetk loops 308
Emergent Systems Engineering 311

Scalability by Assumption Management 313

Cloud Computing: The Web as a platform and API
318

Canonical Cloud Architecture 321

Cloud-based Storage 322

Cloud-based Memory (In-Memory-Data-Grid) 322
Time in Virtualized Environments 323

The Media Grid 323

Peer-to-Peer Distribution of Content (bbc) 324
Virtual Worlds (Secondlife, DarkstartWonderland) —
Architecture for Scalability 325

Immersive multi-media based collaboration (croquet) 326

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 11 03/12/2010

Part VII: Practice 328

A scalable bootstrap kernel 329
Exercises and ldeas 329
Data Storage 329

Modeling and Simulation 329

Performance Measurements and Profiling 329
Distributed Algoritms329

Measurements 330

Going Social 330

Failure Statistics 330

Part VIll: Resources 331
Literature: 332

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 12 03/12/2010

Introduction

This book has three major parts. The first partdeéh the interdependent
changes in media, people and distributed systertieedaist 8-10 years. The
second part explores large scale sites, theirtaathres and technologies down to
the algorithm level. And it explains the specifdagtations for social media in
those sites in all parts of the architecture. Modeand visualization of

distributed architectures is included as well. Alnel third part presents current
developments e.g. in scalable MMOG design etc.

The drivers behind the first part are: The changekstributed systems
technology of the last 8-10 years which took thegsems outside of companies
and based them after fixed wire internet also obilea@nd wireless networks.
The change in media themselves which became dagithsocial and which are
no longer the carrier of information only. And filyathe change in people who
walked away from passive consumption and turnexttive communities and
social networks.

The following diagram of participating people witbmerous overlays and
interacting media and communication systems dispilag high degree of
entanglement present today.

Social sites search media Interacting,
producing people

youtube

AN

.,

facebook

wikipedia Mobile
systems

The three drivers are very much interdependentch ether — with the actively
participating digital citizens perhaps being the/rked on the block.

Media and the technology they are based on havayallveen depending on each
other. Changes in technology have brought new etassmedia or new ways to
use existing ones. Distribution too has been anraddia ever since. Most visible
when we are talking about broadcasting media lmat ial a much deeper way
when we realize that media were always about brglgaps between recipients

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 13 03/12/2010

distributed across space and time. We will spelitti@atime thinking about

media and distribution in this very basic senseabse we will later see that some
of the problems media face due to this separatiirslow up again on different,
purely technical levels of distributed computertegss as well.

In other words we will discuss media and distributgstems on several levels:
Media in the distributed system of producers, migdiates and consumers and
media in the distributed computing infrastructuttest have been a result of the
internet. And of course we will investigate the geations and dependencies
between those distributed systems because thisasalately new developments
have appeared that seem to threaten existing lasgigepolitical practices and
individual rights. To name a few of these developtaeFile sharing and the
question of digital rights, content creation anstrilbution as a job for specialists,
ad hoc organization of groups, the question ofgmyvand anonymity in digital

systems.and last but not least the changing rgleuohalism due to blogging.
We will discuss how technologies like Web2.0, comitysites and social

networks changed the way media are created, distdband received. And we
will see that the old slogan from the first yeairshe web: “content is king” is no
longer true. It has been replaced by the sociaitfian of media: fostering
collaboration and communication, group building #argeting. Rightly we call
media now “social media” in this context.

The web has been an enabling technology for regelaple who can now create,
manipulate, distribute and receive media in presipunknown ways. The sheer
guantity of the media constructed raises new probléHow do we store, find and
distribute those media efficiently? It looks likewwill rely on collaborative as
well as computing technologies for solutions tosthproblems. We will take a
closer look at technologies which can further egleahis ability to participate:
Semantic tagging, microformats etc. But who arsed¢hgeople who live a life
around community sites, blogging, RSS feeds, tmittessages, continuous
tracking of friends, presence indications and mucihe? The question really
matters because it has a deep impact on the tetlsygtems supporting those
lifestyles. These people can form ad-hoc orgaromatitheir demands on
infrastructure has epidemic qualities which redylaverwhelm technology and
which has been answered e.g. by computing cloutifsimstant scalability. They
might even go beyond the mere demand for fast @lrabte services and ask for
transparency of process and the company behindin ageating demand for new
features in large scale community sites. The kindiata kept in these sites
changed as well as the communication style goioign fin:1 (many users against
one company) to m:n:k (many users to each othsortee companies).

Then it is time to investigate the technologicaddaf the distributed systems
which created the new opportunities and which aireed by them. My approach
is to give a short history of distributed systemd ¢heir core features (and
mistakes) to give the reader a better understardfitige technical problems and
challenges behind all the new web features andapsraven to allow certain
trends and developments to become visible.

Starting with the basic principles of distributggtems we will show the various
answers that have been given in the form of “middie” in the past. Classical
distribution topologies like client-server, peergieer and others and the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 14 03/12/2010

associated programming models explained. Architatsiyles like REST or
RPC are compared with respect to coupling and isititya

Then comes a section on RASP: Reliabilty, AvailagiScalability and
Performance. The move from company internal distet) systems to distribution
on the internet caused the biggest problems anagelseexactly in RASP: The
ability to scale in an environment that is muclslediable than the company
internal Intranets became a key success factdafge community sites and
changed the way architects of distributed systérogght about certain
algorithms and technologies.

The driver behind the second part is a rather waaine: Todd Hoff of
www.highscalability.contreated a portal for all things scalable and loysing
the sheer endless information on this site | redlia couple of things: First, there
are many descriptions of large scale architectiikegswitter, facebook, myspace
etc. which are extremely interesting. They couldibed to sum up the core
features and methodologies behind scalable arabtelsystems (e.g. do they all
use a memory-caching layer?). Second, the repatsastly written by the core
architects and sometimes they are a bit dense. Wvight be a sufficient
explanation for somebody working exactly in thisaars probably just a bit too
short an explanation to be understood by everyljedy a comment on a certain
cache system not being based on multicast andftihergcalable beyond 20
machines). In other words: an explanation of conepts) specializations and
how they work together is needed. This includeseting and visualization.
Third, these architecture studies include spetgtinology (e.g. replication)
which should be explained down to the algorithraielr. Fourth, these large scale
architectures created special solutions for th&iblgms, sometimes by inventing
new algorithms or by relaxing certain constrai@ptimistic replication, epidemic
distribution and eventual consistency, functioratifioning and parallelization
are just a couple of these new technologies.

The second part therefore presents some large-aadigectures and sites and
investigates the distributed technologies and élyos behind. Concurrency
considerations, the handling of high speed I/0 detdbase partitioning play a
major role there as well.

Once the social and technological base of distibsiystems is clear | will bring
in the media. Media present very unique challengelstributed systems which
result from their size, realtime distribution needis. But they also relieve the
technical base from some rather critical probleikes transactional processing.
We will therefore take a look at how distributedtgyns need to be adapted to
support media properly. Concepts like partitionifighe information space are
core to efficient treatment of media. Sometimesmesee that scalability and
reliability of distributed systems forces us to pidthe higher “content” levels to
fit into an efficient distribution strategy. Cachiand replication are successful
strategies to deal with media problems.

Finally in the third part | will investigate pronmigy new applications of
distribution principles to media. There are exgtmew developments which try
to go beyond current problems. Dynamically scaladit@rdless Massively-

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 15 03/12/2010

Multiplayer-Online Games (MMOGS), virtual worlds2P driven media
distribution, self-managed distributed systems ctonmaind.

In the end the reader should have an understafiiogrrent distributed systems
technology motivated by the changes in media, eaptl technology over the
last decade. The topic of large-scale social mgitks seemed to be a good

anchor for the explanation of distributed architees and algorithms.
Why is that so? The book has a little “hidden agéras well. It is the hypothesis

that the size of the systems under investigatimesearily leads to a very
different point of view towards system propertiesspecially the non-functional
ones like stability, scalability, performance &iad that the architecture as well
as the development process experience major change® the changes in
viewpoints. Let me give you some examples: Typycdéivelopers show a strong
“functional fixation” towards interfaces for clienbr customers. After looking at
the way large scale sites deal with those functwasvill realize that the
“business function” part becomes somehow less itaparThis is probably not
correct. It does not become less important: therdimctions are becoming more
important in comparison. It is not uncommon inadkarge sites that business
functions are designed to run in roughly the same.tThey are split into smaller
functions if this cannot be achieved otherwise. 8mmes business functions are
turned off to keep the overall system stable. Amazg@. requires the 99.9
percentile of its services to complete within tleéinked service time. Application
level code is suddenly forced to deal with systepeats violating transparency
principles in a strong way. To me seeing and undeding those changes in
perspective made writing this book big fun.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 16 03/12/2010

Part |I: Media, People and Distributed
Systems

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 17 03/12/2010

Media

Meaning across Space and Time

Frequently media are seen as content within a owrtal his container
can overcome distances in space and time and rhakeddia available at
the receiving end. When you add the capability akimg copies of the
container it looks like media are simply made fistributed systems. This
point of view seems so natural that we tend todbedpout the contextual
requirements behind this process: Creator (less@ag this is the same
person as the sender) and receiver need to shairefacontext to enable
the distribution of media: a common language, aroomsocial context
etc. Otherwise what is shipped in the containagrgimto nonsense at the
receiving end.

This possible “brittleness” in distributed mediaifeature that media
share with distributed computing systems. Whenrapeder
communicates with another computer they need teesgteatain contextual
requirements as well and most people developingllited computing
systems had to learn this the hard way when srhahlges to protocols or
structures on one side caused havoc on the othewilsee more of
those structural or behavioral analogies betwestnillited systems on
different levels.

Partitioning

Most distributed computing systems need to partitiee content and its
delivery across a population of receivers. Othesvpisrformance and
connection complexity bring the system down. Thaegs true for media.

A classic view of media concerns the process ofianeeation and
distribution. We can call it the one-way, top-dosgpecialist viewpoint. In
other words: media are created by media speci&gsgs artists), they are
published and distributed by specialists (e.g. ishkls and networks) and
finally they are consumed at the receiving ends™ascribes the so called
broadcast process and it is a one-way street.

Production and Distribution are usually consideasdwo very different
phases in media lifecycle. There are producersedfiaor content — few.
And there are the masses of consumers of conteah Ecent research
ideas of the EU on media informatics (ERCIM) shbig bias towards a
client/server model of consumption and productims hierarchical
conceptual model of media production is now thmeadeby universal
digital channels and machines. The digital conlétstare shipped over
distributed channels and systems to end users \iheyeare again
distributed to all kinds of players for consumption

You need to compare this e.g. with John Borthwilkik, CEO of Fotolog
and his claim that both: production and distribntieeed to bee seen
together. [Borthwick]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 18 03/12/2010

Before we talk about how distributed computing @reded and changed
this classic process we need to introduce the afgpofsthis process — the
conversation. Clay Shirky in his book “here comesrgbody” took a
close look at social network sites like myspacéicibeis, youtube, flickr,
friendster etc. These sites allow everybody to ighblhatever they want.
Does this mean that all the media used in the gbofehese sites are
broadcast media? Shirky explains that while the @fagistribution looks
like broadcast (everybody can watch) the mediarareh more geared
towards conversation. They need context informadid if groups form
around those media then we see conversation artdproiown broadcast.

Conversation is peer-to-peer. It works only in drgedups due to the
complexity of n to n connections and it is two-wagtead of one-way.
Social network sites take the content producednversational contexts
and “broadcast” them — but this is only a mix-uglferent creation and
distribution methods. An interesting question her@hether we can take
broadcast content and bring it into a conversatiooatext. “Remixing”
content and discussing it in ones peergroup mighirie example. The
sharing of music in closed darknets another.

We will discuss Shirky’s core statement on how absbftware changes
the limits to conversational groups and allowsftrenation of large ad-
hoc mobs further down.

Media have some other qualities that are impofardistributed
computing systems. Media are — when used in thedoast sense — not
transactional. This means simply that there aremeoty different clients
that might change one existing instance of a aertedia concurrently. In

most cases media are not changed at all, at leasbncurrently.
Of course once we enter the conversational stylaetfia exchange (we

could also call it the collaborative style) thisasption is no longer true.
Virtual worlds and massively multiplayer games neethaintain the
world state in a transactional fashion or expegesmme rather unhappy
users and players.

Another important feature of many media with respedistributed
computing is due to human biology: Media receptigguires in many
cases realtime quality of service (QOS). Smallygkela the playback of an
audio stream are audible and destroy the experidimig is no small
problem for loosely coupled, independently opegatomputers to
guarantee the necessary quality of service atetteiving end.

Media are rather large in most cases. Only commes$schnology made
it feasible to use media in IT systems at all. Mealit a strain on
operating systems and transport channels due itosike and the time
based nature of media reception by human beingso¥e needs to
deliver 24 or more frames per second or we wilbggize gaps. Audio is
worse still: even small interruptions become vargible.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 19 03/12/2010

When distributed systems need to bridge space ke m&dia accessible
they have to do so either by copying the medihéaarget system for
consumption or they have to ship bits and piecakeomedia towards the
target system. In this case the distributed systeeds to respect the
realtime properties of media consumption if the mede continuous like
movies.

We call the two cases the download case and tharsing media case.
Both cases belong typically to the area of medresamption or
distribution but this need not be.

Social Media
Being digital, distributed and social

The previously mentioned “classic” view on media@sdown delivery
of content made by specialists and distributedgecmlists received a
couple of serious blows in the past, mostly dukettinical changes in
software and hardware. It started with content beng digital and
thereby reproducible at high quality, low cost éandje quantities. Ed
Felten of Princeton University describes the protdevith digital media
nicely in his famous talk "Rip, Mix, Burn, Sue: Temlogy, Politics, and
the Fight to Control Digital Media".

What does it mean for content “being digital”? @a@ honestly say that
many traditional publishers did not realize thewiive nature of digital
media and the responses to financial problemsextdat the digital nature
were backward oriented in many cases. The answehg&ap, high quality
copies” was copy protection” and it became a keynt®r the
entertainment and in parts also for the softwadestry. The industry tried
— unsuccessfully — to change the digital naturé li@o an analog, non-
reproducible nature. Software to prevent copying matalled (sometimes
secretly), legal obstacles like making copy sofemdegal were tried and
even advanced Digital Rights Management (DRM) systevere used. In
many cases the regular and legal users had to g grice in usability
for this protection of the content publishers.

Short Digression: The fragile concept of ownershijn digital
times

When copies are super abundant, they become wssthle

When copies are super abundant, stuff which cancoipied becomes
scarce and valuable. Kevin Kelly, The Technium,
http://www.kk.org/thetechnium/archives/2008/01/betthan_fre.php

There is an undeniable tension between the digiballd and traditional
concepts of ownership. It becomes very visibldhmstruggle about
intellectual property rights. The traditional ecamo theory puts
ownership at the core of business and the readbatisesources are

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 20 03/12/2010

considered scarce, not shareable because not-depirathe traditional
economic theory things have value because of thiesgess and that
explains why the music industry wants to turn theeel back and make
digital music again analog and thereby not copyédtléeast not with the
ease and quality and speed as is possible wittligftal form).

But the matter of intellectual property rights \&a more backward
oriented. The proponents of software patents Wa@REATE the
scarceness in the first place. Turn somethingishidOT scarce into

something that becomes a value due to its artifstarceness.
Lawrence Lessig, Author of Code2.0 and other bawvkdigital copyright

claims that currently the law on intellectual prageights stiffles creative
use of materials. He created the Creative Commensf3icenses

(http://creativecommons.oigas an alternative.
On a worldwide scale the dominance of the westemdmwvith their

immense pool of patents is a major handicap foelbging nations. The
situation becomes completely perverse when Afritations are not
allowed to reproduce AIDS drugs even though thaufadn there can

never afford the prices of western pharmacies.
Inctellectual property rights around hardware arespecially interesting

topic. Hardware manufacturers do not Open Soureelidgrams and
construction materials used to build there systdrhsy fear that this
would make copies trivial and they would be faceager copies made in
china. But is this true? First: almost all hardweae be re-engineered by
somebody. This happens on a daily base in thisdwvérid second: Clive
Tompson describes the Arduino microcontroller thas turned into Open
Source by a small Italian company. [Tomp]

Reset Button
RX+TX LEDs ICSP Header

13 (L) LED

s g RERRHERN
- Ramaam

-
=
-
—
-
-
-
=
>

Microcontroller

Arduino open source
Mini-B USB Jack
hardware

Everybody can use the wiring diagrams etc. to banlégxact copy of the
controller and it is done as a matter of fact. 8uinge things are
happening: the Italian company is selling lots aftcollers, still. They do

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 21 03/12/2010

not generate a lot of money from those controlleasid they do not plan
to do so. Their business model is about servicasnal the controller and
it seems to work. So they are really interesteatiers copying their
design.

But there is something else that is vital to opguree hardware: it creates
a community around such products. And the valualfircomes from the
community. The community even improves the hardwdasagn, the
community discusses new features and fixes bugscdmmunity helps
newcomers and manufacturers. And the original itorsrare right in the
middle of this community if they play it right. This something that both
fascinates and scares companies: they are slowlpgesed to the fact
that there is an outspoken community around theidyucts with
community sites, forums etc. But now they haveettize that some parts
of this community will get involved in the futuré products, product
planning and finally in the way the company workkis kind of
transparency is scary and also powerful. StefargBrinphilosopher and
executive lead at IBM described these challengéssiexcellent talk at
the 10 year anniversary of the computer sciencensatla faculty at

HDM and the stream of his talk is definitely wottie time watching it
[Bung]. But what happens if we really give up oe ttea of intellectual
property rights which can be used to exclude otfrera building the
same, just better? One can assume that the samoe &ffwith open source
software will be seen: A ruthless, brutal Darwinismdeas and concepts
would result from this with a resource allocatiomalistribution that
would be more optimal than the one that is usud#dymed by capitalism
to be the best.

The digital world has seen a decrease in valueast of its goods: CPU
time, RAM size, disk space and communication cbate all come down
to a level where one could claim that sharing theseurces is basically
free (and therefore a requirement that sharing élappt all as Andy Oram
points out in his book on Peer-To-Peer networks)d fe open source
movement is a real slap in the face of traditi@@nomy: Non-zero sum
games instead of zero-sum games. Sharing insteaxthfding. And the
proponents of this movement have proof of the higfuality and faster
reaction times this system can offer. Open Souofev@re, social
networks like the one that supported Obama all sivbat communities
can achieve without the sole interest of makindiprosomething that just
does not happen in classic economic theory. Anchwhese communities
are given a chance through open, distributed coimgpsiystems and social
software running there.

So the right answer for the content producing itgu®r is it actually
more of a content distributing industry anyway?)dabe: forget about
the media container and start concentrating omgélevalue for customers
by embedding the container into the whole musicerpce. To have this
experience music needs to be found, transferredreatk accessible in
high quality anytime and anywhere. And this becomsstrvice to the
customer that the industry can charge for.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 22 03/12/2010

And this service has another advantage: it is o@asily reproducible. It
depends on knowing what people like or dislikeknawing about their
communities, on offering fast and high quality as;en providing
excellent usability for finding music etc.

Which leads over to the question of reproductiogeneral. Lets take a
look at the list of non-copyable things from KeWelly:

. Immediacy

. Personalization
. Interpretation

. Authenticity

. Accessibility

. Embodiment

. Patronage

. Findability

“Immediacy” is the difference between expecting¢hstomer to visit a
shop physically and having a browsing and strearsérgice available
that allows immediate access to the music the oustdikes.
Personalization allows simply a better serviceerptetation means
helping somebody with something digital. Authertyiecs a guarantee that
the digital copy somebody is using really is coraamd unchanged.
Accessibility can mean improved physical accesmfport) or better user
interfaces. Apple products shine in this respeet ovost others.
Embodiment is a band in a live-concert: the musited to the body of
the band. Patronage is the willingness of custooessipport somebody
via donations. And findability makes it all possiltie letting the customer

find the things he wants. _ _
Don’t get me wrong: these things are also copyabéway, e.g. by

competing publishers. But in the first place thdd #o the digital copy in
a way that can't be copied by the customer!

“being digital” does not end with physical thin@aniel H.Pink in his
bestseller “A whole new Mind” raises questions &libe future of
working people and how it will look. He asks thaders three questions
about the type of work they are performing:

- Can someone overseas do it cheaper?

- Can a computer do it faster (and being a compugtense guy |
would like to add: better)?

- Am | offering something that satisfies the monunaént
transcendent desires of an abundant age?

The last part points to the weak spot in the bdlod:author assumes a
world of abundance. Goods are plenty (e.g. thexerare cars in the US
than people). On the other hand the book has @medlonly: how to use
the right part of your brain (which hosts creatiyestalt perception etc.)
for one purpose only: to make yourself still usgteother words: paid)

in this new society dominated by right brainersc&ese people have
plenty the scarce things (and therefore valuabigy) are art, play, design
etc. Lets just forget about the ideological nonedrehind the book (why
would | have to sell myself in a world of “abundatif2) and concentrate

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 23 03/12/2010

on the things that make copies impossible. And trexeauthor may be on
to something right: combining know-how from diffateareas to create
something new is hard to copy. Combining differeethods (like
narrative methods from the arts and programmatihoas from IT also
creates something new). And if the author findsugihdollowers we
could enter a phase where millions of amateur éngjtpoets, painters,
designers etc.) create things that are unique.md@oking at this from
with the cold eyes of sociology would show us tgpeverhead

phenomenons described by Pierre Bourdieu (thediifierences).
Finally, virtual worlds add another angle to th@gand scarceness

problem. In the position paper on “Virtual Worldeal Money” the
European agency enisa takes a look at fraud inativworlds [enisa].
According to enisa many of those worlds implemeobacept of
“artificial scarceness” by restricting objects endces as it is done in the
real world e.g. with currency. Users of the virtuairlds can then sell
either virtual goods or services inside or outsitlthe virtual world. But
we should not forget that we are at a very earbsphn virtual world
development where it is natural to copy existingcedures from the real
world to allow users an intuitive access to theld/ermuch like the office
desktop concepts of some operating systems triedrtoc a real desktop
(with some very questionable success raising tlestgan on how far
metaphors will carry us..). We will come back te ffaper from enisa in
the chapter on virtual worlds.

While the media industry was still grappling wittetcopy problem the
next blow arrived: The digital nature of the medi@s now brought
together with the distributed infrastructure of thiernet, including
different types of access, replication and findgbdptions. Bringing
digital media into the distributed infrastructuteaaged two things
dramatically: the mode of operation or use of digmedia and the way
they are found and distributed. Before this develept happened the
media industry controlled how media were foundiriiated and
consumed (you need a xyz-player, a media diskpa ¢#c.). Now the
media could be consumed in many different waysraady different
places (streamed through the house, on a mp3 popktyer, from a
mobile phone, directly on a train via phone etnd the whole process of
copying an audio disk for friends disappeared:dharing networks
allowed the distribution of content to millions fibee. And of course they
allowed easy findability of new content as well.

We need to compare this with the “vision” of thechaeindustry. At that
time this vision was still deeply rooted in thesdi nature (analog) of the
media container that was at the same time the fomat of the financial
interests. “You need to sell CDs to make moneytslleok at two
examples: publishers of encyclopedias or otherkwfdnformation and
music publishers. An encyclopedia in the form cdiddéul books bound in
leather is certainly a nice thing to have — but isally the most useful
way of using one? The publishers reacted and dtagiing information
on CDs. But do you really need more CDs? If yousal@wyer or a tax
accountant you subscribe to information publiskés send you the
latest updates on CDs. Is this really useful? Yanitanake annotations on

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 24 03/12/2010

those data graveyards and worse: you don’t segatioms and comments
others might have made about the same text pdréscdrrect way to use
information services of course was online and $@rid wikipedia turned
into the prototype of all those services.

The music industry did not fare better. They stilipped CDs to music
shops but who has the time to go there? And howdwdiind music |
don’t know yet but might like? And what should I'dgh a CD or a CD
archive? When you have a family you have learrit @i archives don*t
work: the boxes are always empty, the discs somenhdhe kids rooms
or in the cars. The music industry could not stwe basic problems: to
let me find music | like easily and to let me com&uthis music whenever
and wherever | have an opportunity.

Finally online music shops appeared like ltunesyliere still
handicapped by copy protection rules at the cokiwfusability at the end
user side. Recommendation sites appeared, babed @it content
analysis of music (advanced) or simple collabogafikering based on my
music history, my friends or anybody’s listeningbotying patterns

(amazon).
And still this is a far cry from how it could be @h we consider realtime

streaming. | should be able to browse music anygvham and at any
time and then listen in realtime to the piecegé.liThe system should
record my preferences and maintain my “archiveiranl

Before we deal with the next blow to the media sidpa short recap of
where we are is in order. We started with mediab®ieg digital which
allowed easy and cheap reproduction at low costenTve added the
distributed infrastructure of the internet with oihs of PCs in the homes
of users. This allowed fast and easy distributibdigital media and at the
same time provided meta-data services (recommemdagitc.) that the
music industry could not easily offer due to trszicial nature. And
perhaps because the industry still considered &rds king” when
media content started to become something vergréiit: an enabling
element in a distributed conversation across grosgsal networks and
communication channels. The way media were prodanddonsumed
started to change and this was the third blow eontledia industry.

Superstructures
What does "superstruct” mean?
Su’perstruct” v. t. 1.To build over or upon anotsieucture; to erect
upon a foundation.
Superstructing is what humans do. We build newcsires on old
structures. We build media on top of language amdngunication
networks. We build communities on top of familyustiures. We build
corporations on top of platforms for manufacturingrketing, and
distribution. Superstructing has allowed us to srn the past and it will
help us survive the super-threats.
http://www.superstructgame.org/s/superstruct FAQ

Social Media and their Price

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 25 03/12/2010

http://www.slideshare.net/wahl17/social-media-35304

Who creates content? In the eyes of the media indie answer is clear:
content is created by paid specialists. Flickr, Valoe, delicious,
myspace, wikipedia and blogs have proven them wrGogtent can be
created a) by you and me and b) collaboratively.iBit the same
content? Is it as good as professionally createtect? The quality
question behind information bases like wikipediapen source software
led to heated discussions initially. Those disarsshave calmed down
considerably as the established content or softpar@ucers had to learn
that in many cases they would not stand a charaestighe driving forces
behind open content or software production. A camygast cannot
compete with the large numbers of users addingecting wikipedia
pages or testing and correcting software packagesthe lack of formal
authority leads to a rather brutal selection predesed on quality
arguments instead of hierarchy.

But it is not only the content creation that chahgehe content on social
network sites is different from professional braagtacontent. It is usually
created independently of the media industry, siosietimes
conversational, oriented at small, private grolfps. discussed in instant
messaging groups or chat forums. It is receivedsemed, distributed and
discussed in an interactive way that is simply isgdole for regular
broadcast media. IBM claims that people born &84 belong to a
fundamentally different user group with respedti® use of interactive,
always connected media technology. These peoplehaeinstant
messaging and virtual worlds just as the older fmn might use e-mail.
This active, conversational style of media use mighthe biggest blow to
the media industry after all.

Community sites feature a lot of social informateyeated by user
behaviour. One of the simplest being “who’s pre®éat a certain
moment. Social information can be more specifie Iiwho is watching
the same page right now?” and so on. This typafofmation is mostly
real-time and semi-persistent. And it creates perémce problems in web
sites if one tries to use traditional databasesdgert and query such
information. There are simply too many updatesumrgs needed per
second on a busy site to use a transactional de¢dgte a database for
this purpose.

Currently it looks like the print-media industrygpecially the newspapers,
might pay the price of social media by going bapkré&ven the mighty
New York Times might not survive
(http://www.spiegel.de/netzwelt/web/0,1518,60788%aAl). Online
editions of newspapers seem to be unable to catleaey for their
services. And they fight with numerous problemes like micropayment
difficulty (users do not buy pieces of media prasumecause they do not
know how to price them: there is no market for Bragticles). And paper
editions are facing the competition of free micemspapers like “20
minutes”.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 26 03/12/2010

Social media killing off the traditional media besa they are much more
group oriented, active etc. is just one economjgaiah of social media.
There are more if we look at the next chapterradeng people do not
only create social media. In principle they canamige many services that
traditionally have been provided by the statese(tikrrency, security) or
companies (like hotels, pensions). Go ahead antheaguote from
Kortina at the beginning of the next chapter: Tigtosocial media and
sites people share many more things like bed asakbast while
travelling and visiting friends made through facekocouchsurfing etc.
These services used to be commercially availaldeaas now put back
into the private, non-economic space. Obviouslyskewl breakfast are
NOT really scarce on this world. Organizing wasdhand a professional
service. But this is changing with social netwatksand again some
goods and services are no longer ruled exclusivwglgconomic scarcity.
The digital life now starts to determine the prigethe analog world as
well.

People — communicating, participating, collaboratin g
Fotolog CEO John Borthwick,
http://www.borthwick.com/weblog/2008/01/09/fotolégssons-learnt/

By digging into usage data we concluded that thslég experience was social,
social media. Understanding this helped us orientair positioning for our
members, our advertisers and ourselves. The ritasg®ciated with digital
images are slowly taking form - and operating fratthin the perspective of a
mature analog market (aka the US) tends to diginet's view of what how digital
imagery is going to be used online. The web astndt medium is developing
indigenous means of interactions.

URL: http://essays.kortina.net/

Couchsurfing is Beta Testing a City
June 27th, 2008 -

Couchsurfing is my new favorite social net. | cleeck out this week prior to my
trip to Palo Alto, and now CC and | have conneakgith 2 people in the real

world and have gained two new friends. Our hostsv&ud us around the area,
gave us a feel for what life was like in Palo Alagd told us about the cool stuff
they’re doing. We got a tour of Stanford Campus)tinking, went to a cool

place for dinner, got a homemade pancake breakfiastsome free rides, and had
great conversations.

Although I've been to the Bay Area before, | damibk I've ever gotten a feel for
what it would be like to live there until this pasdit. It's tough to assess a city
when you’re just a visitor staying in hotels. Sgagdime in homes and
apartments of people that actually live there amiding them in their nightly
excursions is probably the best way to actuallyeeigmce the city like a local.
Thanks to Sasha and Vanae for hosting—good tirnesufe.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 27 03/12/2010

I must admit, that Twitter & Facebook also cameotigh. | tweeted about
heading out to Cali, which got imported into my ook feed. My college buddy
Wes saw this and mentioned that he had recentlgdimvSan Fran and had
some couches we could crash on. We spent two mgtht¥Ves, ate fantastic
Mexican food, and discovered two of the cooless bae been to in some time.
Wes also introduced me to a pretty cool new barhs@and Observatory.

Here’s a good trackVibrate
I love using the internet to connect with peopléhim physical world.

URL: http://essays.kortina.net/

Coordination

Getting members of a distributed system to collateoand act in an
organized way to achieve a common goal was andhadproblem — no
matter whether we are talking about people or cderpulnterestingly,
the bringing together of distributed human beings whe distributed
organization of the internet seems to reduce ex#utf problem
considerably — at least for the human part.

Politically interested people might have noticedd@oped) that the new
social networks and sites allow easy and indepdratganization around
specific topics. It was Clay Shirky who said in gwbtitle of his book

“The power of organizing without organizations”. Elaims that social
software and social networks reduce the organizatioverhead needed to
form active groups and therefore allow the creatibad-hoc groups. The
media created and distributed on those sites beeatimable items, they
support group behaviour.

<<Distribution now a network effect. Mixing hier&ical and democratic
methods

(two technology rev. Articles) >>

Let us take a closer look at one of the most sfaksocial networking
strategies of ever: Barrack Obamas fight for pesig. This fight was
supported by several social networking sites, aafhgc
http://my.barackobama.com

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 28 03/12/2010

') Barack Obama and Joe Biden: The Change We Need | Login to Your Account - Maozilla Firefosx =10i x|
File Edit View History Bookmarks Tooks Help

> C X [2 [memy - r kL ~ [[GI=Tstf canorical doud archivecture

|21 Most Visted (23 Exalead: Choose a ne... Emowh I Der Freag | | wissensnavigator | | Pagetest web pagep... | | Superstructing Oursel... €] PDF CHM Books: Com... »

ORGANIZING
ForR AMERICA

Our online tools make
local organizing easy

Join My BarackObama, our online community with over a
million members. Get access to the tools you need to
effectively organize for Barack Obama and build this
movement for change.

® Find local evenits and groups

o Contact undecided voters near you

* Share your story onyour blog

| Wakting for 2. ymg. com. B

This site played a major role in the organizatibevents etc. In particular
it allowed:
- small donations to be placed easily
- sharing of personal details like phone numbersttater used for
event organization
- learning about events
- leraning about groups and interested others
- planning and organizing of local events and aii#isi
- sharing of stories and blogs
- contact other potential voters
- use the blog
- buy fan articles
- personalized use of the site
- meet Obama and other prominent representatives (gbhcast)
- get information on elections, social groups etc.
- watch videos from speeches or events
- send messages to election staff
find connections to other social network sites vitbama content:
ﬂICkI’ youtube, digg, Twitter, eventful, Linkedlfacebook, MySpace etc.
- learn about all these features in a tour video
http://www.youtube.com/V/uRY720HEODE&hl=en&fs=1&r)

A heise article mentions the following successdexbf Obamas site:

It brought Obama more than 500 Million Dollar innddions, 75.000 local
events were organized using the sites data anaipartts which exceeded
1 million finally. A core problem for the site wetlee ever increasing
numbers of users.

David Talbot describes the Web2.0 strategy usedliachnology Review
11/2008, Report. According to Talbot the team adbile site understood

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 29 03/12/2010

that users and visitors would automatically rerthste content (speeches
etc.) once they were available on social networkitgs. So a lot of media
content was placed on different sites like facebaofoutube as well.
One of the biggest success factors resulted frend#tabase with
information on potential participants and suppartd@ihis information was
used to tie online-activities with real-world evewoutside.

“The Obama campaign has been praised—with good
reason—for its incredible use of technology. Manyamizations
would love to replicate its ability to do outreach,

its focus on data, and its ability both to coortintoe

efforts of hundreds of thousands of volunteers single
direction and to empower those individuals to tadetrol

of their own distinct parts of the campaign.

The use of technology within the Obama campaign

creates two seemingly contradictory points: thénetogy
strategy was not a technology strategy—it was an

overall strategy—yet it could not have been exetute

without technology. But this misses what progransner

have always understood about software—a truth that

has finally blossomed in the age of social netwugki

software itself is an organizing force that equopganizations
to achieve their goals. The Obama campaign used
technology as a front-end enabler rather than k-bad
support, and this synchronization between missiah a

tools allowed for the amplification of both.”BenjanBoer, The Obama Campaign — A programmers
perspective [Boer]

Software and the distributed runtime systems agtéral enabler! Data
centric and linking different platforms the Obanaanpaign showed the
typical Web2.0 characteristics. But according teBthere was one
special additional ingredient that made it so sssfté: “grassroots
experimentation”, the will to innovate and expentheith the live
system, enabled by the use of open source softwar@rovided both a
means to changes and ubiquitous know-how by vodustdt is this
combination of software technology and social esrvinent that is
responsible for the success. We will take a loathr down whether
those characteristics also show up in the well kmeacial sites like
facebook, flickr etc.

Compared to Obama the competition (Clinton, McChéd)more
traditional, hierarchical campaigns with less useew media like social
networks. In McCains case his social network senged to be unable to
deal with a larger number of requests or usersn@ban the other site
used different communication channels and medialaer@fore did not
miss larger sections of the population. And perithpsnost significant
difference was in the ways the candidates hantiedeverybodys”: The
Obama site allowed self-organization of supporéed created only a very
flat hierarchy and control structure. This madedtganization of local
events extremely easy and efficient because igdétel power to those
who needed it — the organizers themselves. Thiscag digital media in
the context of distributed and social systems makasy companies
extremely uncomfortable: What if the new forum $&d to badmouth one
of my products? What if consumers use my collabaratite to band up
against the company? Social Networks are a fafrorg the tightly
controlled information handling policies of the €$&c marketing and PR
departments or the classic broadcasters and thdiyishese classic

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 30 03/12/2010

organizations frequently show little success inlidgawith social
networks. Those networks require due to their ithgted, open nature a
large degree of transparency and freedom and waeg/gala bit “out-of-
control”. (In a classic PR campaign you build sgmesence or
presentation and when it is done you go public witm social networks
and virtual worlds the phase of building the preses the phase which
attracts the most interest and you need to retiete‘the way is the goal”
here. Media in social networks need not be perdbey need to be
useful. Btw: the Internet-Philosopher Dr. Felix Whaentioned in his talk
on the occasion of the first Web2.0 day at HDM thatsparency and
presence are the two core requirements for alliies on the internet.

Blogging has become a standard procedure in jasmalt allows
independent authors to voice their opinion andotanect it with others.
This highly distributed, egalitarian way of cregticontent is in stark
contrast to the highly concentrated and contrattedlia industry of a
Berlusconi, Murdoch or Turner. People run persalmaiies on web
servers, link heavily to other sites and let otleen®iment on their content.
This creates a content networks between indeperdetent producers.
The content/blogs might be hosted on a large senven individual
computers.

Blogs have had a very important side-effect: ReingixRe-mixing is
taking existing content and modifying it, bringiitgnto a new form and
than publish it again. The idea of re-mixing iatradical for any media.
It raises questions about authorship and ownerstspntent. But it has
turned into a form of art for virtual communities.

Meta-services likéttp://de.globalvoicesonline.orgbllect and present
selected blogs to their audience and ensure thisitpbvoices will be
heard. And even text based SMS messages can béousech groups,
conduct surveys etc. with the help of social sofenéke
http://www.frontlinesms.com/

So called Wiki’'s — simple content management systetmich allow
everybody to creade and edit pages which will ke sand/or edited by
others have become a popular way to organize gsojdagmented with
some project management and communication fasiliiey allow groups
to plan and schedule events or they serve as dupgpermanent
memory. Wikis are simple applications running orbwservers,
sometimes backed by databases or source code Iceygtems for the
purpose of versioning and search. A good examptgafp planning
social software isvww.basecamp.orgr just for distributed appointment
schedulingvww.doodle.ch

And we haven't even touched games, especially rpldifer online games
yet. There is lots of content created in thoseusirtvorlds (characters,
buildings, stories etc.). And sometimes the distidn infrastructure plays
an important role even for the game content.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 31 03/12/2010

Something important to notice here is that the gaomtent — the story —is
heavily influenced by the fact of distribution @aty, bandwidth etc.)
force authors to different game ideas which hagbkamce to work in such
a distributed environment. But also the fact ofependent players
communicating with each other can drive the garteetiotally different
directions: this is owned to the interaction praypef distributed systems.
Those online games have to solve very difficultopeons from security to
fast updates, replication of the game world andrso

Very close the idea of multi-player online gamethiesidea of
collaborative work environments where people carelg things
together. This could be source code, music, vid@ogeople could create
environments for learning.

Where is the Money?

We have already touched the money question inlthpter on digital
media and the fragile concept of ownership. It colmeck again via social
media and interacting people. The obvious quessiowho is paying for
those social network sites and services?

Looking at all the available social network and counity sites, services
and offerings one question comes to mind: who parythe services
rendered? Further down we will take a close lodkathecessary
computing infrastructures to support online comrhasi It is true that on
the client side — what Andy Oram once dubbed “thgeeof the internet”
sharing is easy due to CPU, disk, broadband comitgattc. of the

private machines being essentially free. But thaké very different once
we look at how the services and communities aréeldasn the server side
(yes, there is still a lot of good old Client/Sareemputing going on and
that is why this distribution architecture is dissad below).

Financing community sites adds more superstructfrdsstribution to the
game. And it is all about advertising, at leastiiafly. Sites will probably
buy advertisements (e.g. from google adwords)tta@tvisitors. But soon
sites can sell their own page space to PR brokeranks (like
www.affili.net) and generate money per click, lead etc.

But banner based PR is only one method to generatey. A successful
community site can use the special, targeted dmleof individuals of
the community with their very special interests anthetime even social
characteristics to offer companies who operatbenarea of the social
community very interesting services. | am not tagkabout selling
community data directly. Instead, the communitg sén offer
personalized, targeted information about articleseovices to community
members — and sell this as a service to participatompanies. E.g. when
a community member is searching for specific pdrescompanies selling
those can be shown to the member — at a priceusgeoThis way the site
helps members to find interesting products or sesui

Findability

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 32 03/12/2010

The term “findability” was coined by Peter Morvilie his book “Ambient
Findability”. He defines it as:

- the quality of being locatable or navigable

- the degree to which a particular object is easyiscover or locate

- the degree to which a system or environment stgpavigation and
retrieval

[Morv] pg. 4

Finding something is a core problem of all disttdzlisystems, human or
computer-based. Services which help in findingdhijrservices, addresses
etc. are essential for the functioning of any dstied system. The things
to be found can be internal items of a distribudechputing system (e.g.
the IP address of a host) or they can be imagdspsiand papers targeted
for human consumption. And those services add mgperstructures to

our distributed systems e.g. via the connectioaated by search engines:
Services supporting findability do have a selfeefive quality: they live

within the environment and extract meta-data abloeisame environment
which are then fed back into the same environment.

Search engines use distributed algorithms to the mg. google invented
the famous map/reduce (now map//reduce/merge)rpdtiethe
application of algorithms to data on a large seale at the same time
seem to offer a certain resistance to federatiomn@logies trying to
increase scalability. We will take a look at seagolyine architecture
further down. Search engines can use behavioral(daj. the search
query terms within a certain time period) to prédiends like a possible
outbreak of the fluHttp://googleblog.blogspot.com/2008/11/tracking-flu
trends.htm)

Epidemics
Michael Jacksons death has once again shown hgvefiaur systems are
in case of sudden, unexpected events with a higlalsalue for many
participants. Several large sites were broughtdtillatand and —
according to some rumors — google thought they sefiering from a
distributed Denial-of-Service attack when they shehigh numbers of

requests for M.J.
Systems have a hard time to adjust to such epideemiavior and we will

take a look at algorithms and architectures whiajhirbe capable of
more resilience against this problem. Cloud Conmgpis one of the
keywords here, as well as sophisticated use ofist@ms hashing
algorithms as well as — surprise — epidemic infdromedistribution
algorithms. Fighting social epidemics with epidemdenmunication
protocols!

Group Behavior

Findability, media and social networks create tinarenment for user
behavior, or should we say group behavior as nosusn easily aggregate
into various groups. According to a heise newslan research at the
ETH Zurich. [Heise119014], Riley Crane and Didieri&tte are
investigating the viewing lifecycle of YouTube vimefrom being almost

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 33 03/12/2010

unknown over creating a hype and then finally egdamoblivion [Crane].
The social reception systems seem to follow ph{twes in certain cases,
like the waves of aftershocks after an earthquisleghematical formulas
can describe this behaviour — but is it really gpsse? Becoming popular
requires social and technical distribution netwaskséch have
characteristics with respect to connectivity, tagyl etc. which define the
speed and type of distribution. And in this casessa different
distribution systems (e-mail, blogs, talks betweelteagues and friends,
mobile phones etc. all participate in generatingmain epidemic viewing
pattern. The researchers intend to use the viepatigrns to predict trends
and “blockbusters” early on.

For the owners of large scale community sites #e¥ and group
behaviour is essential as well. Not only to make $hat the sites attract
many people but also as a technical challenge.éltibss need to show
exceptional scalability due to the spikes or aveli@s in user behaviour
mentioned above.

Distribution is a general property and phenomeiha $hows up on many
levels of human or technical systems. And thesgesyscan have a big
impact on each other. We will discuss Clay Shirkiggement that
computer based social networks have changed olittydbiget organized
— which is a requirement for successful politicgti@a. While the impact
on political actions is perhaps still debatable, different ways of
technical and social distribution systems havedaldar impact on the
development of source code, especially Open Sotifeefollwing quote

is from the Drizzle development team and shows imp@rconnected the
various systems already are. You need to add sdistiof services used
all the instant messaging, chat, e-mail, phoneliaadsideo channels used
during development to get an idea of how socialtactinical systems

today are connected. , .)
“Parficipation is easy and fun. The Drizzle projsctun using open source

software (like Bazaar) on open and public resoufides
http://launchpad.net/drizziendirc://irc.freenode.net/#drizzlend
http://www.mediawiki.orgin a true open source fashion. The Drizzle
project also haslear guidelines for participatipas well asimple
quidelines for licensing and Us¢AboutDrizzle]

Group behaviour is important for the implementatdsocial sites as
well: Can users be clustered together accordirsgmae criteria? In this
case keeping the users belonging to this clustgtier e.g.in a data store
makes lookups much faster. And changes to thestiaygprobably within
the cluster of users.

Massively Multiplayer Online Games have a ratheurad way to group
users by geography: All users within a certain géation are “close” to
each other which means notifications need not ekte=location borders.
It might even pay off to organize the group of sgest for the time they
spend in one game location into the same compepeesentation, e.g. the
same cache.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 34 03/12/2010

Notifications and group behaviour are key. Faceltaek to find friend
networks within their user data and use this fqorowed site performance
by organizing data sets differently. Here the whesters are more static
than in the game case. And group behaviour — edtiagic or dynamic —
presents large problems for scalability: Facebaedkmiting notifications
to groups smaller than 5000 participants. In oWl@rds once your group
gets larger than 5000 members you can no longer semessage to all of
them easily. (twenty minutes). MMOGs sometimestereapies of game
locations and distribute users to those “shard=.Will talk more about
these partitionings later.

Social Graphs

<<open social, db models of social graphs, messag&siumbers>>
http://ww.infoqg.com presentations/josh-el man-gl ue-facebook-
web

what can be done with this information? Social reks driving Content
Delivery Networks?

Superstructures
Clay Shirky gives a nice example of the extremedahpossible due to
the interconnectedness of different social andrtieat systems:

Let me tell you what happened to a friend of manfarmer student, a
colleague and a good friend. Last December deciddmteak off her
engagement. She also had to engage in the 21strggamctice of
changing the status of her relationstivpght as well buy a billboard. She
has a lot of friends on Facebook, but she alsoshks offriendson
Facebook. She doesn’t want all these folks, eslhefi@nce’s friends, to
find out about this. She goes on to Facebook aimiglshe’s going to fix
this problem. She finds their privacy policy and thterface for managing
her privacy. She checks the appropriate check bardsshe’s able to go
from engaged to single. Two seconds later eveglesiiniend in her
network get the message. E-mails, IMs, phone gngoff the hook.

Total disasterous privacy meltdown.
Kris Yordan on Clay Shirky, Filter Failures Talk Ateb Expo 2008

Shirky notes that privacy sometimes used to resthefficient information
distribution. Those days are over. Informationritisttion happens on
many channels at the same time and this fan-ouinceeconds lead to an
extreme overload on single systems. The friendgfaefliendsfrom
above will turn around and take a look at her peofAnd this turns a
rather long tail personal profile into a hotspotethpossibly needs a
different system architecture to scale well, eygnaimic caching. You
don’t cache long tail information usually.

The APl Web — the Sensor Web — the Open Web?
(Tim Oreilly, Web Expo)
Twitter — a sensor web? Scalability for Billionss#nsors, possible via
IPV6. Is there an open pub-sub infrastructure émssrs and actors?
Facebook — a dispatcher of social information?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 35 03/12/2010

“The knowledge tidbit that stuck out more in my chitnan any other was
that Twitter gets 10 times the amount of traffierfrits API than it does
through its website. It makes sense, I'd just n@sfnowledged it
explicitly. Dion Hinchcliffe’s workshoppainted a similar story for many
other Web 2.0 successes. The canonical exampleugobe with the
embedded video. The decision to put html snippleisly visible, right
beside of the video, was perhaps their most genmsge. Modern web
applications and services are making themselvesagt by opening as
many channels of distribution possible through $geddgets, badges, and
programmable APIs.” Kris Jordan,
http://www.krisjordan.com/2008/09/25/10-high-ordets-from-the-web-

20-expo-in-ny/

Joseph Smarr tied together a number of technoldlgasvill create the
open web and thereby further accelerate the grofshcial sites: OpenID
(who you are), OAuth (what you allow) and XRDS #odescription of
APIs and social graphs. They all belong to the cgiaok (with open
social etc.)

Currently lots of social information is locked upsilos. Some users just
give away their passwords to allow the use of the@ial information from
another site but this is obviously very dangerdiasebook uses a redirect
mechanism between third party sites and itself €hmike liberty alliance:
Requests are bounced back and forth and Facebdskaadken after
successfully authenticating a user. The third psiteydoes not learn
credentials from users. But all this is still netfect as my list of friends
from one silo may be completely usesless withirtlagrosilo. XRDS will
allow the specification of detailed social informoattogether with fine
granular access, protected by Oauth technology.

Of course this open stack will again increase tiagl lon social sites
through the use of their APIs.

For OpenID seéhttp://www.heise.de/newsticker/Identity-Management-
Authentifizierungsdienste-mit-OpenID--/meldung/1865

Supersize Me — on network effects and endless grdwt
Growth on the internet seems to follow a scale fraern: many small
sites, fewer mid-sized sites and very few supetdsarees like Google. This
seems to be the case also with social networkssé#estrong competition
between social sites currently — based on thegretton of the crucial
start-up phase and its consequences for futuretgroMhy is it that the
internet weeds out so many competitors and leanlysaosmall number of
survivors? Communication platforms always showrsiroetwork effects:
new participants increase the value of the platfewan more for all
participants. But this is only true within commuation platforms, not
between. A new myspace participant does not inertreesvalue for
facebook members and vice versa. These systentschi@cally isolated
name- and rights spaces. This means in turn tleayenew participant in
such a system has a rather high value for thegptatf especially during
the startup phase. And it means that the seleptiocess will be brutal
because members of platforms with a smaller graaté will experience
increasing isolation effects.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 36 03/12/2010

But there is an escape for this disadvantage:hiuist on top of a
successful community site which shows scale-freavtir. Animoto is a
good example. It is a facebook application whidh i@u supply pictures
and audio data and creates videos from it. It ssggy grew from 50 to
5000 servers [NY Web Expo 2.0] in two days usingaaom’s computing
cloud.

Animoto scalability on EC2, from Brandon Watsons blog

2 BB % ¥ B BB 2 g 2
2B EEE=2=2888E8 =
A s S-S Gl S

3§
s =

- 8588888

04112 10,00 SAST 4
0413 1600 5

i
04/16 1000 S&ST
4N7 1800 &

e

0414 1000 SAST
[3

04N3 0200 5AST 4

Looks like systems interfacing with those gianeésivhich show epidemic
user behavior inherit this behavior. In the se@arcloud computing we
will discuss the ramifications of this fact.

The few supersites we see today are thereforeaatemsequence of social
network applications. Growth, speed and the altiitprovide new
features quickly are what drives these super-slies.rest of the book will
take a closer look at the way these sites dealtivéin growth and speed
requirements. And it is no real surprise that thst fesult is quite obvious:
they are highly distributed systems. And that iyywie start with a short
presentation of distributed computing and how utedeped into

something that can support the super-sites of today

Security
- federation of social applications
- private data (selling, de-anonymization)

Today’s social applications receive, collect, starealyze and re-distribute
social data of their users. One of the biggestlprob in this context
comes from the fact that in many cases more thstrtyo parties are
involved: users want to allow other users or apilons access to their
private data. Marc Zuckerberg e.g. describes thefa@ebook allows this
kind of access through a distributed authorizasigstem.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 37 03/12/2010

Social sites also sell those data — albeit in amamized form — to PR
agencies and interested parties. It is assumedbyHatving names and
direct addresses out the users identity is pradedteis is not true as has
been shown in studies. <<de-anonymization>>

But above all is the danger of semantic attackssans — digital analogies
to the “art of deception” honed by Kevin Mitnicktwihis mostly
telephone based spoofings and impersonations. E¥ciceeier describes
nicely how e.g. identy theft and deception worlsatial networks.

Deception in Social Networks

Social Networking Identity Theft Scams
Clever:

I'm going to tell you exactly how someone can tiyoki into thinking
they're your friend. Now, before you send me haad far revealing

this deep, dark secret, let me assure you thatdhmmers, crooks,
predators, stalkers and identity thieves are ajreadhre of this

trick. It works only because the public is not agvaf it. If you're
scamming someone, here's what you'd do:

Step 1: Request to be "friends" with a dozen seesign MySpace. Let's
say half of them accept. Collect a list of all tHeiends.

Step 2: Go to Facebook and search for those sigl@eloet's say you
find four of them also on Facebook. Request tdhee friends on
Facebook. All accept because you're already ablestad friend.

Step 3: Now compare the MySpace friends againgtéicebook friends.
Generate a list of people that are on MySpace teuhet on Facebook.
Grab the photos and profile data on those peopta WlySpace and use it
to create false but convincing profiles on Faceb&sad "friend"”
requests to your victims on Facebook.

As a bonus, others who are friends of both youtimig and your fake
self will contact you to be friends and, of counga'll accept. In

fact, Facebook itself will suggest you as a frismthose people.

(Think about the trust factor here. For these seéapnvictims, they

not only feel they know you, but actually requdsehd" status. They
sought you out.)

Step 4: Now, you're in business. You can ask thoigeese people that
only friends dare ask.

Like what? Lend me $500. When are you going oubwh? Etc.

The author has no evidence that anyone has actiaily this, but
certainly someone will do this sometime in the fatu

We have seen attacks by people hijacking existagasnetworking

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 38 03/12/2010

accounts:

Rutberg was the victim of a new, targeted versioa wery old scam --
the "Nigerian,” or "419," ploy. The first reportésuch scams emerged
back in November, part of a new trend in the cormpuhderground --
rather than sending out millions of spam messag#sei hopes of
trapping a tiny fractions of recipients, Web criasare getting much
more personal in their attacks, using social netimgrsites and other
databases to make their story lines much moreuadile.

In Rutberg's case, criminals managed to stealdgelbook login
password, steal his Facebook identity, and charggpage to make it
appear he was in trouble. Next, the criminals semiails to dozens of
friends, begging them for help.

"Can you just get some money to us," the impost@tared to one of
Rutberg's friends. "I tried Amex and it's not gothgough. ... I'll
refund you as soon as am back home. Let me knoag@lée

Posted on April 8, 2009 at 6:43 AM * 52 Comments4*Blog Reactions

To receive these entries once a month by e-mgit, @ for the

Crypto-Gram Newsletter.

Comments

Federated Access Control to Private Data

The scenario is quite simple: A new application tsdn use
private user data in facebook to allow a betteviserto its users,
e.g. by showing to a user what his friends selegsaag the new
application. To this avail the application needgéb access to the
users data within facebook. A no-good solutionairse is to ask
the user for her facebook login credentials (usgradsword) and
store them for later use. The new application “irspeates” the
user in this case — and could do so any time Vaitdout the users
consent because the credentials are no longeret fetween the
user and just facebook.

Recognizing that"3 party applications would in the end fall back
to such risky behavior most social sites realized they need a
way to federate security between sites withoutighlylg secret
credential information. Luckily such systems haeerdeveloped
already for federated e-business on the web (geé¢he. liberty
alliance proposal, SAML2 or the WS-Federation an8-Wust
standards) and can be used between social apphisais well. The
principle is rather simple: The original credenkakping site (e.g.
facebook) is used to perform an initial autheniarabf the user
and a token is generated for the third-party $itidwe site needs
access to user data it presents the token andthpreves to
facebook that it acts as an agent for the usecoOffse the tokens
expire after a short time.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 39 03/12/2010

Technically so called federated security can bdempnted in
different ways <<slide from book one security..>®lat relies on a
trust relation between the original site and thedtparty site. The
third party site trusts the original site with respto authentication,
the original site accepts the third party as a usgresentative. The
user herself trusts both sites with respect to groge of the access
right to private user data. The token generatethduhis process

could further restrict access to parts of the dséa only.
Based on opened — an open standard for autheatiaai the web

— a new standard called openauth has been propmsddw the
specification of access control rules in socia@ssit

A special case is where a user wants to authonathar user for
access to her data or parts of them. Here the geketoken is not
handed over directly to an application of the saiser but to a
different user altogether who might want to usa iarious
applications. Again, the access rights behind suidken should
be limited in power and time.

Problems with Oauth:
http://blog.oauth.net/2009/04/22/acknowledgemerthefoauth-

security-issue/

De-Anonymization of Private Data
Social sites frequently sell anonymized user data.it turned out
that with the help of correlation techniques a sisgentity can be
easily reconstructed from those anonymized dataxarmple
papers>>

Reality Mining: http://www.heise.de/newsticker/\VVon-der-ldee-
zum-Geschaeft-Reality-Mining--/meldung/136644

Geo-location used for de-anonymization: (from [Sabr]
Counterpane newsletter June 2009.

Philippe Golle and Kurt Partridge of PARC have tequaper on
the

anonymity of geo-location data. They analyze daimfthe U.S.
Census

and show that for the average person, knowing #pgroximate
home and

work locations -- to a block level -- identifiesetin uniquely.

Even if we look at the much coarser granularity @ensus tract --
tracts correspond roughly to ZIP codes; there araverage 1,500
people per census tract -- for the average petkerg are only
around

20 other people who share the same home and woeakido.
There's more:

5% of people are uniquely identified by their hoamel work
locations

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 40 03/12/2010

even if it is known only at the census tract legahe reason for
this

is that people who live and work in very differameas (say,
different

counties) are much more easily identifiable, asrorght expect.

"On the Anonymity of Home/Work Location Pairs," Bhilippe
Golle and
Kurt Partridge:

Abstract:

Many applications benefit from user location détat, location data
raises privacy concerns. Anonymization can prgbeeacy, but
identities can sometimes be inferred from suppgsaabnymous
data.

This paper studies a new attack on the anonymiltgaaition data.
We

show that if the approximate locations of an indiaal's home and
workplace can both be deduced from a location trien the
median

size of the individual's anonymity set in the Uarking
population is

1, 21 and 34,980, for locations known at the grarityl of a census
block, census track and county respectively. Thatlon data of
people

who live and work in different regions can be restified even
more

easily. Our results show that the threat of re-ifieation for
location data is much greater when the individuade and work
locations can both be deduced from the data. Teepve
anonymity, we

offer guidance for obfuscating location traces betbey are
disclosed.

This is all very troubling, given the number of éion-based
services

springing up and the number of databases thatodlexting
location

data.

Identity Spoofing in Social Networks
Recently some scenarios for the old “Nigerian &tthave been
studied in social networks. In this attack an &#a¢mpersonates a
friend of the victim and tricks the victim into sBng money e.g.
via western union to some drop where it will bdexted by the
attacker.

The attack is made easier by the huge amount wteri
information that is made public in social networkke first

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 41 03/12/2010

diagram below shows an attacker Y creating fakewas in a
social network and sending friend requests to iegsisers there.
Some will blindly accept those requests and theexppse their
social graph to the attacker. The attacker wilbrdadhe graph and
move over to a different social network.

I am
friend!

After being accepted by A as a friend
(some users will accept anybody to bump
their friend count), A's friend network
becomes visible to X. X records the
network and in the next step compares it
with a different social network which he
also joined and where A will most likely
also accept him as a friend (he did it
already once..).

Y joins network
as X and asks A,
B for friend
relation

On this second social network the attacker wilbdlave a
registration as X and he will send friend requésta and A’s
friends which will most likely accept him as thed ¢h the first
social network already. X will again record theiabgraph around
A and create a diff between both graphs. Usersienn@twork but
not in the other are now especially interestin tdhe attacker
will create exactly those accounts in the netwohiere they did
not exist yet, copy real private data and pictdires those users in
the other network over to the new accounts andedausible
identities by doing so. A and his friends will pedity believe that
those new accounts are also driven by their friemdise other
network and not notice that they are really cofgbby X.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 42 03/12/2010

Network tells A
No C??2? about new

friend reated by

In the new social network X also The last step is for X
becomes friend with A and records impersonating C to send A a
the social network of A. He notices message about an emergency
that C is missing. X creates C and and A should send money to
uses C-private data from the other some western union spot
network to build a plausible persona somewhere (,higerian attack").
(pictures, story, profile data). A thinks C is ,his" C from the

first network but C is really a
fake identity created by the
attacker

Finally X will send an urgent message from onehefc¢ontrolled
accounts to A pretending an emergency and askingnémey to be
sent. In one case reported by a Microsoft empldlyers was a
damage of $1200 done.

Don’t be too quick in dismissing this attack asnigetioo far
fetched. What would be the message that would nf&Ke act
(perhaps with a bad feeling but still..). Whatafuy other social
network told you that C really is in London righdavw where you
should send the money too because your dear Amecaleague
has become a victim of European criminals? Whiairnivolves
family? What if it involves a technically challerdyenother who
just lost her husband and now needs help fromdre? $his is
very specific but exactly this very specific typgardormation is

sent by your social network to numerous peopleat the world.
In essence the social networks make the gathefimgedligence as

a pre-requisite of trust establishment much ea$kes. mechanisms
and patterns have been described by Kevin Mitmcihe Art of
Deception”.

Scams
Is security of social networks really a technicallgem? The post
by Chris Walters about the impossibility of selliadaptop on ebay
nowadays points to a very difficult relation betweechnical
means and improved scams: does paypal make theaflg safer
for buyers or sellers? Is the option to welch amoa auction really
an improvement for ebay? (real auctions are nookavie and
cash-based).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 43 03/12/2010

http://consumerist.com/5007790/its-now-completehpossible-
to-sell-a-laptop-on-ebay

The post also shows some clever tactics by pagdaiht scams.
What could ebay do to help people who had theioagtmisused?
What could they do to warn potential clients whan suddenly
addresses are changed? Does a changed addressadfac
reputation? What if the new address is in Nigeria?
Bootstrapping a large community
<<what is needed to build a large community? PageFinancials? Effect
of chaotic influences on early starters == smatisaturn into huge
benefits. Small differences give a headstart withrtetwork effect
amplifying the wins.>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 44 03/12/2010

Part II: Distributed Systems

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 45 03/12/2010

Basics of Distributed Computing Systems

It is now about time to go one level deeper ané look at the distributed
computing technologies, infrastructures and apfboa that run all these social
networks, communities and sites. We will do thighia form of a short history of
distributed computing with its major achievementd anistakes. The goal is to
allow the reader to understand the future possdslbut also the limitations of
distributed computing systems.

Remoteness, Concurrency and Interactions

Distributed systems are characterized by two gteditConcurrency and
remoteness. Taken together they allow interactiitgt are responsible for
the decidedly non-deterministic, “alive” naturedidtributed systems.

Concurrency leads to independent units communigatth each other.
This interaction creates a distributed algorithmallcomes to life only
through the execution of local algorithms. In effées means that
distributed systems are of an emergent qualityffiedit to develop and
execute. But it also offers a positive qualityhaece to do more by using
many execution units, a chance to have a more talyggeem due to the
independence of the parts and possible redundafidiesprice lies in
increased synchronization costs and in increassts éor redundancy. The
concurrency quality does not fit well with humamgramming abilities
due to its complexity. Think about the sequentatline of human
programs need to have to be understandable. A fo@wkal mismatch that
special types of software called middleware wanhiiigate (see below).

Remoteness implies a different quality of commutnbcawith respect to
failure potential, speed, latency and throughpemBteness usually is
seen as a problem due to the failure potentiadies. The other side of
this coin is the possibility of several partnersf@ening the same services
and thereby providing a level of redundancy thatla higher than in
non-distributed systems. It CAN be but usually witk because of the fact
that this — intrinsically required redundancy haghttosts associated with
it. And this leads to the design of distributed laggpions without
redundancy which gave distributed systems the gémapression of low
reliability associated with high costs.

Both, remoteness and concurrency form a third gualomputationally
independent agents which can communicate and codibtowards
individual or common goals. It is this interactigeality that makes
distributed systems rather special: difficult, sigipg and sometimes
creative.

Remoteness needs to be qualified even furthetoffedogy of
communication paths is of extreme importance irstiduted system. It
decides whether the architecture is client-setverarchical or totally
distributed in a peer-to-peer manor.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 46 03/12/2010

And within the frame built by remoteness and corenry, topology has a
major impact on performance, reliability and fagdsr And lastly upon the
distributed application as well because we will ad¢ight dependency of
application types and topology. A dependency prbbaiuch tighter than
the one between applications and the distributetileware chosen —
which is itself dependent on the topology of comioation.

An example: The last twenty years have seen theatmg of
transactional applications from mainframes to isted mid-range
systems. Only the database parts where frequegpiydn mainframes.
This turned out to be a major administration, penfance and reliability
problem because the midrange distributed systenisd oot really
perform the transactions at the required ratesalability — but turned
out to be rather expensive.

The type of a transactional application requiresmtral point of storage
and control: concurrently accessed shared datahigthbusiness value
which are non-idempotent (cannot be repeated witb@ating logical
application errors). Trying to distribute this aahfpoint of control across
systems did not work (scale) well and today thgdat companies in many
cases try to migrate applications back to mainfamehich have turned
into distributed systems themselves by now but wjitbcial technology to
mitigate the effects of concurrency and remoteness.

And take a look at the architecture of googles highly distributed and
seems to be doing well. But the different topolagyarge number of
clients sending requests to a large number of |hmsts with the
individual host being selected at runtime and atloan is made possible
by the type of application: a search engine whiskributes requests to
different but roughly identical indexes. If a goeghachine dies (as many
of the supposedly 80000 machines will be doingrdua day) a request
may be lost, run against a slightly outdated ineliex But so what? In the
worst case a client will repeat an unsuccessfulesy

Choosing the proper topology for a distributed ayaion is arguably the
most important step in its design. It requires adarstanding of the
application needs with respect to latency, conamyescalability and
availability. This is true for transactional e-barkapplications as well as
community sites, media services or massively miagr online games.

Another important question for distributed systeswhat level of quality
should be achieved. In case of a system crashuldspartners recognize
the crash or even suffer from it by being forcedeto requests? Or is a
transparent failover required? Chosing the wronds@@ts really
expensive of error prone. And is it even possiblgdansparently continue
a request on a different machine independent ohvelmel where exactly
the original request failed? (see Java clusteclarly Wu). This requires a
completely transactional service implementationrara thing in web
applications.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 47 03/12/2010

When applications or even the lower technical lay#rdistributed
services called middleware do not match the chariatits of the problem
to the requirements of a distributed system we liysead up with slow
and unreliable applications.

Functions of distributed systems
The relation between distributed systems and nteaianot exactly been a
love affair. Actually many algorithms, techniqueslaven programming
models used in the distributed computing commuahityrot fit at all to the
transport or manipulation of media, perhaps oveeliable open public
networks with unknown latencies etc. In the nexpthr we will there
fore show the adaptations needed to support medhidliing. Right now
we give an overview of rather “classic” distributeamputing and its
technical baseline.

At the lowest level of a distributed system it most important
function is to send and receive messages in ateh@ay — with reliable
meaning “at most once” semantics in most casesqaest will not be
executed on the receiver side more than once, ieaesender did send it
twice (perhaps because a response from the sest/érs). Without such
a failure detection logic which requires a mesgagéocol with numbered
requests, acknowledgements and state keeping eddbrer side, we
would end up e.g. with orders executed severalsiamel having goods
shipped several times to our home.

These messages can be sent synchronously or asgoabty (server
sends response some undetermined time later fifiegedt request or no
response at all is expected).

On a higher level — when the distributed systenesia¢o perform real
application work — more functions are needed. Thstrpopular ones are
functions to find things (which includes names dirdctories, helper
services like traders and brokers which mediateden requestors and
providers). There is a host of “finding” services#able in the distributed
world, starting with the way hostnames are turmed real IP addresses
via the domain name system (DNS) over centralizedices called
registries that keep information or objects (JNRB0OO, LDAP) and
finally the distributed indexes of peer-to-peer ey networks. Taking
this support for “findability” away from a distrilbed service has the same
effect as shutting down google on the distributestlia level or getting rid
of white pages and phone registers in general.

Once things — which can be data or services (thgyalo command
something) — are found, they need to be access$esirdquires a protocol
that allows transfer of data and or commands, dholpaccess control and
concurrency control. The first should prevent ilegccess, the second
data corruption through concurrent modifications.

A sub-function of finding things is describing thesm that they can be
found and understood and used. Traditionally tas heen the field of
interface description languages which describaltta types and
commands of messages that will be understood ®yvers. Lately this

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 48 03/12/2010

has been considerably extended. Description noludes all kinds of
meta-data describing the provided services soctistbmers can decide
whether and how to use the service. The role oardata, semantics and
ontologies will only increase in the future of distited systems. Most of
these descriptions today are done in XML. On ténel we see a major
difference to the distributed media level: Unlikeople distributed
computing systems react very badly to slight chariggrotocols or
structures used in the transport of messages t¢empmMost systems
cannot automatically adjust to changes in this arghthis fact has led to
two different attituded towards those changeseeithake the adjustments
quick and either because changes will always happmartry to avoid
changes as much as possible using long term ingedianning. No real
winner has been decided with respect to this questi

We have mentioned “coordination” already above wivertalked about
the use of social network sites and communitidsttpeople organize
themselves (the Obama election fight e.g.). Withstributed computing
systems we also have the need for coordinatiormdngn a group of
systems needs to work towards a goal or if a goflgystems needs to
learn the exact same outcome of something. In tb&ses we use voting
algorithms like the famous two-phase-commit to aclitransactional
qualities when we change data in several stepsaald algorithms use
replication and multicast messages extensivelydkenprogress even in
case of individual failures in the group. [Birm].

There are many more functions needed in distribsystems like time
service or a service that provides a global ordeoinevents within the
system so that the causality of events can be ce=helhese functions are
intrinsic requirements in distributed systems. Mafdhem are a must
have for distributed applications (at differentdés/of quality of course).
Unfortunately creating those functions in the cahtd concurrency and
remoteness is hard and applications which try fgleément those
functions spend most of their time with system-lgreblems. When this
mismatch between application programming and thisteid functions was
recognized the term “middleware” was born.

Manifestation: Middleware and Programming Models

Before we dive into a short history of middlewarel dhe associated
programming models we need to introduce two caradetransparency
and request granularity. Transparency means thi@iceigly side-effects
of distribution become invisible to the programmédhey become a “don’t
bother” entity. Request granularity is how the naggstransport protocol

in a distributed system is designed and espeaiakyl.
Both concepts have led to horrible mistakes inhikeory of distributed

computing. Overdoing transparency by promising #llagffects of
distribution are hidden by clever middleware ledggammers to believe
that things like latency, communication failures. €o no longer exist.
The result were slow and buggy applications becaaseatter how much
middleware is put in place on communicating macsiftevon’t bring
Munich closer to Rome...

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 49 03/12/2010

The same goes for request granularity. The decadiaut how big
messages should be, how frequent and possibly lasymaus they should
be is a function of the application design, thedvadth available, the
machine and network latencies, the reliability bfravolved components
etc. Traditionally distributed computing applicatsowithin organizations
have tended to a rather fine-granular messagetsteuand frequency —
thereby mimicking the classical sequential andllooaputing model of
programming languages. Internet-savvy distributgalieations have on
the other side always favored a more coarse gramesssage model. This
can be seen in the ftp protocol and especiallipendocument centric
design of the WWW and its http protocol. (see beREST architecture).
If there is one lesson to be learned it is thatadter how clever
middleware and programming model are, they canndtaobably should
not hide the realities of distributed systems catgdy. Every middleware
makes some assumptions and in most cases thosepdssis cannot be
circumvented e.g. by a different design of inteelaand messages by the
application programmer: You can use a CORBA sydtarfdata
schlepping” but it will never be as efficient ag.€tp for that purpose.

Middleware is system-level software that was supgde shield
application programmers from the nitty-gritty détaif distributed
programming. But there is a large range of possést from simple
helper functions to send messages to completelgdhitie fact that a
function or method call was in fact a remote messag remote system.

Over the time this transparency became more ané supported and
developers of distributed system middleware dectdedake concurrency
and remoteness disappear completely from an apiplicarogrammers
list of programming constructs. Did regular prognaimg languages
contain special commands for distributed functioN®?- so why should a
programmer be forced to deals with these problems?

The concept of hiding remoteness and concurreraetest with remote
procedure calls. A regular function call got splib two parts: a client
side proxy function which took the arguments, pagekhthem into a
message and sent the message to some server.sénekaside stub
function which unpacked (un-marshalled) the argusiand called a local
function to perform the requested processing. eessary glue-code to
package and ship command and arguments was mesityaged from a
so called interface definition and hidden withilbaary that would be
linked to client and server programs.

Programmers would no longer have to deal direcitig woncurrency or
remoteness. A function call would simply wait unitié server would send
a response. The price being paid was that conayr@vuld no longer be
leveraged because the program behaved like adoeadnd waited for the
response to be ready. But this price was deemexptatue.

The next steps where the introduction of OO teabgiek to even better
hide remoteness and concurrency behind the OO pboteterface and
implementation. Objects could also bundle functibeter into

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 50 03/12/2010

namespaces and avoid name clashes. The proxyrpali®ved nearly
complete transparency of remote calls. Only in spexceptions a
programmer became aware of the methods being rgnetecutable.

Already at that stage some architects (like Jimd&/aif SUN) saw
problems behind the transparency dogma. He shdvetdhe fact of
concurrency and remoteness cannot be completetyfioep application
programmers and that the price to try this is tighnhHe showed e.g. the
difference in calling semantics between local méghy reference) and
remote methods (by value) and that the respeativetions should be
clearly different to avoid programmer confusiorg(emixing by value and
by reference semantics). He was surely right byt In@&e missed to most
important mismatch anyway: No matter how cleveriddbeware tried to
hide the effects of concurrency and remoteness fmmgrammers — it
could never make these qualities of distributedesys disappear: Bad
latency, confused servers etc. would still makéstibduted system
BEHAVE differently. The dogma of transparency atsdrealization in
middleware caused many extremely slow distribufgalieations because
the programmers no longer realized that the effeictetwork latency etc.
would not disappear behind software interfaces.

But this was not the only problem that plaguedritisted system
middleware. The resulting applications also protede rather brittle with
respect to changes in requirements which in tunsea frequent changes
in the interfaces. The fine grained concept of cisjdaving many
methods turned out to be too fine grained for disted systems. The
consequences where rather brutal for many proj@tigct models
created by object experts had to be completelyngereered for use in
distributed systems. The resulting design featemedponents instead of
objects as the centerpieces of architecture: capieseed software entities
featuring a stable interface for clients, hidintenmal dependencies and
relationships completely from clients. Whole degigiterns where
created to enforce this model of loose couplirg facade and business
delegate in the case of J2EE.

These components where still pretty much compiteetentities, focused
at programmers to allow reuse and recombinatianemer new
applications. Enterprise Java Beans technology &indpresents the
highest level of transparency and separation ofextbiin this area.
Programmers do no longer deal with concerns li&kedactions, security,
concurrency and persistence. Components are cusdrtiirough
configuration information written in XML.

This distributed technology always had scalabpitgblems — even in the
protected and controlled environment of an intramke load on server
machines was huge as they had the task of keepitigeuransparency
promise, e.g. by dynamically loading and unloadibgects depending on
use and system load. Cluster technology was intedito mitigate the
performance and reliability problems. Neverthelessglobally visible
entity representing a business data object andngmithin transactions
always represents a bottleneck.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 51 03/12/2010

And a final example of mismatch between programmnugliel and reality
is the topic of distributed transactions. The otwecof distributed
transactions is to create the illusion of globaiadzation of actions within
a distributed system. This is usually achieved éfynihg a quorum on the
outcome of a global action — in other words a vetaken by the
participants and the global action is either acee o rejected (sometimes
all participants need to vote the same way, sonestiaamajority is
enough). The result is that a number of updatesita on different
machines — which will necessarily take many messagd some time to
do - can be done “in one go” or atomically and éfi@re consistent with a
certain plan.

<<diagram dist.trans>>

But the performance costs and fragility of disttdaitransactions are
considered very high. Blocking or not-responsivdascan prevent the
vote from terminating and a lot of bookkeepingaquired. Some
algorithms though specialize in making progressigugcase of single
node failures. Interested readers are pointedetittual synchrony
approach of Birman and others [Birm]. Accordind?at Holland most
applications do not assume a mechanism for dig&tbtransactions
[Holl], especially if they are dealing with extrelpéarge scalability, e.g.
order items being spread across many machinesodbeit numbers.
What can we do in this case? Distributed transastase convenient but
do not scale or lead to availability problems beeaof their locks.
Holland shows a typical pattern to be used inc¢hise: the application and
the application programmer needs to take over sufrttee responsibility
for global serialization. There is no longer a nmatdkm for global
serialization available, instead, the items to lenged are explicitly
represented as entities within the business lagicpaished to the
application level. Now global consistency is a guesof arranging the
proper workflow to achieve it. We will present Hailds solution in more
detail in the section on adaptations of distribiggstems.

Theoretical Underpinnings
A few theoretical considerations have turned olid®f essential
importance to large-scale system design. Theynane ispecific order:
- failure is the norm, membership detection crltica
- consistency and availability are trade-offs (Beesis conjecture, CAP
Theorem)
- forward processing is essential
- end-to-end argument
- ways to reach consensus, vector clocks
- adaptability

The large number of components used causes refdadteds, crashes
and replacements of infrastructure. This raisesuple of questions like
how we detect failures and how algorithms deal wigm. We need to
bootstrap new components quickly but without disiarpto existing
processes. We need to distribute load quickly & path turns out to be

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 52 03/12/2010

dead. But the hardest question of all is: when ddvave a failute in a
distributed infrastructure? The short answer te tiuestion is: we can’t
detect it in a distributed system with purely asyiocous communication.
There is no clock in those systems and thereforeameot distinguish e.g.
a network partition from a crashed server/procegti@ation. This is what
Is meant by “The Impossibility of Asynchronous Census”, the famous
Fischer-Lynch-Paterson Theorem. A good explanaifats value and
limitations can be found in [Birman] pg. 294ff. Tluager answer is that
real systems usually have real-time clocks and tiseyalgorithms to keep
clock-drift between nodes under control. This akkdivem to define a
message as “lost” and take action, e.g. reconfiguiynamically into a
new group of nodes. This allows progress to be neada in the presence
of a network partition or server crash.

Probably the one theorem with the biggest impadaage-scale systems
is “Brewer’s conjecture”, also called the CAP Thaar[Gilbert. It simply
states that we can have only two of the followimgeé: consistent data,
available data, network partitions at the same.tihine reasons for this
leads straight back to the discusson of failurecein in the
asynchronous computing model: consensus is basgteoibership
detection and this is again based on failure detecthe practical
consequences are nowadays reflected in architedikeeAmazone’s
Dynamo eventually consistent key/value store. Hieeadesigners have
chosen to favor availability over consistency (withmits) and use
algorithms that achieve eventual consistency (backgl updates, gossip

distribution etc.) _ o)
The effects of eventual consistency can be soméinuted and we will

discuss techniques to achieve this in the chapiacale-agnostic
algorithms, specifically optimistic replication stegies. An interesting
feature of such systems is to hand back data wqtedifier that says:
watch out, possibly stale. Or the possibility tmtidoack several versions
which were found during a read-request to the thed let it chose which
one it will use.

In many cases traditional algorithms tend to stopkimg in the presence
of failures. A two-phase commit based transactieads to wait for the
coordinator to come up again to make further pregyréhere are a number
of algorithms available — especially from group coamication based on
virtual synchrony — which allow processing to gorfard even in case of

failures.
<<some examples from birman and fbcast, cbcasgstbdynamic

uniformity discussion >>

The end-to-end argument in distributed systemssléadk to our
discussion on transparency. It deals with the guestf where to put
certain functionalities. If a designer puts them limw in a processing
stack (network stack), all applications on toptafeed to carry the burden.
But of course they also get the benefits of a huiltervice. Large-scale
systems need to use very special algorithms lileatally consistent
replication and therefore have a need to push sonwions and decisions
higher up towards the application logic. Partitrapof data stores is

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 53 03/12/2010

another area which requires the application to koextain things about
the partitioning concept. Another good exampldesduestion of
transparent replicas across a number of nodes. Wdmapplication
distributes several copies of critical data in ltle@e of guaranteeing high-
availability but incidentially the storage systent gll the replicas into
different VMs but on one big server? The appliaaticants a largely
transparent view of the storage subsystem but #rerether views which
need to know about real machines, real distribugitan (in p2p systems
the so called “Sybil attack” shows exactly thishgdem).

Consensus is at the core of distributed proces3imgchieve consistency
we need to have a group of nodes agree on somethowyld be as basic
as the membership of this group. Or some arbitgplicated data value.
Many different consensus protocols exist. Paxosi€@quorum based,
static group communication protocol with totallydered messages and a
dynamically uniform update behavior. In other woitds very reliable but
potentially rather slow as it is based on a redregsy pattern for
accessing the quorum members. [Birman] pg. 380wiWeliscuss Paxos
below. The google lock service “Chubby” is basedtolt is used to
implement what is called the “State-machine apgrdadistributed
systems”: The consensus protocol is used to budgbkcated log on the
participating nodes which all nodes agree on. Teans that nodes who
run the same software and receive the same comnratits same order
will end up in the same state. The commands redeaiga be input to a
database which will be in the same state on aleaa@dter processing those
messages. More on the state-machine approach danrxeat [Turner].

<<vector clocks and merkle trees>>

<<adaptability>>

Topologies and Communication Styles
The way participants in a distributed system adeed and connected has a
major impact on the functions of the system. Wé egcuss a number of well-
known topologies and how they work.
Classic Client/Server Computing
Sound outdated, doesn't it? Today we do Cloud Cdimgunot old
Client/Server stuff. Fact is: most of the new Wék&pplications, the
Software-as-a-Service (SaaS) applications likegthagle office suite all
work in the client-server paradigma of distributeinputing. It pays to

take a look at what this paradigm really means.
Client-server computing is deeply asymmetric beeaxpectations,

assumptions, services and financial interestsaditdiffer between clients
and servers. Let us sum up some of the differefigaslitionally clients
use services from servers. They have expectatioagadability therefore.
Clients send information to servers which meansttiey have
expectations of security and privacy as well. GBan most cases wait for
the results which means the server plays an intpgrain the workload of
the client. And when there is a human being beherd‘user agent” on the
client side it means a sharp limit for the respamse on the server and
what a server can do during this time. Serverderother hand cannot be

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 54 03/12/2010

run by everybody like clients. Running servers @enexpensive and
requires more money.

But some things must have changed even in clieneseomputing?
When we use cloud computing as an example therawsay that the
servers certainly have gotten bigger. They turméal data centers
actually. Only data-centers where whole clusterseovers look like one
big machine to the clients can handle the traffocrf millions of users
which use the cluster to store media, use seretzes

And something else changed which we will discussiane detail in the
Web2.0 section: The many to one relation of classiltent server (with
clients having individual relations to the servaaintainer but not to other
clients) has become a many-to-many relation, perhapdirectly
connected like in certain peer-to-peer networksnbediated through the
cluster running the social community.

The Web Success Model
There is little doubt that the success model ofitkb is deeply rooted in
the client-server mode of its operation. This isutoented in its transport
protocol http which operates asymmetric: cliengstsequests, servers

answer but cannot by themselves initiate a comnaitinic with a client.
And the success model of the web is deeply docunrer@source centric:

nouns instead of the uncountable verbs of finergailocal distributed
computing. This architecture has gotten the nam&RE&hich stands for
Representational State Transfer — a term coineRdyyFielding, one of
the inventors of http and the web architectures&nchitecture proved
extremely scalable. It is the architecture whicstribbutes lots of media
around the world.
REST Architecture of the Web
What are the core characteristics of this archite¢t Readers
interested in the details and historical contexiusth read the
dissertation of Roy Fielding or his excerpt on jing REST
architecture. But we will use a short paper frore»ARodriguez on
RESTful Web Servers which covers the basics [JRadd the
excellent article by [Sletten]. And a little hifthe difference
between REST and other ways of communicating betwkents
and servers is more a question of style then dintelogical
platform. But this is true for many cases like thigerence in
interfaces between a concurrent and a single-tbreagdplication.
And sometimes a specific style fits an applicaaosa very well
and then becomes “best practice”.

Rodriguez defines four strands that make a seRE8Tful:

- explicit use of http protocol in a CRUD like manner

- stateless design between client and server

- meaningful URIs which represent objects and their
relationships in the form of directory entries (tpparent/child or
general/specific entity relations)

- use of XML or JSON as a transfer format and ussoatent
negotiation with mime types

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 55 03/12/2010

But in the end there is one principal differencenaen RESTful
architectures and e.g. RPC-like messages: RESTabaut nouns,
not verbs. What does this mean? It means thatgpkecation
developers design the interfaces to their systenguwsconcept of
nouns, documents or resources, not actions. Mesthiited
applications that use Remote Procedure Call (Ré¢nblogy
define a lot of actions that are offered on theeeside: add(x,y),
calculateFrom(inputl, input2), doX, doY (parametaryl so on.
There is an endless number of actions (messagesnands)
that can be defined.

RESTful applications define access to their systaraand the
concept of nouns or things and what can be dorfetivém. If you
think a little about this concept you will realizeat the actions
around things are frequently rather limited and potar science
has given those actions a short name: CRUD. CrBata],
Update, Delete is what is needed in dealing withg# like
documents, records in databases etc. And the pteeste those
few actions are the name of the thing that it cameéthe URI of
the resource) and an optional body with additiomf@irmation in
case of an update or create action. Doesn't tiois V@ry much like
the good old Unix file API? It will do the job inany situations
nicely. But there are limits and to understandlitinés of REST it
might be useful to take a look at the limits of tie API.
Everything is a file, or? While true in general ¥siystems had
one important escape in case of problems withithies| of the file
API: the iocntrl system call. It could be seen asther way to
write to the resource — and it actually writesttd®ut what it writes
are special commands, not data. This interfaceséas much use
and abuse. It breaks compatibility with existinglsowhich do not
know about the intricacies of iocntrl (much likgeneric client
does not understand special RPC methods providadskyver).
And it has been abused to provide additional witfedata etc. The
more the iocntrl interface is used the less ofgeeeric file API is
usefull and there have been applications and dsgfware that
just used open, close and iocntrl to do the joldth\&n extremely
complex RPC interface hidden within the numerouampaters of
the iocntrl system call for that device. This tygelesign is
certainly not REST like.

The RESTful interface and communication style cddccalled

more abstract. It concentrates on the “what” irst&fathe “how”.
And it has some side-effects that make it extrenaalyable in a
context that requires scalability and the helpntéimediates, in
other words, the web.

How does this noun-centric style of communicatiibof
Rodriguez four strands? When he says that expilitptshould be
used for RESTIike services it is exactly the CRWRdtionality

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 56 03/12/2010

that he demands. And http itself has very few asctithhat basically
map perfectly to a CRUD like communication style:

GET -> Read (idempotent, does not change servi) sta

POST —> Create resource on the server

PUT -> Update Resorce on the server

DELETE -> Delete Resource on server

A RESTful application that is true to this typeasthitecture will
not use GET for anything that changes state oseheer. This is
actually quite an important property because cresndéc. can rely
on GET requests being idempotent so that they tdacwdentially

change state on a server.
A POST request should mention the parent URI in.tRé and

add the information needed to create the chilthénldody.

Many frameworks for web applications did not untkard the
importance of separating idempotent operations fstate
changing operations. Instead, they foolishly foldsakt http
operations into a single service-method and thelesiythe
semantic difference. These frameworks allowed #fmition of
endless numbers of actions per application. Siswasggood
example for the more action oriented thinking iagtef a RESTful
architecture. The focus is on the actions, notherrésources.
Assembling an integrated page for a portal requivesassembler
to know lots of actions which will finally extratiie bits and pieces
needed. In a RESTful architecture the assembletdumse the
names of the resources needed (the URIs) direaggin, a
different level of abstraction.

Is this separation of updates and reads sometlewg iNot by far.
Bertrand Meyer of OO fame calls this a core prilecigf sound
software design and made it a requirement for ifslE
programming language. He calls it “’”command-quepasation
principle”™

“Commands do not return a result; queries may hange the
state — in other words they satisfy referentialsparency” B.
Meyer, Software Architecture: Object Oriented Var§unctional
[Meyer]

Especially in the case of multithreaded applicaticeferential
transparency — the ability to know exactly thatHd does not
change state — makes understanding the systemeasdr. A few
more interesting words from Meyer:

"This rule excludes the all too common scheme dincpa

function to obtain a resuétnd modify the state, which we guess is
the real source of dissatisfaction with imperapvegramming, far
more disturbing than the case of explicitly requesa change
through a command and then requesting informaticough a
(side-effect free) query. The principle can alsestated asAsking

a question should not change the answidleyer], pg. 328f.
The big advantage of separating changes from queribat

gueries now become the quality of mathematicaltions — they

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 57 03/12/2010

will return always the same output for the sameiipjust like
functional languages work.

(Just a small thought on the side: is this reailg? Let’'s say |
have created a query for the price of a thing. Tdo&s like a
idempotent, stateless method call at first sight. \Bhat if a shop
receives many of those queries in a short time?ddtuhe shop
be tempted to increase the price based on theretation of those
gueries and increased interest?)

The principle of separating queries from changeseful in
practice. Just imagine the fun when you find thatrdy the
processing of a request several calls to datalzaeenade
(transacted) and that you have to do an additiottairpc like
request (not transacted) to a foreign serverritstout that this
request is for looking whether a certain custonheraay exists
within the foreign server. And that this serverlwil
AUTOMATICALLY add the user once it receives a quéoy a
user that is not yet in its database. This makesdde within your
request processor much more complicated as it$oroe to do
compensating function calls in case something tatsvrong

later with this user or in case you {ust wantedda lookup.
Related to the question which method to choserfaperation is

the question of response codes, especially wherbtth protocol

is used. Badly designed response codes can megeyihard for
an application to figure out what went wrong. Imége following
scenario taken from a large scale enterprise sgeopbct: The
search engine’s crawler repeatedly crawls a siteda or changed
articles. The site itself has the following poli®garding deleted
articles: A request for a deleted article is rected to a page which
tells the user that this article is no longer afa#. This
information itself is returned with a 200 OK statusle which tells
the crawler that everything is OK. The crawler wdit be able to
learn that the original page has been deleted. ®hlyman being
reading the content of the response will realize it

Here is a short list of status codes and their tagen from Kris
Jordan, towards RESTful PHP — 5 basic tips
[Jordan_RESTfulPHP]

201 Created is used when a new resource has been created. It
should include a Location header which specifiesUiRL for the
resource (i.e. books/1). The inclusion of a locati@ader does not
automatically forward the client to the resourcather, 201
Created responses should include an entity (medsady) which

lists the location of the resource.
202 Accepted allows the server to tell the client “yeah, we ttea

your order, we’ll get to it soon.” Think thBEwitter APlon a busy
day. Where 201 Created implies the resource has besated
before a response returns, 202 Accepted impliesatpeest is ok
and in a queue somewhere.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 58 03/12/2010

304 Not Modified in conjunction with caching and conditional
GET requests (requests with If-Modified-SinceMdie-Match
headers) allows web applications to say “the cohteasn’t
changed, continue using the cached version” with@ating to re-

render and send the cached content down the pipe.
401 Unauthorized should be used when attempting to access a

resource which requires authentication credentthks request
does not carry. This is used in conjunction withvwyw

authentication.
500 Internal Server Error is better than OK when your PHP script

dies or reaches an exception.

Kris Jordanhttp://queue.acm.org/detail.cim?id=15082#&F also
Joe Gregorio, How to Create A REST Protocol,
http://www.xml.com/pub/a/2004/12/01/restful-web.htm

The second strand is stateless design. From therbeg of
distributed systems the question of state on theesbas been
discussed many times over and over. And it is cleacing the
server to keep state (to remember things abouttslizetween calls
from the clients) put the server at risk of reseugghaustion and
performance problems, not to mention the failovebfems in
case of server crashes. But the discussion absiifdited
communication protocols has shown that sometinee sh a
server just can’t be avoided to prevent duplicaecation or to
achieve transactional guarantees. But the mostriapicthing to
remember is that the question of state can be lyaafiuenced by
the design of the communication between clientsarder.
Distributed object technology tried to put the Harglof state right
in the middle of the architecture: after all, whag objects without
the ability to hold state? And they paid a heavugepfor this
transparency in terms of performance and relighgl# Enterprise
Java Beans are proof of.

RESTful applications try to design the interfacedeipendent from
each other and make the client hold state in betwHee client
will then add this state to his next call so tliegt $erver has all the
information needed to process the request. Coakean ideal
mechanism for that. In case the cookie cannot th@dnformation
anymore at least the authorization part shoultistikept there

which is according to Jordan the way Flickr works.
Bad interface: server.next()

Good interface: server.next(page 3)

And of course the server will generate a respoage gvith links to
the next couple of pages.

We could now talk days and weeks about the problEstate in
distributed systems. State has been used to ayatéms, state
needs to be tracked for performance reasons,rstats to be
replicated for failover reasons and so on. Bug liést when you
can avoid the problems already at the design pbiagaur
distributed application.

“Speaking URIs” is the third strand of REST. Thesot a simple
as it may sound. There are people who defined addRikeing

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 59 03/12/2010

“opage” in other words URIs should not encode amynfof
meaning. All they should be is unique. REST goesrs different
way and asks you to encode your object model eseaPaths in
the tree denote different objects at different lee# hierarchy and
readers will be able to understand the path stradiacause it
represents object relations in your application.

And last but not least RESTful applications shawdd XML or the
JSON (Javascript object notation) format to trans#eponses (and
there should always be a response generated, fetvendlient asks
for a partial URL only).

Today most web services offered follow the REShiéectural
style because it turned out to be the simpleswatiethe best
performance. And by a happy coincidence RESTliktitgctures
seem to fit nicely into the new world of Web2.0 Bggtions which
we will investigate next. And afterwards we wilbloat the
competition: Web-services based on XML, SOAP, W&bH the
SOA concept.

Web2.0 and beyond
There have been endless books and articles on Waha.
associated technologies like AJAX (e.g. “AJAX ir Rraxis by
Kai Jager) and at the computer science and meciigtysat HDM
we have been early and strong adopters of thisl tidany
community applications built with traditional orwéanguages
(Ruby on Rails etc.) have been built during thé ¢asiple of years,
accompanied by a stream of Web2.0 oriented spedéakst days.
We will concentrate here only on some vital chagastics of
Web2.0 as described by Till Issler [Issl]. The doling diagram is
taken with permission from his thesis:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 60 03/12/2010

Das Internet wird kontinuierlich populérer und | Zahlungsunfahigen

Unternehmen erzielen Rekordaktienkurse \ Unternehmen erscheinen

i Todeslisten
Steigende Bedeutung des Internets Erste Listen mit

/
1. Generation Internet \ 77777777777777777 > / ;Iatl;snbder Dotclom-BIasek
Wurdo vu Beginn \ / er iberbewertete Internetmarkt
iiberwisgend als \ bricht ein und viele Unternehmen
Experimentierfeld und \ / gehenin die Insolvenz
weniger kommerziell \ \ /f /| Web2.0
genutzt \ / /| Die neue Generation des
\ | / Internets von 2001 bis heute
\ | / / entsteht
\ \ / //, ,,,,,,,,,,,,,,,,, >
....... ~—s . >
"""" ”—o—¢ * * *
// T T\ \ X \\
/ | ! \ \
1990 /|| 2000 | 2010
—/ LA Hebsetengrot
sei ‘ \ \ L
seitengrofie | Durchschnittiich
Durchschnittlich /‘ \ \ 9;,r7ck§,§,t: e
| :

14 kbyte DSL \\
\

\ | 768 kbit/s \
|

\ \
R
Modem Ubertragungsrate
bit/s

— Durchschnittlirch
312 kbyte

DSL

Bis zu 16000 kbit/s
Ubertragungsrate

Uberwiegend mit 14.4 k SDN

Maximum 56 Kbit/s Ubertragungsraten

von bis zu 64kbit/s

It shows two important aspects of Web2.0. Firdescribes the
development on the web after the crash of the dotoobble till
today. And secondly it shows the first major cheeastic of
Web2.0: its dependence on bandwidth — in other sidscbadband
technology being available on a large scale at mabelgrices.
There would be no XouTube, no Flickr, no Faceboo&tadiVZ,
no ltunes etc. with only modem connections beirajlable.

Lets list the major Web2.0 characteristics accaydm[Issl]:
- Availability of broadband connectivity

- The Web as a platform

- Web Services

- Users as active participants

- User generated content

- Collective intelligence

This list does not sound overly technical. Yes,itfeeeasing
bandwidth was necessary to carry media of all kindeasonable
time and latency but the rest is more of a changesé and attitude
than due to a breakthrough technology. One teclyyako
frequently mentioned as THE Web2.0 technologys It i
Asynchronous Javascript with XML or shortly AJAX.cbnsists of
two major changes. The first change was to the conncation
protocol between client and server. Up to AJAXiartlneeding
information did a request to some server and thelrgvas a new
page delivered by the server. There was no reakonaly to
incrementally pull bits and pieces of informatioarh a server and
update the display accordingly. The famous XMLH#gRest
Object added to the browsers allowed Javascript codning on

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 61 03/12/2010

the client to transparently and asynchronously ipfdirmation
fragments from the server and update the scretreibackground.

The result was a major increase in usability eslgdn web
shops. Previously users had to input both zip ewdkecity name
because using the zip code to run a query on tersir the city
name would have been a costly synchronous roundsigting in
a new page and thereby disrupting the user experidiow even
single keystrokes could be secretly sent to theesavho used
them to guess the word the user wanted to types (fids serious
security implications because it changed the seosot the page
based communication style. Previously the user vbale been
forced to “submit” a page to send it to the serimw client code
running in the background could contact other ssr{lé&e google
maps) to create so called mashups — mixes of irgtom from
different servers. Again in many cases a bordedineven clear
violation of browser security but nevertheless exiely useful.

And this brings us to the second change causedl®XAthe
client platform (aka browser) became a powerful potimg
platform ready to run major source code (mosthagavipt). This
meant that some processing could be moved frormehesr back
to the client. Remember, the good old client/secaenmunication
model always put a lot of strain on the server Wiaould now be
relieved a bit. On the other hand totally new fumts were now
possible e.g. the aggregation of information ondient and from
different sources.

At the same time, and perhaps enabled by techresldifie AJAX,
the web turned into a computing platform itselfings that
required a fat client program previously are nomgeffered on
the web. During this time the web also changed faom
information gathering platform into an active apption and
service platform. This trend is far from being avEne webtop
movement turned into things like Software-as-a-Ber{SaaS)
with google e.g. offering a complete office suit@ming on the
web and Cloud Computing where more and more users their
date on some server on the web or use its services.

Web services in general became independent andasahle,
resulting in the previously mentioned “mashups” pAgations
using different services from different providere typical
example is a chain of stores enhancing their londthder with
information from google maps.

It does not really matter whether those web sesvace
implemented using RESTIike architectures or base8©AP and
XML/WSDL. It is only important that these servica® available
(round the clock) and that they are easily integfamto ones own
applications.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 62 03/12/2010

User behavior changed considerably during thosesy@&ae
number of internet users increased and we sawitttiedf the
“online family”. Families spending several hourday connected
and communicating with each other via instant ngiageand chat.
E-mail became the sign of the older generationsrdJalso became
much more active (we talked about it in the filsapter) and this
led to an increase in user generated content. [&ssLinkedIn or
Xing basically provide a platform that is thenddl by users. And
so are many others like YouTube, Flickr etc. Ugenserate
content and by doing so generate metadata, salcaltientional
meta-data”. This is data derived from their behaaiad it is the
base of what we call “collective intelligence” tgdé is
intelligence derived from collective actions of tsséOne example
is the tagging of things and thereby creating asifecation
automatically and for free. This classification ias additional
advantage of being free from hierarchical contra authority as
is usually the case with ontologies. It was Clayi&hwho coined
the term “folksonomies” for this type of classifimm.

So far the list of Web2.0 features taken from [lesth some
comments and add-ons. The WebX.0 trend is far fremg over.
We are now seeing more 3-D interfaces which wedigituss later
in the chapter on virtual worlds.

Web-Services and SOA

While component models where at the height of ithe ta
separate development seemed to take distributéeinggdack into
the past technologies: Webservices — a technolaggdon XML
messages shipped mostly via http started to bepapelar. Their
design wanted to follow the architecture of the websely
couples services communicating via textual messagmsbjects
on the wire and therefore much less responsilitityhe partners.
And of course much less transparency as clientsanetrs where
fully aware of the fact that they where communicgtivith remote
systems using data copies as messages.

But the design did not completely follow the wempiples: The
web did not only operate stateless in many cadesweb uses
http which provides only a few basic functions énd and receive
documents — very much unlike traditional RPC madéedoes not
promise many other things as well: no transactionsnulti-party
security, no guaranteed availability etc. And last not least the
web had a human being in its architecture as Wedlperson
operating the user agent software. In other wadsiebody
bringing semantic understanding into the whole gammemething
webservices could not assume because they inteagedvide
collaboration between machines in the first place.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 63 03/12/2010

Initially webservices seemed to follow the Remotecdedure Call
model of fine grained functions. Soon it becamarcthat this
approach could work in a highly protected intrangh guaranteed
response times but would raise a problem on thénrtass reliable
internet. The communication style soon become HREST"-

like, using simple functions like http get and ptstransfer
document like data structures in XML. This scalasgchbetter.

One of the most interesting concepts of web sesvizas the
automatic service discovery using a common repigsdalled
UDDI. Service providers would register their seegcin UDDI
where clients would find them. Clients would usdargata to
understand and use those services. The services déscribed in
WSDL — pretty much the same concept as an intedataition
language (IDL) but written in XML.

UDDI was a major flop — simply because servicezuesd in

XML does not imply that machine-requestors would
UNDERSTAND those XML descriptions. UDDI ran intareajor
semantic problem of different terms and languagesl o describe
services.

The web services concept produced more and moo#ispgons
in the area of security, transactions and federdiid it took an
integrating concept to finally turn this soup adrelards into an
architecture: Service Oriented Architectures (SQMgb services
always raised the question of why they where neetieely did not
really create any kind of new technology. Instehdy replicated
old distributed computing concepts using a new iteology.

The SOA concept finally brought a breakthroughefiresents a
top down architecture based on the notion of pseesstead of
objects or components. Processes use servicehigvadheir
goals. The services are largely independent foligvtine “loosely
coupled” paradigm of web services. To be usefdraise must be
LIVE. This put the pressure no longer so much orettgpment but
on the runtime systems of distributed applicatighsission
critical service must be available or a large nundfdousiness
processes can be affected.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 64 03/12/2010

SOA Design

Bgz{netss Business Bgz'.netss
I€C Service Jec
Component / \ Component
Service Choreography ™ garyice

This diagram is modelled after O.Zimmermann et.al. ,Eleémeha Service-
Oriented Analysis and Design“ (see resources). The mgeishows nicely how
flow oriented a SOA really is and that a class diagraesdmt catch the essence of
SOA. A state-diagram performs much better. The authsosmate that SOA is
process and not use-case driven design.

But what does “loosely coupled” really mean? Lessudlss this
promise in terms of transactions, security and sg¢icg But first
take a look at what the web does in those caseseTdre no
transactions on the web and especially no diseibtitansactions.
By not providing these promises the web architech@comes
easy and scales well in an unreliable environnfeaturity is
based on point-to-point relations with SSL as tlezinanism of
choice and does not allow multi-party relationslgasnd
semantics still rely on humans or specificationslargely escape
machine interpretation.

In traditional distributed systems transactionst Jike security, are
context based. A context flows between calls apdesents a
transactional call or an authentication state. girdiuted

transaction would lock many objects in the distrdolisystem.
It was clear that the topology and QOS of therhdémade a

different architecture necessary than on the iefrafransactions
e.g. could not use the locking based model of agihase commit.
Instead, partners cooperating on the internet teeegly on
compensating functions in case of problems. Butpeamsation is
fundamentally a different business concept toosistem no
longer tries to hide the fact that it is a disttémisystem. Instead, it

makes some problems visible to the business t@solv
Collaborating companies need to create a commarrisec

context, either through the use of central autlesrifwhich does
not fit well to the concept of loose coupling) brdugh federation.
In any case intermediates may need to process thessages and
add value to them. This means they have to signphets to make
partners trust the information. SSL does not alibiw kind of

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 65 03/12/2010

collaborative document editing and webservicesthaitch over
to message based security (signatures and enamygftimessages
instead of using trusted channels)

The last problem: semantic, seems to be the hatasstve.
Cooperating services and organizations despenagslgl to be able
to understand each other. But not in the way obtHevire

protocol specifications which use tokens within pnetocol whose
meaning is caught in specifications. Instead, dynalty
collaborating services need to discover meaninguayoally using
e.g. ontology languages. Security assertions ageegample where
this would be needed.

Taken together “loosely coupled” can now be defiasd

- giving up on some transparency (like atomic distieol
transactions) by bringing potential problems todttention of
higher instances (e.g. business with compensatimctibns)

- not using objects or object references on the wire

- keeping services largely independent of each other

- dynamically assemble services into larger procesgsesgh
business process composition

- Specifying security requirements either in common
languages (SAML) or using semantic technlogies dikologies to
make partners understand each other

- Share live services instead of software components

- Give services the necessary environment to wokkutin
parameters (inversion of control)

- Model required and provided services for every iserto
allow reliable composition of larger processes.

The question of service resolution, i.e. how oneise finds
another one without creating a tight coupling isally solved with
the introduction of an Enterprise Service Bus (E®Bich takes
over routing of requests.

<<ESB>>

But even with the introduction of an ESB, SOA ctlh sean a lot
of hidden coupling. Services know when to call aeotervice,
what to call and especially what to expect fronevise. Taken
together this interaction mode is synchronous aacksriented
and a far cry from real de-coupling like in an devleased system.
We will investigate different interaction modesde!

Never before SOA has distributed computing beegetlto
business concepts. Business thinks in process teohsbjects — a
misunderstanding that took many years to get resolv

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 66 03/12/2010

This new software concept for distributed systeersainly takes
into account the problems of services on unreliable possibly
slow internet connections — but it cannot compyetehsk them —
nor does it try to do so. In a way this approachdydsted for many
years in distributed computing in the form of megsariented
middleware which is closely related to the messagmted
architecture of SOA. And it is still not without joaproblems as
“The Generic SOA Failure Letter” by Mark Little demstrates
[Little].

But SOA may not even be the final answer to thélgm of loose
coupling. Simply knowing services and having theraasled into
the control flow of applications and components esathem less
suitable for arbitrary assembly into new desigrise &nswer here
lies in the separation of another concern: intevaateeds to be
separated from computation. This is typically donevent-based
distributed systems. Unlike the classic client/separadigm of
synchronous request and reply these systems searicipants
to such a degree that they do no longer know adach other.
Even worse: they do not expect other componergsigi at all. In
the best case they are written as autonomous cangrBelow
we will discuss some of the qualities of event-dnsystems.

Peer networks
We are leaving now the classic client/server togglhich is not only the
dominant model on the web but also in most otheimass related
processes. These processes typically require tamalsatomic control
over transactions. Once certain transaction numdrerexceeded or the
processes are highly critical e.g. because of theayinvolved the server
is frequently running on a mainframe type systethth core business
logic runs on the central system and the same fgoedl transactions.
This is not necessarily so but in most cases aaldatge server cluster
(called a Sysplex in IBM lingo) is ideal for thigoe of communication.
The concept of distributed transactions has beealdped in the
midrange system area but due to performance aiadbiteey problems

never became a dominant model. _ _
When we now move to a different topology for distited systems we will

see that this will also change the kind of appicrsg and processes we
will run. Different topologies favour different kils of applications.

Distributed systems with a business purpose méstlywed either client-
server or hierarchical architectures but in acadessearch and now
already in the consumer world a different distrdzlisystems technology
dominates today: Peer-To-Peer systems embracemnsiltf small home
PCs and tie them into one distributed system. T2f¢ $/stems range from
topologies which still use some kind of centralveeover hybrid systems
where nodes can change roles dynamically to totkdlyibuted systems

without higher organisation.
<<slide on topologies of p2p>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 67 03/12/2010

All these topologies have different characteristind there are some
dependencies between the degree of equality irsiP&Pms (e.g. all PCs
run the same code and perform the same functiotieeoe are some PCs
which perform a dedicated function like keepingraaex or other meta-
data) and the way the system will perform or behawease of crashes or
attacks on single PCs. The higher the degree dligéguthe more robust
the P2P system will behave in case of attacksmgleshodes. But at the
same time its efficience e.g. with respect to fgdihings will be lower
and communication overhead will be higher.

Extensive research has been done on those systehtgday the hybrid
approach seems to be the most popular one. Sordekspecial

functions and services seems to be needed espedoi&ticate services or
documents with acceptable performance. Those fometvill be
performed by special nodes. But every node carrdfieally change into
one of those special function nodes if needed. S&ép@rates the important
meta-data function from a specific host. Otherwien a special,
dedicated node is shut down (e.g. for legal regstveswhole system stops
working or becomes inefficient. The use of the ndsta e.g. to download
a resource from a peer node usually happens ireatgieer-to-peer
connection between requester and provider of airesoNapster was a
typical p2p system operating with a number of daigid meta-data server
who were finally taken down by the courts evenahe of these servers

served a single song directh to a client — ever.
It is interesting to see that like with communites (remember the

Obama election site) there seems to be a balamessey between
hierarchy and anarchy.

The topology and communication style of distribusgdtems has a huge
impact on the quality of service they can promideere is less central
control in p2p systems and therefore those systamsnake less promises
to their users. Routing tables are typically NOTDafed in a guaranted
consistent way. Resources may exist in the p2@sybut due to
segmentation or request aging may not be foundieldu® no guarantees
that a client will receive all parts of resourc8scurity is weak and billing
e.g. almost impossible. And the single machine wiypically lives “at
the edge of the internet” as described by Andy Odaes not have a
stable IP address and may be powered down at anyteniBut despite of
all these theoretical problems the sheer numbepsuicipants in P2P
systems makes it likely that there is enough compotver, storage and
probably even content available.

So these systems — Kazaa, Edonkey, Emule, Bittigwehto name a few
— have become the bane of the content producingstnd They work so
well that they became a threat to content produesish — instead of
considering these systems as new channels oftdison — see them as a
threat and started legal actions against them.

But peer-to-peer systems need not be restrictétbtoopying and sharing
applications. They can play a vital role in conterdduction or
distribution of content as real-time streaming degavell. Even game

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 68 03/12/2010

platforms exist which are based on P2P technologynaany companies
use these “overlay networks” to distribute updabesoftware, games etc.
Let’s take a look at how such a P2P network worlgwahy they are
sometimes called “overlay networks”.

Distributed Hashtable Approaches

Many P2P systems use the concept of a distribuasttable to assign
content (documents, media etc.) to machines. Fhi®mne through a two
layer API. One layer creates a storage layer wtikhs media and stores
them on specific machines. Which machines are fmsestorage is
decided on a lower layer which simply associatgs k&th machines.
This can be done by creating a distance functietwden the key of a
document (which could be its hash value) and tis alue of an IP
address or better a unige name of a peer node.

This sounds straight forward but P2P systems rmesdlve another
problem: Their nodes typically change IP addressésast every 24 hours
which means that the regular way of finding mackinsing the Domain
Name System does not work, at least not out obthe P2P systems
therefore create an “Overlay” network. They assigigue identities
(stable) to machines and just assume that IP aslEgese only temporary.
A clever bootstrapping process then allows new mm&shto announce
their presence and get integrated into the system.

Distributed Hash Tables (DHT)

Dokument Application
] VN
v L location independent
put (key, value) --- get(key) storage layer
] VN
v - ID — Host mapping
get (key) returns IP address layer

For an overview of different DHT approaches compare CBNORD and
e.g KADEMLIA. Look at how the routing algorithms deal with higdtes of
peers leaving/entering the network. The advantage of a DHTliés simple
interface and location independence

DHT approaches differ vastly in the way they perfpreact on changes to
the network through nodes coming and going, secant reliability etc.
Some p2p systems try to guarantee anonymity artégiron from
censorship, others try to optimize storage religbiSome try to account

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 69 03/12/2010

for optimizations for geography or speed (creasipgcialized sub-areas
within the peer network).

Many different communication channels can be usepder clients and
the P2P software therefore tries to create sonm @fitransparent
communication between peers — independent of tetitm and
communication abilities of those peers. Becausedeirements of p2p
systems are the same in many cases frameworkseavedeveloped to
provide assistance. A very popular example is XibAJframework from
SUN (www.]xta.org which provides an extensible software platform fo
the creation of p2p services and appliatoins. Taméwork does provide
help in the case that clients behind firewalls necbmmunicate or need
to create connections between loosely availablngies.

Abstracting away the physical differences

—
eer [Pipe]

peer ID X Peer 4 Peer peer ID Y

Nodes on the edge use all kinds of identities, naming and ailtgesodes. They
are disconnected frequently. They are behind firewalls with NAITA puts an
abstraction layer above the physical infrastructure that allows progeas to
program without worrying about the physical differences in layegtc.

Peers communicate initially by advertising theimpexistence and
features through so called advertisements — xnal dathich are sent to so
called rendezvous servers. These rendezvous sergpexialized peers
which perform administrative task like storing adisements or
communicating with other rendezvous servers. Treams that a
superstructure is created on top of otherwise epels — A pattern that is
seen in many distributed systems and that is ressiplerfor more efficient
communication and search between participants.

In general the working conditions of p2p systengssagnificantly less
reliable than tightly controlled and administerattanet software. JXTA
design reflects those problems and uses e.g. alloosnsistent tree
walking algorithm to locate and place content oec#fir machines. The
price to pay is the lack of guarantees that a fipamntent will be located
during a search. Again, this is a pattern frequefotlind in distributed
systems: reducing the service level guarantees srakae applications
impossible but allows new types of applicationstiow up. Those
applications would not have been possible undeh#aay weight of

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 70 03/12/2010

existing service level guarantees. A typical examplthe web services
world would be whether all actions need to be taatienal (can be rolled
back completely and automatically) or if it is O&enter a second phase
of compensating actions in case one part of a cexrtphAnsaction did not
go through. There are of course different busiwessracts behind the
different approaches.

The next slide shows how content is distributed imay that makes
finding it more robust. Here the content is plaseseveral hosts which
are somehow close to each other (defined by thardis function).

A loosely consistent tree-walker (Store)

R5 is used to store the index
of the advertisement, R1 and
R4 serve as backups

R5

R1

put(index)
put(index)
\ R4
put(index)

R2

put(Advertisement)

host list: R3
rl: hash
r3: hash
r4: hash

r5: hash

The Rendevous peer R2 calculates the hash of the advertiseappli¢s the distance
function and finds R5 as best storage location for the indexeertiglment. It also

stores the content at ,nearby" hosts (hosts which are close to R3'snrouting table.
On a random base the rendevous peers exchange routing tabléstaciddead hosts,
(See: ,aloosely consistent DHT Rendevous Walker, B. Teaet.al.)

If the content needs to be found and retrieve@exwaling algorithm is
used. The closest node is calculated and the cortieved from that
node. In case that node is unavailable or doebang the content the
search algorithm starts walking in both directifmasn the node and looks
for the content on nearby nodes. Hopefully the eoinill be found
somewhere in the neighborhood of the target node.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 71 03/12/2010

A loosely consistent tree-walker (Walking)

[P'il

R7 R6 \
R5
R1
get(index l
R4
host list: /
R2 rl: hash R3 P2

r2: hast
r4: hash
r5: hash
r6: hash, r7:hash etc.

find(Advertisement)

In case of a high churn rate the routing tables have chantptdia case a
query fails at one host the host will start a tree-walk in both direstjop and
down the ID space) and search for the requested contestalldws content
lookup even if the rendezvous peer structure changed beyonditiair in
backup copies.

Bittorrent Example

The bane of the movie industry has one name: Bator This
content distribution network allows fast sharingather big
content (aka movies) in an efficient way. It usegpacal
architecture of meta-data servers (so called tra¢kad download
servers (the peers). A person willing to share @ointreates a
torrent description and places it on a tracker eHeterested parties
can look for content and find the initial provid@nce the peers
start downloading from the initial provider the fwcol makes sure
that machines that downloaded parts of the comstenat the same
time functioning as download servers for thosegarhis allows
extremely fast distribution of content. Criticalgges are mostly
the startup phase (when everbody wants to conadhetinitial
provider) and the end phase (when most requestsliean
satisfied and the peers with complete copies losgast in serving
it any more)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 72 03/12/2010

Bittorrent Architecture

Moderators au:ho(rjlty to SuprNova SuprNova SuprNova
uploa (website) Mirror Mirror
torrents (website) (website)

e M
Torrent Torrent
1 racker url, hash)| | \tracker url, hash)
check
content find meta-
i i data
register new torrey integrity
downloader find Tracker
tracker (uses BT
) http based
get file
fragme protocol)

create seed seed

\
matchin
nts cers 9 Torrent
racker url, hash)|

downloader
downloader

Content (file] d
file fragment:
file fragment

Bittorrent relies on web services for finding torrents. It is agpdownload
network. Mirrors do load-balancing. Trackers match peetissaeders
provide initial file upload.

upload
fragments

Special Hierarchies

Anonymity, friends, location, speed, security...

A good introduction to different approaches anthwgeneral
concept of anonymity in P2P networks can be founithé thesis of
Marc Seeger [Seeg]. There concepts like darknaiegmwetc. are
discussed. For media people the concept behindlkemc
brightnets is perhaps the most interesting onerasxes different
public media and distributes the result. At theeieing end the
original media can be reconstructed but the bggibuted are no
direct artwork and therefore not protected by cayrlaws — at
least this is how the proponents of brightnets ergu

Idea: friends join a distributed streaming platfanmd organize
“evenings”. Each evening a different person ofghmup supplies
the music which is streamed to the distributiorwoek and finally
to the friends. Is this a violation of copy rightRe friends could
just as well come together physically in ones livioom and
nobody could say anything about providing the musitis case.
An architecture like the media grid (see below)lddae used for

p2p distribution of the streaming content.
Compute Grids

Within the lifecycle of digital media the point ofeation and the point of
distribution both require huge computing power Hupately not
permanently. The need for this computing power caral goes,
depending e.g. on the 3-D rendering process ofigpater animation or
the demand for specific media on various deviceslacations.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 73 03/12/2010

Unfortunately getting the rights amount of compoosver when it is
needed and only then (meaning we don’t want tofpagxcess compute
power when we don’t need it) is a rather tough [@wob Energy providers
have built a huge distributed computing and energyiding
infrastructure to deal exactly with this type obplem — e.g. during the
breaks of world championship competitions wherrditg billions of
people of suddenly use energy by cooking something.

Compute Grids are supposed to solve exactly tipis of problem by
providing on demand compute power when it is nee@s¢hers of data
centers on the other hand can sell their excessimess which would
otherwise just sit around and idle.

It is not easy to distinguish compute grids fronempeetworks as in both
cases machines can play producer and consumerfoolegormation. The
most important difference seems to be the Quafi§yavice that is
provided, i.e. the promises that are made for usitfsose architectures.
Compute GRIDs typically are well administered camgérations of hard
and software which provide a service for moneysTimplies several
layers of software for administrative puposes astt@ng security
foundation. Billing is e.g. a concept that is nmtifid in most peer-to-peer
systems. Security based on reputation systemstiseoother hand a
typical feature of peer networks.

Virtual Organization Diagram.

Todays GRIDs are based on Web Services Standardsrfumunication
and security. A typical platform for GRID computirggthe open
GLOBUS project. GRIDs try to hide the complex imi@s and
administration from the user who might want to @sscertain scientific
data but who is probably not interested in wheig ¢cbmputation really
happens — as long as it is safe, fast and not simen

For the processing of media this view of a GRIDdniolie but when it
comes to the distribution and delivery aspect odliméhe internal
architecture of a GRID may become more visible.Wilesee a nice
example of this during the discussion of the Medid@rchitecture below.

<<media grid >>.

The idea of compute grids is not new to media @msicg: Visualization
software like 3DSMax is able to use pools of inexgdee hardware for
rendering purposes. Agents installed on those mastrieceive processing
requests and perform partial rendering of images tids simple reversed
client/server architecture (many servers, one tlismuite different to
what GRIDs can provide. In the first case of simmbels high-speed
networking and a controlled intranet environmenkengsues like security
and performance rather easy (besides dealing witiptaints from users
of those rendering machines about bad performaecause of the agents
eating too many cycles). A GRID cannot accept a®@a8 for other
participants, needs to keep audit data for bilang treat different tasks
separately with respect to security.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 74 03/12/2010

Event-Driven Application Architectures and Systems
The final topology and communication style preseéifitere is rather new
and does not seem to be very relevant for medidaeiprocessing. It is
the event-driven or event-based architecture fatriduted systems and it
is used especially in upcoming areas of technology.

Applications of event-driven systems

« ambient intelligence, ubiquitous computing
(asynchronous events from sensors)

« Information distribution from news producers to
consumers (media-grid, bbc, stock brokers etc.)

« Monitoring (Systems, networks, intrusions) (complex
event detection in realtime)

* mobile systems with permanent re-configuration and
detection

« Enterprise Application Integration with ESB, MOM etc.
to avoid programmed point-to-point connectivity and
data transformations

Characteristics:

asynchronous communication, independently evolving sys tems,
dynamic re-configuration, many sources of information, different
formats and standards used,

The diagram says it all: Event-driven systems deelaastrong focus on
asynchronous communication (senders do not warefgponses) that
leads to rather independently operating subsystéhesarchitecture

allows the connection between many sources and sihikformation
without tying them together. So we can say thatweemain points of
event-driven systems are the de-coupling betweditipants and a very
easy and powerful way to use concurrent computovgep without the
typical complexity associated e.g. with multithreddystems. They
promise dynamic reconfiguration in case of changdaptation to changes
and a high scalability of the applications. Andytlaege able to form data-

driven architectures operating in de-coupled pigetnodes.
We have already talked about the problems behtidssical client/server

communication. Besides performance problems tlseaadther thing that
gives us headaches in those architectures: ieigitih degree of coupling
between components. Components are software sntitiech operate on
nodes and which should be — at least in theorymposable to form new
applications and solutions. Fact is that this daesly happen in practice.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 75 03/12/2010

Architectural Cold-Spots in Request/Reply Systems
client server

Knows service, must
locate server, waits

for response, polls request ——— Performance?
service, control flovp :

includes service call,

Synchronous vs

asynchr. call?

response

Control flow encoded in applications. Makes composiof
application components very hard. Compare with iseme of
concerns in EJB. Calling a service becomes a (aggaroncern!
(see Muhl et.al,)

The reason for the lack of flexibility lies deepthn the components and
works on several layers, from communication styléaithe semantics of
the component itself. The list below mentions satose problems.
Please note that by simply calling a service a aomept ties itself in
several ways to the service — an effect that becasilde even in the early
CORBA architecture which was a service architecauriés core. That was
the reason later frameworks like EJB tried to higeservice calls within
the framework itself and keep them out of the bessniogic of the
components.

Coupling revisited: the causes

« Components have references to other components

« Components expect things from others (function call
pattern) at a certain time

« Components know types of other components

« Components know services exist and when and how
to call them

« Components use a call stack to track processing

« Components wait for other components to answer
them

Coupling is deeply rooted in the architecture of language s and
applications!

The event-based distributed architecture is ralgichfferent to
synchronous client-server types. Components dé&mmt each other and
they do not share data in any way. Not sharing méaat once a
component works on data those data a local todhgonent and nobody

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 76 03/12/2010

else has any access to them. Once done, the contpzamepublish results
and other components can start working on thosis.ittalled a data-
flow architecture because it is the availabilitydata itself that controls
the processing. Because components do not worlkuc@mtly on the
same data there is no need for locking or exclugrahthe processing
becomes simple and reliable.

Event-based architectural style

« Components are designed to work autonomously
« Components do not know each other

« Components publish/receive events

« Components send/receive events asynchronously

« Some sort of middleware (bus, mom etc.) mediates
the events between components

« Due to few mutual assumptions components can be
assembled into larger designs

vy
Sounds a lot like integrated circuits! @

-

It is a violation of event-driven architecture tacede sender/receiver
information in messages. This adds coupling betveeemponents. And
publishing a message with the expectation of ggtikind of response
message simply tries to look like independent epemtessing but
actually is simply a form of synchronous requesgtirestyle with strong
coupling: the sender of the requests NEEDS theoresppmessage which

makes it clearly dependent on some other component.
Security in those systems is problematic as wéll.d2g. requires the

sender to know the receiver so that messages beutticrypted using the
public key of the receiver. But this is clearlyialation of the de-coupling
principle. Even digital signatures of messages fsemders break this
principle. In many event-driven systems administeabverlay networks
are then used to provide security e.g. by creatifigrent scopes and
connectivity between components for security reasBnt the

components themselves are unaware of these restac{Munhl].
How do event-driven systems work? There are malfgrdnt

technologies available, from a simple mash thaheots every participant
with each other and where every message is roatedery possible
receiver to systems that use subscriptions, adeanents and content-
based routing and the creation of so called sc@ippg areas) to optimize
message flow. Middleware separates application compts from the task
of distributing and receiving the events.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 77 03/12/2010

Event-Architecture and Notification Implementation

component Event level component

Pub/sub API Pub/sub API

Notification Implementation, Communication Protocols

plumbing

All combinations are possible: event architecture can re st on a weak,
directly connected implementation (e.g. traditional ob server
implementation in MVC) or request-reply architecture can use true
pub/sub notification mechanisms with full de-coupling)

The diagram below shows a middleware that conrssateral participating
nodes. There is middleware logic within each naat @ptional control
logic within the network itself. The core networlembers all route and
filter events to and from the participating clietdes.

Rebecca distributed notification middleware through
overlay network

C5

C4

See: Mihl et.al. Pg. 21

Relevant communication types are shown below:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 78 03/12/2010

Interaction Models according to Muhl et.al.

Consumer Producer
initiated initiated
Adressee Direct Request/Reply | callback
Indirect Anonymous Event-
Request/Reply | based

Expecting an immediate ,reply* makes interaction logical ly synchronous
— NOT the fact that the implementation might be done through a
synchronous mechanism. This makes an architecture synch ronous by
implementation (like with naive implementations of the o bserver pattern).

There is no doubt that event-based distributecesysido have a lot of
potential for scalable, flexible and independemhpating. But how
relevant are they for media processing? The pri@apdata-flow
processing in concurrently working units is e.gedug1 graphic engines
for shading and texturing. The reason the grapipelipes in modern
cards work so efficiently lies in the simplicity tife data-flow

architecture.
Media distribution could become a domain of eveaddal systems with

agents waiting for content to arrive, process (edgormat) and republish
the content again.

But the core domain of event-based systems witladiancould be the
information aggregation area. Event-based system$e used for so
called Complex-Event-Processing (CEP). Messages é@mponents are
processed and turned into events. These eventisaareollected and
aggregated in a CEP system and new, higher-leegite\are generated.
These events can signify problems within the preiogsof an
infrastructure. Or they could represent contentyamawhich was
performed in real-time. Many data analysis systesmik in an
offline/after-the-fact mode: data warehouses coliiata and then start an
analytical process. Search engines collect dataeeale indexes and later
run queries against the data collections. But GERems can detect things

in real-time and also react on those in real-time.
For more on CEP see D. Luckham [Luck] or try theaj &€ EP framework

jesper.

Distributed Communication and Agreement Protocols

Wikipedia:

Gossip protocols are just one class among mangedasd networking
protocols. See alsartual synchronydistributedstate maching$axos
algorithm databasé&ansactionsEach class contains tens or even
hundreds of protocols, differing in their detaifedgperformance properties
but similar at the level of the guarantees offdmedsers.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 79 03/12/2010

- group communication
- transactions
- agreement and consensus

Reliability, Availability, Scalability, Performance
(RASP)

Usually you only hear about these terms (sometiaéed “-llities”) when things
go wrong. And they do go wrong on a daily baseexgsnabout crashed sites and
services demonstrate. So turned the announcemémt obw European digital
library (www.europeana.ojgnto a disaster because the service was unable to
cope with the flash crowd gathering after the npuislished the announcement.
Web-shops are overrun and crash because a newcpdates a high demand

like the new Blackberry did. [HeiseNews119307].
Its not only the web applications and services Wiiiave a RASP problem: On

26 June 2008, right in the middle of a Euro 200&Hball game most TV stations
lost the signal due to a power failure at the IR@ter at Vienna [Telegraphl].
Broadcasters had paid around 800 Million Euro lerights to UEFA and they
were not pleased about the interruption that lagpetb 18 minutes in some
countries. It looks like a failure in the unintgutille power supply caused a
reboot of the sending equipment after power wasftwsnilliseconds only. There
was only one signal for all TV broadcast statiorssclassic “Single-Point-Of-
Failure (SPOF)” [ViennaOnline]. And UEFA will have pay damages.

And we have to remember the core quality of all S®Ab2.0, MashUps,
Community Services and networks: They have to bangprunning and available
at all times to be called SOA, Web2.0 etc.

The RAS terms all mean some degradation of thatgudlservice promised. But
this degradation need not be so spectacular aserscrashes due to flash
crowds. Degradation can come very slowly and dafidly for a website: visitors
still come to the site but they leave earlier thafore. Why? Perhaps because the
site got slower and slower over time andit is jusionger fun to use it to
communicate with friends. This in turn means thmainaportant aspect of the RAS
terms lies in constant monitoring and reportingystem and applications status,
from outside as well as inside.

Lets define the terms a little bit more detailedwut becoming religious because
they are of course tightly connected with each roéimel other aspects of system
design like the overall architecture.

Resilience and Dependability

When we look at definitions of availability in thieerature (e.g. the nice
overview given by Morrill et.al.) we notice certainre elements. The
Definitions are nowadays mostly based on ITIL teffitL3] and they
favor a rather integrated look at RAS. Resilien@ans business resilience
and subsumes IT resilience which in turn subsumesfiastructure etc.
([Morrill] pg. 495.). The whole thinking about RA#s become very

much top-down: Business requirements and a desigeepconcentrating
on RAS issues guarantee e.g. continuous avaiklabilithe solutions.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 80 03/12/2010

As noted, any design for availability is not completithout consideration of how the system
will be

managed to achieve the necessary availability cheristics. In the past, availability
management

has often been an afterthought: organizations woetdrmine how they were going to
measure systems

availability once the design was complete and thetisa implemented. Today, with ITIL
Version 3,

the availability management process has moved fhenservice delivery phase to the service
design

phase. Early on, organizations determine how thdymehsure and control availability,
capacity, and

continuity management processes. ([Morrill] pg. 499

While certainly a good approach it is in ratherlstzontrast to the way
some of the ultra-large scale sites we will disdaedsw have been built.
This also shows in the statement that “Mixing aratahing components
in an IT infrastructure can result in increasedarpymities for failure.”
([Morrill] pg. 499). Most of our sites will be ragh wild mixtures of
technologies.

But this perspective also includes the convictiat applications need to
be aware of availability techniques within the asftructure to be able to
use e.g. monitoring features, checkpointing oufaildetection. And this

might be true for all larger sites.

What we must take with us from the definitions &XRis that availability
today is a multi-dimensional feature. It comprites ability to change the
quality (or kind) of services rapidly to supportsimess resilience. It also
means to adjust to changes in use by quantitatsediing up or down (do
not forget down scaling to save costs). And it nsdaging continuously
available during various kinds of failure conditsoon all kinds of scale
and scope. Finally, the permanent monitoring ofitiegrity of the system

despite chan?es for resilience is part of availghals well. 3
Below we will discuss separate aspects of thisalaotion of resilience

but we keep in mind that this is just an artifi@ajparation for analysis
purposes.
Scalability

Why is scalability so hard? Because scalabilityraatrbe an after-
thought. It requires applications and platformsoe designed with scaling
in mind, such that adding resources actually resudtimproving the
performance or that if redundancy is introduced $lgstem performance is
not adversely affected. Many algorithms that perfeeasonably well
under low load and small datasets can explode st deither requests
rates increase, the dataset grows or the numbandeés in the distributed

system increases. _ _
A second problem area is that growing a systemuiincscale-out

generally results in a system that has to comernm$ with heterogeneity.
Resources in the system increase in diversity gisgamerations of
hardware come on line, as bigger or more poweréslaurces become
more cost-effective or when some resources areeglaather apart.
Heterogeneity means that some nodes will be aljpeacess faster or
store more data than other nodes in a system agati#thms that rely on

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 81 03/12/2010

uniformity either break down under these conditionsinderutilize the
newer resources. (Werner Vogels in “A Word on Sutg”,
http://www.allthingsdistributed.com/2006/03/a_wooth _scalability.html)

There are a number of problems that can be intighies scalability
problems: A service shows sluggish behavior byardmg very slowly to
requests. Later the service might not answer aratiay not even accept a
request or be visible at all. This gives us attleag end of scalability
issues: complete loss of availability. We will diss availability below

and for now concentrate on scalability.
But what is scalability and when is a problem dadméty problem? Just

responding very slowly need not be a scalabiligbpem at all. It can be
caused by a disk slowly disintegrating, by a neknd®vice becoming
instable etc. We will call it a first order scalklyi problem (or just a
scalability problem) if it is caused by an increaséhe number of requests
directed towards a system or — in case of constapiests — by a decrease
in the number or size of resources of a systemetetaprocess requests.
We will call it a second order scalability problénthe problem is caused
by the scalability architecture or mechanisms thedwves: When the
measures taken to scale a system need to be edtdride happens when
a distributed cache needs more machines or whaticadd shards are
needed to store user data. Frequently in those dasens out that the
scalability mechanism used originally now poseslastacle for further
extension e.g. because the algorithm used tollis¢ricached data across
machines would invalidate all keys when a new maels added. Or
when user distribution across database shards dutrts be ineffective

KP4 5 SRR o gl ity ons

scalability problem because it raises the problénelouild time needed to
get the system fully functional again. Raid arrayg are notoriously slow
to rebuild a broken disk. Originally intended t@yide performance and
availability the array can now turn into a scalépiproblem itself.

(First order) Scalability has two very differenpasts. The first one
describes the ability of a running system to seal®rding to requests
received or more general to an increase of load.gdal is to keep the
Quality-of-Service either at the current level @it it degenerate only
slightly and in a controlled fashion. In this caise ability to scale must be
already present in the running instance of theesysfAn analogy to the
human body comes to mind. If | need to run fastetwdy reacts with an
increased level of adrenaline, a higher heartheétsa on. My body scales
to the increased load and this ability is parthef tore adaptability of the
human body. But there is a downside associatedthishability: Both, the
running system as well as the body need to be prdgar increasing
load. This can mean that in both systems some pavis been running
idle while the load was low. In terms of computimeydware it is possible
that a gigabit network line has been installedigit lsosts, parallel running
servers have been bought that run at 5% load eamte software licenses
have been bought and so on. And all for only oasag: to be able to
scale whenever it is needed.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 82 03/12/2010

The advance costs of scalability are especiallgdftd in case of the
famous flash crowds which hit sites that suddeolypppular (e.g by
being “slashdotted” or by just being announced}hia case the costs of
scalability need to be spent for a load that mdy bappen once in the
lifetime of a site. Clearly this is not cost effeet We will take a look at
edge caching infrastructures later that can beedeand allow a better
distribution of content by using a separate infrtagtire temporarily.

The first aspect of scalability is necessarily texi therefore because
nobody spends huge amounts of money just in case sadden increase
in load or requests might happen.

| believe the second aspect of scalability is mmacie important for
distributed systems: it is the potential of thengexture to be made
scalable. You might say: but isn’t every architeetscalable by adding
either hardware or software or both? The sad taitho, not if it hasn’t
been built to scale. To understand this statememeed to look at two
different ways architectures can scale: horizoptatid vertically.
Database servers are a typical case of verticildeasystems: the
database runs on a big server maschine, initiagjgther with other
services. Soon those services are removed to se@BRU and 10
capability for the database. Later more CPUs antiR#e added on this
machine until the final upgrade level has beenhredcNow vertical
scalability is at its end and the next step wowdddadd another database
server machine. But suddenly we realize that is thse we would end
with two different databases and not two serverskimg on one and the
same data store. We cannot scale horizontally wikibly adding more

g]gr%rgtrilr%%s very bad things happen and we cannotseaa vertically.
Let’'s say we can run one application instance saraer machine only.
The software does not allow multiple installatioligurns out that the
software only uses user level threads, no kerwel kareads. User level
threads are within one process thread which mdaotthese user level
threads are scheduled using one and the same pthbcead. We can add
tons of additional CPUs in that case without thgliaption being able to

use any of those new CPUs. _ _ o
More and more the solution to problems with verttszalability is by

using virtualization technology that is able toateeseparate virtual rooms
for software on one machine. But it does not halpvith the database
problem..

Frequently a much nicer solution is using horizbstalability by adding
more machines. But this has some subtle consegsiasosell. Ideally it
would not matter which server receives which rejuss long as all
requests are stateless this is no problem. Butehjsirement is clearly an
architecture and design issue. It the requestsarstateless we need to
make sure that the current state of the communpicdietween client and
servers is stored somewhere and all the servergetao it with good
performance. Or we make sure that requests frontier@ always end up
on one and the same server. This requires so clteg sessions and
appropriate load-balancing equipment. The firstisoh with distributed

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 83 03/12/2010

session state btw. Is an excellent choice for thblpms of the next
section: when your application needs to be avalabhkll times and even
if single instances of servers crash.

But also within the application software there asemd to scalability
problems. Many applications need to protect shdegd from access by
multiple threads. This is done by using a lock @nitor on the respective
object which realizes some form of exclusive acéessne thread only.
But if those locks are put at the wrong places. t@g high in the software
architecture) a large part of the request path iesoccompletely
serialized. In other words: while one thread isybdising something with
the locked data structures all the other threads bawait. No number of
CPUs added to this machine will show any improvenrethis case. The
new threads will simply also wait for the same |bed by one of them.

Besides fixing those bottlenecks in the softwarthefapplication the
answer to both scalability and availability requients today is to build a
cluster of machines. We will discuss this appraadine section on
availability.

But even with cluster technology becoming a houkkitem for large
web sites there is more to scalability and it agsssociated with
architecture. But this time it can be the architeetf the solution itself,
e.g. the way a game is designed, that plays a mampin the overall
scalability of the application. The magic word hiexépartitioning” and it
means the way application elements are designsdpjoort parallelization
or distribution across machines. And this is fipalquestion of how
granular objects can be associated with procesgitegwill learn the
trade-offs between adding CPU and paying the gocancreased
communication overhead in the chapter on Massiveliti-Player Online
Games (MMOGS).

And a final word of warning: we have already disadthe limiting effect
of scale on algorithms in the case of distributadgactions. Scale effects
work this way almost always. There comes a sizegvhest proven
technologies and off-the-shelf solutions just dowork anymore and
require special solutions. We will discuss som¢hote large scale site
architectures later.

For a really extreme form of scalability and howafiects design — or
should we say “re-define” design — take a look ighRrd Gabriel's paper
“Design beyond human abilities” [Gabriel]. Therethtks about systems
that have grown for twenty or more years and whi@hso large that they
can only be adjusted and extended, not remadeSooatch.

Heterogeneity is natural in those systems.
A nice comparison of scale-up and scale-out tectesagan be found in

[Maged et.al.] “Scale-up x Scale-out: A Case Stusiyg Nutch/Lucene”.

Availability
Intuitively availability means taking a close loakall components within
your system (system components like hardware bagegell as networks

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 84 03/12/2010

and application instances or databases, directeteed here shallst not be
a single point of failure within your complete systto deserve the
attribute “highly-available” which we will from nown simply call “HA".
This in turn means that a load-balancing concepteals a far cry from
being “HA". It is a hecessary concept as it canaeeone specific Single-
Point-Of-Failure (SPOF) but there are many othedB#left. Actually
what can be considered a SPOF largely dependswrsgope as we will
see. (Btw: if you are having trouble understanaipgons in load-
balancing or why you sometimes need to balance AG Ms. IP level,
when to choose a different route back to a cliedtl@ow to do this — don’t

despair: there is a short and beautiful book about
Load Balancing Servers, Firewalls, and Caches” bgrdra Kopparapu

and it will explain all this on less than 200 paf€spparapul])

The opposite of availability is downtime, eithehsduled (planned
software upgrades, hardware maintenance, powengsaeic.) or
unplanned (crash, defect). Unplanned outages #rermare within the

infrastructure and seem to mostly come from apfioeor user error.
Availability can therefore be expressed like this:

Availability (ratio) = agreed upon uptime — downtime (pla nned or unplanned)

agreed upon uptime

Contnuous availabilty does not allow planned downtime

Examples of downtime causing events are shownerishbelow:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 85 03/12/2010

Unplanned Outages
Physical breakage
Design error in hardware or sofiware
Environmental events, such as loss of power or cooling
Operator or user accident, inexperience, or malice

Marural disasters and accidents, such as setting off
sprinklers

Human-caused disasters, such as terrorist activities
Planned Outages
Planned software or hardware upgrades

Preventive or deferred maintenance

Governmental or policy regulations

Morrill et.al, Achieving continuous availability of IBM systems
infrastructures, IBM Systems Journal Vol. 47, Nr.4 |, pg. 496, 2008

Today the answer to HA is usually some form of ugechnology as it is
explained in [Yu]. But before you run off to buyethatest cluster from
SUN or IBM or even try to assemble one on Linuxyburself you should
answer the most important question about avaitgbikhat level of
availability (understood as uninterrupted servibe)ou really need? The
answer can be in a range from “application carelstarted several times a
day and five hours downtime is ok” to “5 minutebeduled downtime a
year with backup datacenters for disaster recovégtl the costs will
therefore range between a few thousand dollar ard/mmany millions

for worldwide distributed data-centers.

We have mentioned above that a core quality of 80d&Web2.0 sites is
within the extreme availability that they providgontinuous availability
(CA) is much more than just HA because it reduaesrdime to zero.
And that means continuous operations (CO) as witle-ability to
upgrade software without restart is an example. fmaily 11™
September 2001 has brought disaster recovery (&Y into peoples
mind. Geographically distributed data centers neanding SPOFs on a

very large scale. S .
Let’s put the various concepts of availability imtaliagram which shows

the various dimensions involved (following the témology developed in
[Morrill].

The diagram of availability scopes starts with basliability guaranteed
by a high MTBF of single systems. Do not undereatethe role of
simple reliabililty. Individual high reliability istill extremely important in
the light of FLP and the impossibility of consengussynchronous
systems. It is true as well for network connectiaoss multiple nodes.
Without individual reliability many of our distrilbed algorithms will not
work properly anymore, e.g. they will not come tooasensus in
reasonable time.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 86 03/12/2010

Reliable Reliable Multi-
Resource Resource the
ata
, = \ , = \ center,
Reliable Reliable Reliable Reliable DR
Resource Resource Resource Resource Scale
Eellable Cluster level, HA, CA, CO,
esource scalability, replication
/ \ !
Reliable Reliable
Resource Resource
. . Redundancy, failure tracking,
Reliable Reliable HA, CA, CO possible. Load
Resource Resource distribution.
Reliable SPQF, easy update,
Resource maintenance, simple

reliability, CO?

High availability (HA) starts with redundancy ofaes and a typical
example can be found in load balancing sectioraarchitecture. But
even on this level the multi-dimensional natur@wdilability shows: We
can call it load balancing or high availabilitylmsth, depending on where
our focus is. And with this first duplication offrastructure we inherit the
basic problems of distributed systems as wellsapribmises for better
throughput or availability. We will take a closeok at redundancy and
load balancing later when we discuss Theo Schlgssisadeas for
availability and just mention here that even faclsa simple architecture
we will have a lot of questions to answer: will thde failover and what
does it really mean? How will failures be detectBdwe need to
duplicate all nodes? Do we use passive backupsswittch-over
capabilities or all-active architectures? How dohaadle replicated data
between nodes?

Before we look at clustering as a solution for HA meed to clarify two
subtle points in distributed systems. The firstp@s about the role of
redundancy in distributed systems. Even after nyaays of distributed
systems und the ubiquity of multi-tier applicationsntranets and
internets few people seem to understand that loliging computing across
several nodes, components etc. makes the wholegsiog much more
unreliable, insecure and especially brittle. Thellhood of one of those
nodes or components failing is much bigger andtilg answer to this
problem is called redundancy through replicas. Akkyuhere are more
problems behind a failing node even in case ofmddant equipment: you
need to detect the failure first which again is mowre difficult in
distributed systems than in a big local installatim one machine (see
below: failure detection). But let’s first conceatte on redundancy. Many
companies were shocked when they had to learth@ibard way by ever
increasing operating and maintenance costs of dighibuted
applications. Server farms with hundreds and thodsaf servers pile up

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 87 03/12/2010

huge costs for energy, cooling, software, monigpand maintenance.
And still, you will only get to the potential bemsfof distributed systems
if you accept the costs of redundant systems. Yaoubeiild a distributed
system without redundancy but it will expose atlds of RAS problems
due to overload, component failures etc. A typcase where redundancy
is likely to be violated in architectures is théerof the data-store. In many
applications there will be just one instance oéatral database and it is
both a SPOF and a bottleneck for performance. Astdut not least we
need to realize that introducing redundancy totfajktribution problems
means at the same time to introduce more distohuyiroblems between
redundant components. We will discuss advancedetosus algorithms to
secure common state between replicas later — anal &out an
opportunity to save considerable costs.

The second subtle point is about failure detectRedundant equipment
won't help your system in case of failures if yanoot detect which
nodes or components are at fault and also whenstiagtyshowing
problems. The good old fail-stop model assumesalmatde that shows a
problem simply fails at once and completely andamof this that the
other participants in the distributed system caedaehis fact
immediately. This is an extremely unrealistic asgtiom. The typical case
is that an application receives a timeout erromflane of the lower
network or middleware layers and is then free Buage one of several
things: a network failure (perhaps partial, perhtaysl, perhaps persistent
or temporary), a node failure (the own node, theénea node, the
operating systems involved, the middleware layevslved, all of it either
permanently or temporarily), a server applicatiaiiufe (server process is
down, perhaps permanently, perhaps temporarily).

The next step after simple redundancy is clustefigge the dimension of
throughput enhancement and performance are much crear and we are
typically talking about business solutions whicledeontinuous
availability (CA). Monitoring with automatic restasf processes or
machines is certainly a requirement as is thetghdi update code for
reasons of bug fixing or business change. A catufe of those clusters
is the virtual IP concept which means that the wtablister of machines
will look like a single entity to outside clientadfailures within the
cluster will be transparently masked by the infiadure. The most
advanced examples of this technology is probalgyesented by the IBM
parallel Sysplex architecture with its various ops for scalability and
availability across distances.

Caching is of core importance within such clustard we will look a
products like memcached. Also on the level of distlatabase
partitioning and replication becomes a requirenagct we will discuss
several solutions for this problem.

We have said that availability is a question ofpgdOne cluster serving a
site to the whole world might both be a throughpatolem as well as a
disaster recovery problem. Soon the need for mat& centers will show
up and create problems with respect to replicatfasata. How do we

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 88 03/12/2010

keep the replicas in sync? How do we guaranteeuteat will get the
closest (meaning fastest) server access? Routjgses to and between
geographically distributed data centers is paduwfsection on content
delivery networks.

And the next important question is about the egaelity of service that is
hidden behind pure “availability”. In other wordsow transparent for the
user is the implementation of HA? Here the answaerhe in a range from
“after a while the user will realize that his usgent does not show any
progress and will deduce that the service mighddasen. She will then try
to locate a different instance of our service ragrsomewhere in the
world, connect and login again. Then she has to afidhe things she has
already done in the crashed session because thtzssevere lost when the
session crashed. When a service crashes the usansparently routed to
a different instance of the service. All sessiotadeere replicated and the
service will simply continue where the old one gieg. The user did not
lose any data from the old session.”

Clearly “availability” has a different quality indbh cases. It depends on
your business model which quality you will haveptovide and hopefully
you can afford it too. The second case of transpawitching to a new
service is called “transparent fail-over” and halsstantial consequences
for your architecture (yes, it needs to designésiwlay from the

beginning) and your wallet.
More reasonable assumptions include nodes that sttemmittent failures

and recovery, leading to duplicate services oastin case backup
systems were already active because a more perbfaiere was
assumed. There are algorithms to deal with thesesca so called virtual
synchrony and group communication technologies lwtrig to organize a
consistent view of an operating group in a verystime of
reconfiguration [Birman] but those algorithms aaeety used in regular
distributed applications as they require speciadi@ware. Birman
correctly points out that the in many cases theepts of availability by
redundancy and failure detection can be simulai#id iegular distributed
system technology, e.g. by using wrappers in fodr8POF components.

The worst case assumptions of failure modes insledenpletely sporadic
operation of nodes which finally leads to a staterg a consistent view of
a group of communicating nodes is no longer possiblve add bad

intent as a specific failure we end up with soemhliByzantine failure
models” where subgroups of nodes try to activetyupt the building of
consensus within the system.

Werner Vogels and the CAP Theory of consistencgijlability and
network partitions. Eventually consistent data. Y\d4ra the implications
for data (data with TTL, probability factor?) AmamoDynamo makes

these options explicit (against transparency).
Read replication (slaves) and consistency: probstier with

memcaches? But what if single source memcacheddataverrun?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 89 03/12/2010

Modeling availability with failure tree models witle part of our modeling
chapter.

Concepts and Replication Topologies

High-Availability can be divided into applicationailability
(runtime) or data availability [LSHMLBP]. Only appation
availability of course knows the difference betwstateless and
stateful architectures: stateless applicationsbeamade highly
available rather easily: Just run several instantésese
applications! The problems lie in routing clientsat working
instance of such an application and track exististances to make

sure that enough are available.
Once applications hold state the problems staxirdier to move

processing to a different instance the state maisivailable to the
new instance. Various ways have been found topahstate
over: state on disk storage, state in a databtese,is shared
memory, state replicated over networks etc. (<<does
virtualization today change state management efgvark state,
memory etc.?>>

The way application handled state has always Hagd mfluence
on performance and failover capabilities and wé take a close
look at how our example site architectures dedh wits problem.
Do they use “sticky” sessions? Where do they htate8 J2EE
applications use replicated stateful session beaheld client
session state across machines and use an extatabade to
serialize requests. [Lumpp] et.al. page 609.

Communication state is also critical for modern tivtreaded
applications: requests from one client need todnalized, e.g by
using transactions. No amount of CPUs and threllalssaus to
process these requests in parallel because thensistencies
would materialize.

In case of a crashed server, how is a new appicatitached to the
current state? There are a number of options dlaila

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 90 03/12/2010

Associating a new instance with current state during failo ver

-Cold standby (server and application need to be started when
primary hardware dies

-Warm standby (failover server is already running but failo ver
application needs to be started first. Both share one SAN e.g.)

-Hot standby (both failover server and application are ru nning but
application acts as a secondary only — i.e. does not cont rol
requests. Data is possibly replicated)

-Active-active configuration (both servers and apps are r unning
and processing requests. Needs coordination between app sin
case serialization of requests is needed. Load can be sha red but
room must be left for one machine to take over the load from th e
other. Every application holds its own data which make dat a
replication a requirement as well).

From: Chiterow et.al, Combining high availabilty and d isaster recovery
solutions for critical IT environments, IBM Systems Jo urnal 47, Nr. 4/2008

Obviously there are big differences between thpgeaaches with
respect to failover time and visibility to clierdse to delays. And
at least in the case of cold standby an extertéleais required
who decides that the primary is down, starts thekina and routes
all requests to the new instance. All the otheffigonations can be
driven with external arbiters as well but couldalse some form
of group communication protocol to decide by theresewho is
going to run the show. Financially the differenaes probably not
so big as in any case the backup machine needsdblbé to take
the same load as the primary. The only exceptiahddoe made in
case of dynamically increasing capacity e.g. dusdtditional
CPUs made available as is done by IBM mainfram&egys. Here
an active-active configuration could run with 50%pson both
machines which are changed to 100% mips in catslober.
Midrange systems usually do not have this capgtahid you will
be charged for all the CPUs built in independeaflthe current
use.

<<clarify the concept of lock holding time duringlbver!!>>

A typical high-availability configuration today called a cluster. A
cluster is a number of nodes who work togethermedent
themselves to the outside world a one logical nreehn other
words: clients should not realize that they ardidgavith a
number of nodes instead of just one but they shbeldble to get
the benefit of better availability and scalability.

An important distinction in cluster solutions istlween shared-
nothing clusters and shared data clusters [Lumpal @age 610ff.
A shared nothing cluster partitions its data aceesger machines.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 91 03/12/2010

Shared Nothing Cluster

Server A

Server B

Server C

While this is a typical architecture of ultra-largeale sites as we
will see shortly, without additional redundancylbuito the
architecture it leads to very poor availabilityolie server dies a
whole data partition will be unavailable. A betsgchitecture is
provided by shared data clusters as shown below:

Shared Data Cluster

Server A

Server B

Server C

Here every server can access all data and it dewatter when
one server does not function. Of course the stoshgald not be

designed as a single point of failure as well.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 92

03/12/2010

Can a cluster span across different locations?ankeer is yes,
within reason. A very popular form of clusteringarding to
Lampp et.al. is the stretched cluster which work®ss locations.
In a stretched cluster it is assumed that thene idifference with
respect to nodes. All nodes can be reached edaaliynd with the
same reliability. This is of course only true withimits once we
span the cluster across different locations. Bistdt cluster form
that is easy to administrate. Once the distancgd®et locations
becomes an issue due to latency and network failuréandwidth
we need to go for a global cluster and by doingrger the area of
disaster recovery which we will discuss below. Al cluster has
one primary and one secondary cluster and a speaaiahgement
component decides which cluster does processinggoiests and
which one is the backup.

Hot standby already requires some form of datacagpbn. Several
solutions exist which work on different levels: @giing System
replication via IP (e.g. Linux DRBD), disk/storaggstem (block)
level replication (intelligent storage subsysteraggrming the
replication), DB Level replication (commands oralate sent to
the replica), application level replication. An iorpant question
about replication mechanisms is about the levebofistency they
provide. It is usually either block consistencygpibly across
volumes) or application consistency. Using thissifcation on
the above technologies it turns out that operatiyggem replication
via IP and disk/storage replication offer only Hdevel
consistency. The atomic unit of work is basicallylack of data,
much like or exactly like a disk block. The sequen€block
writes will usually be respected (in a fbcast likanor), even
across volumes which are frozen/paused in that d&se way so
called “consistency groups” are created. What tinesinods
cannot provide is an application unit of work cateincy because
they do not know which operations form one atoraikpr-nothing
group of writes. This is only known at the applioator DB level.

We have just described the consistency aspecpbtagon. There
is another aspect in replication and it regardsatbenicity of
replication: Either have both primary and repligalated or none
of them. This is an extremely important feature dagends on the
replication protocol used. A synchronous repliaaootocol will
guarantee the atomicity of replication becauséags waits for
the acknowledgement of the replica as well. It wdt allow a case
where the primary got updated but the replica didog to a crash
or network problem. Or vice versa. And it pays phiee in round-
trips needed to achieve this. Usually there arerwodtrips
necessary at least. And due to this reason therdistance limits
for synchronous replication, currently around 300rketers
between primary and replica.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 93 03/12/2010

Asynchronous replication does not need to wait for
acknowledgements and allows both higher throughpdtlonger
distances. The price is paid in a potential losdadé resulting in an
inconsistency between primary storage and repfod.in case of
a failover this can result in wrong business datarocesses.

Before we tackle the problem of disaster recovesyneed to talk
about one very important and difficult aspect of Elasters: The
guestion of when and how to fail over. We have #aad in a HA
solution failover needs to be automatic. But hothis done? Via
scripts? According to the authors the way thisosedtoday is via a
three level correlation engine as it is used eydliloli software
from IBM.

A description of such an engine can be found ifa8twic et.al.,
The role of ontologies in autonomic computing syseThe
diagram below shows the architecture of a cor@tegingine:

Automation: correlation engine diagram

Correlation Engine Architecture

Rule layer: Failover Actions after Events

Event Layer who models State changes
(detection, filtering, assembly)

Managed Resources and Resource State

Stojanovic et.al., The role of ontologies in autonomic computing systems.

How close is this concept to Complex-Event-Proceskinguages
and architectures?

The concept of high or continuously available systéHA, CA)
has been extended with the concept of disasteveegdDR) over
the last decade. Actually DR has always been aoitapt concept
in the largest of financial companies. But dueht® growing
importance of internet services and presencesetireoff disaster is
now present in many large websites.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 94 03/12/2010

Let’s start with some definitions of HA and DR ahe differences
between them, taken from Chiterow’s et.al. papecanbinations
of HA and DR technologies for critical environmefBCS]. The
following table presents the main properties arfigédinces
according to the authors:

High-Availability vs. Disaster Recovery

-Single component -Multi-component or complete site
failure assumption destruction assumes

-Local infrastructure -Long distance infrastructure

-No data loss allowed -Some data loss possible
-Automatic failover -Human decision to use backup

o facility due to costs
-Synchronous replication

mechanisms used -Replication mostly asynchronous
-Sometimes co-located -Share nothing between sites (net,
with failover power, computing...)
infrastructure -Long distance to failover

-Short distance to infrastructure (several hundred
failover infrastructure kilometers)

With DR we are obviously talking multi-site datanbers,
geographically distributed data centers possibldiffierent
continents. There can be many reasons for sucltectires:
performance, closeness to customers etc. but dseiw et.al.
mention frequently it is because of regulatory reguents (e.g.
that there need to be x miles between primary aodrglary site)

that a multi-site configuration is chosen.
A 3-copy architecture seems to be a rather pomhlaice in those

cases and here we are discussing the architectesesibed in
[Clitherow] et.al. The role of the third site cae just as a data
bunker with no processing facility attached. It icbiake days to
get processing up on the third site or there cbeld complete hot
standby processing facility in place just waitiogake over. Due
to the asynchronous communication protocols usesldas the
primary sites and the tertiary site there is uguadl active-active
model used for the third site. Some ultra-largdessies solve the
problem by using the third sites actively but ofdyread requests
while all changes are routed to a master clustea (wo site
active-active cluster located close to each other).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 95 03/12/2010

3-copy Disaster Recovery Solution

Primar Storage Incremental re-synchronization
y Subsys \ after failure of B
Cluster A A
Storage L Storage Terti
nchronous ong eruary
system hot Y distance | |Subsys Cluster A
swap in case A
of failure Optional, could be
just data bunker
Storage
Secondar
Cluster By SU?BSVS z asynchronous

After: Clitherow et.al.

The failure model in disaster recovery with a 3yceplution is
usually like this: no data loss if either ClustepAB falil. If both
fail there can be some data loss between the two chasters and
the tertiary site due to asynchronous replicatieedu

Failure Modes and Detection
[Caffrey] J.M. Caffrey, The resilience challengegented by soft
failure incidents,
[Google] Chubby/Paxos Implementation paper
The role of ontologies in autonomous systems
Selfman.org

Availability is based on redundancy. Redundandyased of
failover — the ability to move a request to a neacpssing or data
infrastructure, possibly without the client notigithe problem. We
will discuss failover in more detail using J2EEstkring as an
example later. For now we will concentrate on oseeatial pre-

requisite for failover: the ability to detect amaar
And this is where all our efforts to achieve auaiiity through

avoiding single points of failure and by replicgtias much as
possible turn against us. Techniques to achieetfaarant
behavior tend to mask errors — sometimes overgeloperiod of
time until it is too late to use preventive measure

A beautiful example for this effect has been désaiby the
Google engineers Tushar Chandra, Robert Griesemiel@hua
Redstone in their paper “Paxos Made Live - An Eegiing
Perspective” [CGR]. It describes the use of thedBaonsensus
algorithm (we will talk about it later when we dedth consensus
protocols for replication) to implement a repliaghtéult-tolerant
database based on a distributed log system. Thbak# is then

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 96 03/12/2010

used e.g. to implement large-scale distributedifaeKThe protocol
needs to make sure that all replicas contain theesantries. The
system is used to implement the Chubby distribetezht
mechanism further described in [Burrows]

The paper by Chandra et.al. is especially imporftam an
engineering point of view. It describes the effeeded to
transform an academic algorithm (Paxos) into atfenlérant and
correct working implementation. The team noticedase
deficiencies in the development of distributed ey, notable in
the area of testing and correctness. They develageanced
failure injection techniques and implemented in@tipoints
within their protocol which led to the discoverysdveral
problems and bugs. And they made the following grpee:

In closing we point out a challenge that we faaetesting our
system for which we have no systematic solutioth@&y very
nature, fault-tolerant systems try to mask problentsis they can
mask bugs or configuration problems while insidlguswering
their own fault-tolerance. For example, we haveenbsd the
following scenario. We once started a system withreplicas, but
misspelled the name of one of the replicas inrh&l group. The
system appeared to run correctly as the four calyemnfigured
replicas were able to make progress. Further, tfik feplica
continuously ran in catch-up mode and thereforeegped to run
correctly as well. However in this configuratioreteystem only
tolerates one faulty replica instead of the expe¢ie. We now
have processes in place to detect this particypetof problem.
We have no way of knowing if there are other
bugs/misconfigurations that are masked by fauksmce. [CGR]
page 12

So the 2/5 availability system had secretly turimed a 1/4 system.
What do we learn from this experience? Withoutestat history)
we cannot detect this error because catch-upegal phase within
the state model of the protocol. The state mod#l tvansitions
and their respective likelihood is another requigaem The
modeling can be done with Markov models and assatia
probabilities for transitions. The diagram belovows the Markov
model for blade-processor CPU plane, taken frontiseatial, and
their availability analysis of blade server systd8iETA].

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 97 03/12/2010

o 1 Steady-State availability of
- bladecenter CPU and memory

subsystems:
< 1/mttrsp

] . Aprocessor =
:ZZ ¥ (= " PrOCEssor
. ! ((mttfepu)/(2 X mitboot] + mttfcpu + 2
- J X (1= cpt) X(mttrepu + mitrsp)))

(> : F((2%(1 = cpt) X mttfepu X mitrsp)
R +({mttfcpu + mttrsp)
@ <(2 X mtthoot] + metfepu + 2 X(1 - ept)

X(mitrepl + mitrsp))).

Transition rate Memary Pracessor

X1 2/mttfmem 2/mttfcpu

X2 1/mittfrmem 1/mittfcpu

R 1/mittrrmem 1/mittfrepu

z 1/mittboot] (1-cpt)/mittbaot] .

77 s cpt/mithoot] Smith et.al. Page

627

Figure 4

Markov model for BladeCenter memory and processor
| subsystems

For us two transitions in this diagram are impadrtémre transition
X1 leads over to an error state with associatedaelif a hard
error is found within the failing CPU the transitid is taken

which leads to a stable one CPU server. If the @RIBlem turned
out to be spurious the reboot will transition via iito the old state
of two CPUs working correctly. Z and ZZ have asated

probabilities but are legal transitions.
Let’'s assume the spurious problem happens agaiagaid due to

some unknown failure? Only when we observe the sfaanges
(history) of this reliable system we will noticeattthere is a

problem.
How do we notice the problem? From outside we nmgiiice a

decrease in throughput or performance, dependirtgeoworkload
and its parallelism. But what if we do not have twa 20
processors? There is almost no chance to deteptoldem via
workload measurements — the remaining 19 CPUsvgilfibute
the work and the only real error is a decreaseaiability — with
19 CPUs still working this is a theoretical sitoati not yet a real
performance problem. We learn that we need to aépar
availability strictly from observed performance ahdughput.
Both are independent concepts.

What we need to detect the problem of a CPU perntneycling
between down and up is an event logging systemhadoants
those transitions and knows about the probabildfesich events
happening. In case those probabilities are exce@gaedvill shortly
see how this can be calculated for more compleaviehlike
transaction runtimes) the event system will rais@larm and
provide a causal reason for the alarm: too maniesyiao CPU X.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 98 03/12/2010

By this we will get an analytic explanation whicle would not
derive from observed performance or throughput.data

Time to give some further terminology developedhsy
availability people, here especially [Caffrey]: Tiiegram below
gives a short classification of error types and@xas. The focus
obviously is on soft failures as the one descrideave.

Errors

masked hard soft
Fixed by Power Ssyir(r: Ifr?ehstzy Damaged| |Exhausted | | Seriali | | Unexp.
software supply Creeping system Resource | | zation state
(caught broken error _ _
exception) overflow Looping Prio Config
thread, inversion, Wrong
quotas deadlock - hang
exceeded

Caffrey, pg. 641ff.

Creeping errors are long term consequences of ethars. Today
most failures seem to be soft failures with damagyestems and
exhausted resources being the most prominent Soésfailures
usually occur over a longer period of time untildily a dramatic
loss in availability occurs. This makes them esgchard to find.
Sometimes combinations of soft errors further cocap the
picture. They generally tend to be associated thighliveness of an
application, i.e. the ability to make progress.vizegn the real error
event and further consequences can be quite same @affrey
e.g. describes a case where a wrongfully terminai@tagement
process left locks on resources behind and predeheestart of an

aﬁplication a week later.))
This behavior makes it especially hard to definemvbxactly a

component is in error. Interdependencies betweemnuhtime and
error logging and analysis components further caraf# the data
about possible soft failures as is shown in thgrdia below (see
also [Hosking] pg. 655f.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 99 03/12/2010

Runtime Image
Experiencing errors

Drain

Artificial load .
Load Logging
Balancing Subsystem
Polluted

Statistics and
Analytics

statistics

Drain storms btw are false interpretations by antlregarding the
ability of a server to accept more requests. Qegaior cases
within the processing of the server look like desexl response
times and are interpreted as “server is idle” lgydhent. Thus
more requests are sent down to the broken sereenab Mituzas
of Wikipedia describes such effects in this papetWikipedia:
Site internals, configuration, code examples andagament
issues [Mituzas]. Especially load balancers arecédd by drain
storms.

| call a releated phenomenon “thread hole” andoitks like this: a
backend service is unavailable but a multithreadietit does not
realize this fact. Instead, every request thatteat receives will
be also directed towards the non-functional baclertresults in
another thread being stuck. This depletes the Vidktof

threads and — without a limiting thread-pool sizagilt- cause havoc
to the application.

<< dependencies between loosely coupled layersthieguare
incident>>

We haven't really solved the question of detecéngrs as a pre-
requisite for failover yet. Even without the requirent of
automatic failover the situation is bad and desttibeautifully by

J.R.M Hosking:
In the 1970s, the most common IBM mainframe was the

System/370* Model 158, a 1 million instruction pecond (MIPS)
machine with one processing unit and a maximurowf f
megabytes of main memory. The current IBM mainfrisntiee
System z10* EC, which is a roughly 27,000 MIPS nma&clvith up
to 64 processors and one terabyte of main memaripopeal

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 100 03/12/2010

partition (LPAR). The current z/OS* operating systs a direct,
lineal descendant of the MVS* operating systemridwaion the
Model 158. In the intervening years, many new tyjfegork have
been developed and now run side by side with progrdnat could
have run on the Model 158. The fundamental errggiog
processing in the operating system (OS), howeeeanams
unchanged, as does the official IBM service recontaton that
customers look at these logs and resolve problgnaoing
searches in problem databases or opening incidegmonts with
IBM service. [Hosking] pg. 653f.

Hosking developed two different methodologies ttedemostly
soft failures: An analytical method called failw®oring and a
statistics based method called adaptive threshaldin

Failure scoring tries to identify problems befdneyt can lead to
unavailability. One way to do so is to properly thg priority of
error messages. “Noise” through tons of uncritmnaksages need
to be filtered out to make a possible chain ofcaltevents visible.
A clear theoretical understanding of the natureradr events is
necessary as well: when are we talking about daeguor event
like “file not found” with little chance of damagjthe system or
wasting resources? And when could an error evelenpially
disrupt system functions like perhaps an error edeacribing the

attempt to overwrite illegal memory? '
A special feature of failure scoring describes Hioglas “symptom

search” where a database of past events and tiresequences is
used to find out whether a certain type of evestlbd to severe
problems in the past. Interestingly for this methmavork it is
necessary to develop a special taxonomy of “sevesfterrors.
Usually people have very different ideas about sgvef an error
and this turns out to be a bad indicator for saifufes.

A mathematically more involved method to detediaal errors is
“adaptive thresholding” where — based on a largaeber of
statistical events — a machine learning algorithestto decide
whether a certain “tail” of measurements simplyrespnts
especially long running transactions or erroneolgiping
transactions. Technically, the algorithm triesitmfa good “cut-
off” value where the long tail begins. Then a gafized Pareto
distribution is fitted to the tail. In case of adif the tail is

interpreted as being in error. _ _ N
While failure scoring includes the risk to miss soonitical error

events, the adaptive thresholding method (adapgeause the
method adjusts for changes in the system datatowe) runs into
the danger of falsely declaring something as aor evhich is
simply a long running task.

In a follow up procedure the calculated threshaltligs e.g. for
certain transactions can then be used for compavsth actual
performance data. Transactions beyond the thregbajdslow

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 101 03/12/2010

transactions) are then automatically investigatethbchine
learning algorithms to find critical propertiest(dtutes) which
could be responsible for them being slow. [Hoskipg] 664
We end this section with the statement that botthouwlogies
presented are not able to drive a fully automaaddvfer. We will
come back to the problem of error detection indiscussion of
group communication and replication protocols drelCAP-
theorem.

J2EE Clustering for Scalability and Availability
For the concepts behind clustering see Lumpp &raim high
availability and disaster recovery to businessioaity solutions,
[LSHMLBP]. The authors describe HA approachestéstss,
stateful, cold, warm, hot, active-active). For tlse of hardware
saving group communication solutions (e.g. to eahi
loadbalancing or failover) see Theo Schlossnaggteipon
“Backhand” [Schlossnagle]

This chapter will describe the implementation afstér solutions
using the J2EE platform. The goal is to createasfqnim that does
support both availability and scalability. Thremncepts are
essential in this context: First the concept oftention between
parallel requests caused by locking all exceptregeest to avoid
inconsistencies. Wang Yu describes the negativeeedif
contention (hot locks) on scalability in the fipsrt of his series on
Java EE application scaling which deals with vattgcalability.
This type of scalability is further influenced bymory
consumption and the type of I/0O handling (blockanghon-
blocking).

Horizontal scalability, described in the second péthe series
[Yu] has one big problem for throughput: holdingsien state to
achieve fault-tolerance. With respect to faulttafee or
availability in general we will need to discuss giteblems of
Single-Point-Of-Failure in Java EE architecturesrdithe concept
of “unit of failure” is helpful in deciding wher®@tintegrate failover
options into an architecture. Finally some clust@anagement
issues need to be discussed where we will usddtermachine
approach in distributed systems to get a betteerstanding.

Vertical Scalability means to grow a Java virtua@amine as a
response to increasing service demand (requestis)€1g. can
mean to run more threads to service more requssise will see
in the modeling chapter later this will soon leaadtbntention
between the threads due to locking. Finally thekpart of our
code — the part that needs to run behind an exeusck — will
totally determine the maximum number of requests ¢an be
handled. Adding ore CPUs or more threads will hawositive
effect after this. Adding threads also has the saglg-effect of
increasing response times for all users.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 102 03/12/2010

Yu mentions the typical solutions to the contenfiooblem:

- use fine-grained locking

- keep locking periods short

- use “cheap” locking mechanisms, not synchronized

- use “test and swap” for wait free locking to avoahtext
switches

- avoid class level locks

This basically means tracing your code and seagdioin
bottlenecks like synchronized class level (statiethods. If you
see 9 out of 10 threads waiting at the same typeckfyou have
probably discovered a serious bottleneck.

Two other important causes of scalability probleresmemory
consumption and 1/0. Memory should not be a prolderymore —
we’ve got 64-bit processors after all and can StuRAM almost
as much as we want. The limiting factor turns oube the garbage
collection caused by excessive memory use witrerMiul. Yu
mentions an application which simply stopped fondQutes
doing GC and nothing else. It is not only the usa karge number
of threads that can cause excessive memory useeCoon
buffers can also have the same effect. Facebodlitects had to
re-engineer the way memcached used connectionrbudfdree
gigabytes of memory bound to separate connectiffiersu[Hoff]
in “Facebook tweaks to handle 6 times as many menach

requests”. “ ,
Blocking 1/0 — also called “thread per connectiormequest” has

two painful side-effects due to the large numbehoéads
required: each thread needs a fixed and large piecemory at
startup which considerably increases VM memory gonsion.
And a large number of threads cause a huge nunilbentext
switches which take away CPU from the workloadlumithing is
left for the requests. We will talk about altermati/O models later
in a special section so for now we simply staté tiwa-blocking
I/O works with only a small number of threads an@sinot show
the above mentioned problems. It is albeit ableetwe thousands

of reg_uests per second. -
The diagram below shows the much better scalalaifithe non-

blocking architecture. The blocking I/O solution thke other hand
closely follows the universal scaling algorithm Gynther which
we will discuss in the modeling section.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 103 03/12/2010

Blocking vs Non-blocking 10 tested in 4CPUs server

e '
& so00
‘i =00 f _ ! —— Tomeats
£, 4000 Y sl =R | | —Glassfish
3 3000 L/ S
£ 2000 I/ \""".
= oo [|
0 |

From: Wang Yu, Scaling your Java EE Applications

What about availability in the context of verticalaling? The unit-
of-failure here clearly is the whole VM. It doestmoake sense to
think about failover within a VM as typically thedlation
mechanism within a VM are too weak to effectivedyparate

applications or application server components fe@woh other.
Availability is therefore defined by the overall BBF of the

hardware and software combination. Hardware shoolde a
problem to estimate — all vendors have to delikesé numbers —
but software certainly is. It might be your lassod to calculate
availability as follows: take the time for a congléardware
replacement and the time needed to perform a caenjistallation
and boot of the software from scratch and multgdgh value with
the probability per year. The sum of the result bd your
estimated yearly downtime and it also defines yauarage,
expected availability. There is no transparencfaifires for the
clients which will have to accept the downtimes atsb no
failover.

Let's move to the second type of scalability: hontal scalability.
It means adding more machines instead of growisiggle
instance. Suddenly other external systems likebdates, directory
services etc. need to be duplicated as well toda881OFs. The
easiest cluster solution according to Yu is theafsd-nothing”
cluster where individual application servers seaguests and use
their own backend stores. These servers know rgp#dout each
other and a load balancer in front of the arraysieaply distribute

events to any server. o
If there is session state involved and it is kepaerver the

loadbalancer needs to send all requests of tlEatdio the same
server (sticky sessions). In case of a server dheskhared nothing

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 104 03/12/2010

cluster does not support fault-tolerance or faiteued the client
will lose the session state. Frequently one cad tieat sticky
sessions are therefore a bad design feature anttigb® avoided.
This argument needs some clarification:

- Sticky sessions do have a negative impact on laéhber
freedom to assign the next request.

- Sticky sessions have the advantage that a seresrrox
need to read the session state at the begin of exguest

- Sticky sessions are bad for failover if only one/ee
(session owner) or his replication peer (see rapba pairing
below) hold a copy of the state. This forces tregllmlancer to
know about the servers that hold a specific sté® Arevent the
load from a crashed server from being equally ithsted across all

servers.
- Sticky sessions avoid the disadvantages (excefhtHor

freedom) and keep the advantages if the sessicagsto
architecture allows every server to get to a cegassion state if it
needs to, e.qg. if it has to cover for a crashedesei his supports

equal distribution.
- Load Balancer freedom might be possible even withkys

sessions in case of a pull mechanism used by apiplicservers.
(See chapter on special web servers).

There exist several mechanisms to keep the sestsitsmwithin a
cluster. The determining factors are: size, fregyef storage and
number of targets. In other words: how big is tbgsgon state?
How many times will it have to be stored somewhexe@ on how

many machines will it be stored?
The chicken way out is simple: Try to keep the imgsstate inside

of a cookie and let the client take care of it.sT$ounds rather
outdated today — after all there are databasesliatrdbuted caches
to store session data into. But the fact is thahmg the session
storage problem to the client has huge advantagbsegpect to
availability: Load balancers can send a requeahtoserver
available and the session state will always bela@viai.

If for whatever reasons client side session sgatet an option the
worst possible alternative seems to be to stosghin a database
and update it frequently, e.g. per request. Pudamyg numbers of
bytes into the database on every request is putingof load on
it. Those data need to be serialized as well —hemgaither slow
mechanism involved. And finally those large numhsrarites can
change your typical read to write ratio of your vagdplication
considerably and have a negative effect on yolaldeste-
replication setup.

Making sure that only those data that were chamagedeally
written is useful but forces the application to special session
state methods to notify the storage mechanism ajraaular
updates. Btw: instrumenting the code that deals ggssion

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 105 03/12/2010

storage is a necessary method to detect abustm@ggh
excessive session sizes.

Another alternative is replicating the sessioneskatween
application servers and keeping it in memory. Whéetainly
faster than the database solution this architedtuoes a crucial
trade-off on you: How many machines will participat the
replication? You can decide to simply replicatesgms state for a
certain client to all machines. This makes thedifa load balancer
much easier as it can now route a new request thhaclient to
any machine available. But it also forces all maekito participate
in every replication and even multicast based ma®will not
scale beyond a small number of machines. (We watiubss group

communication and replication algorithms later).
Pairing machines to replicate a certain sessida stauces

replication overhead considerably but raises tvix@oproblems:
the load balancer needs to know about the pairsracakse of a
server crash there is only ONE machine which cke taer the
processing of the current request or session.

<<pairing diagram>>

Session Replication Pairs

S2

S2 1 S1 S1
{ Server A { Server B w Server C w

Load
Balancer

Paring requests means we have coupled sessiogetwith
processing location. We can no longer route thaesito any
server. And this has dire consequences: All trentdi from the
crashed server will suddenly show up at the oneesevhich hosts
the session replicas of the crashed server —attedoubling the
processing load of this server. And this means tbanhake our
fail-over mechanism work this backup server needsith at a
capacity that will allow doubling it without caugimew problems,
e.g. regarding the stability of this backup serVée are paying

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 106 03/12/2010

literally a high price due to the low capacity teexrver needs to
run in everyday business.

This pairing problem actually points to a rathenggc problem for
failover: the bigger the machines involved arertitore important

is to make sure that the load of a failed servartmaequally
distributed across the remaining machines. Notglemresults in a
rather low average capacity limit for those senaershe following
diagram shows:

Effect of number of nodes on wasted capacity
(assuming homogeneous hardware and no sticky
sessions bound to special hosts aka session pairing)

CN+CF=CT
CF = CT/(n - 1) (n = number of nodes)

CN = CT — (CT/(n-1) with growing number of
nodes the normal use capacity gets closer to
the total capacity while still allowing failover
of the load from a crashed host

Total
Capacity
Of Node Normal
c Use
y Capacity
CN

This makes a central session storage server adyd&d/ or Sun
and others much more attractive again [Yu]. Thetsmh seems to
be a dedicated server with high availability andcsplized
software for reading and writing session stateciffitly. There are
no fancy SQL queries or locking needed and a slieaikin
memory store could easily outperform a regular RCBMre. Yu
claims that we will save on memory with a centduson
compared to storing session state on all servéiis.i right but we
don’t save any memory compared to the server gpdescribed
above because to avoid SPOFs we will need twoasthledicated
session storage servers anyway.

<<Raisin example with timeout feature for sessions>

Given the costs and complexity associated withridisted session
storage Yu suggests to re-evaluate the need ftrttderance and
fail-over, especially transparent fail-over agaiins argument is
based on the fact that contrary to popular opim@my requests
cannot even use an automated fail-over mechanisasia of a
server crash. Because a load-balancer cannot kxaetly
WHERE a request was when the server crashed oodg ttequests

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 107 03/12/2010

that are idempotent (cause no server state chaagd)e
automatically restarted. Otherwise there is theagda of
performing the request twice.

Perhaps a lesser quality of fail-over might be ptadgle after all?
A fail-over mechanism that makes sure that clievlisfind a new
server after a server crash and this server willlide to deal with
additional load caused by the crash. But the dienll have lost
some work which they have to redo now on the neweseThis
even allows the option of later reconciliation betw the state
before the crash and the new state created aéear#éish on the

new server. . .
To close the discussion of clustering we needlkoabout three

technical aspects: how failover is done, spectifcEJB clustering
and how SPOFs in supporting services are avoidets ktart with
the last point: avoiding SPOFs in mission criteatvices. A
cluster is not much fun when it contains a singlspof failure

that makes the whole cluster inoperable. Such gooent e.g.
would the JNDI directory service where critical palmbjects have
been registered by system administration. If apgibms cannot get
to their directory information, no processing wioager will
happen in this cluster.

Vendors seem to have chosen rather similar solsitimasically
consisting of replicated JNDI services at everyligppon
server/machine. This leads to the question howetkesvices are
kept in sync. Some vendors seem to simply propagate&ange on
one service to all the others which obviously kradwaut each
other to make this work.

<<jndi replication >>

A fault-tolerant JNDI nhame service

From: Wang Yu, uncover the hood of J2EE Clustering,

http://www.theserverside.com/tt/articles/articlsasJ2EEClustering

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 108 03/12/2010

Other vendors keep the services independent andaghof each
other and use a state machine approach for replicais the state
machine approach can explain some additional céistnis when
using clusters we will give a short introductiondample. Lets
assume there are system management agents rummallg o
application servers. These agents accept commenusaf
common management station. System administratisnsemds
initialization commands to all agents which perfdimose
commands against the local JINDI service. Aftethadke
commands have been executed the JNDI servicealilave the
same content but are completely independent of ether.

<<independent JNDI services >>

Independent fault-tolerant JNDI

Server

Pronjec ?
console

From: Wang Yu, uncover the hood of J2EE Clustering,

http://www.theserverside.com/tt/articles/articlsas=J2EEClustering

Clearly this state machine approach requires thee software on
all machines to be present. And it is only validtfze system
management aspect. Regular client requests comungthe load
balancer are non-deterministic and do not folloe/state machine
idea. Software operating in lock-step on every nrels nice for
achieving replicated content across servers. Bwstsome
complicated side-effects on applications withifdwster, especially
those who need to run only ONCE within an infrastinee. In other
words those applications or objects that need siaglbehavior.
When all software is the same it is rather harestablish a
singleton. Yu suggests for those cases (e.g. twigecounts of
requests) to use the database to collect the aatadill cluster
machines. Other solutions are to implement a group
communication protocol that achieves consensustanwithin a
cluster needs to perform what.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 109 03/12/2010

The second topic to discuss is the question of é&xactly a
failover is performed. It turns out that there segeral possible
solutions, ranging from strictly client side deoiss over code in
the infrastructure levels to server side behavioerg new
machines start to respond for a crashed servete\dhithese
mechanisms can achieve failover the big differestraetimes is in
the system management and configuration overhesatiased
with them. Transparent but optimal server selectidhbe handled
again in the chapter on load balancing and geodgralbh
distributed data centers.

Finally the EJB and J2EE architecture shows soraeeifp
problems with respect to failover and scaling. Twe core
concepts here are enterprise beans and remotdt$eateless
Session Beans are harmless and due to the fad¢h#yatontain no
state they can be replicated across machines witdrguproblems.
Here the only problem lies in routing the clienetaew instance,
e.g. by providing the bean stub with additional/eeaddresses.
This way the client who downloads the stub dynaftyickoes not
even know about the other potential server locatimmning bean
replicas.

Stateful session beans follow the same mechanisepésated
session state and can be located through clieatcside. And
finally entity beans are stateless because theg tteir state
transactionally inside databases and could becapli as well
across servers. But they do expose a differenti@mabl hey are no
longer used remotely because usually there issacsefacade in
front of them which does a local call to the enbigan. This puts
the facade and the bean into a single unit-of4#faiand removes

the remote call to the entity bean as a possildityail-over.
Here the importance of a reasonable definitiorhogé units-of-

failure becomes obvious: Bundling facade and beightmeduce
failover and availability because facade and beaimot be
replicated independently. But at the same time hoigdhose two
into a local unit-of-failure prevents excessive odencalls and the

terrible costs of potentially distributed transans.
The last point nicely shows that availability amalability can be

somewhat orthogonal concepts even if they seer tang well
in case of horizontal scaling.
More aspects of clustering like the use of distelducaches etc.
will be discussed in separate chapters later.
<<diagram of EJB failover facade-entity bean lozaicept>>
<<pull concept of web application server to loathbeer>>
Reliability
- idea: integrate CEP as an explanation system
- reliability and scalability tradeoff in networksi(Bian pg. 459ff)
- self-stabilizing protocols
- epidemic, gossip protocols
- the role of randomness to overcome deterministigrés in state
machine protocols

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 110 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 111

Dan,

listening to you (or similarly Dan Pritchet talkiadpout eBay architecture)
| have same questions in my mind:

how do youtest new features before you roll them out? how do tgst
them scale? you don't have test lab with same [Evstale as your
production farm, do you? that makes me think yautguarantee or
knowingly predict exact level of performance ungél users hit the new
feature in real time. how do you deal with that st did you have to
build into your system to support new features ogplent, as well as
rolling features back quickly if apparently they aiot work out as you
had expected?

and another question is what did you have to daupport existence of
"practical" development environments that behave as your production
system but do not require each develop to workazeds of servers,
partitioned databases, and cache instances. Hothididhange your
sysS(renﬁo?/rr%heihe[cture?
- transacted, incremental, available, see the Reper. GIT as a
repository which avoids overwrites, partial writes.
Reliability and Scalability Tradeoff in Replication
Groups

Load and
participants

Purely async. message

80- sends, no delivery
100% guarantees, epidemic
protocols

Bursty transmit

Intermediate behaviors,
zone acknowledgement
implosion at

receiver interfaces

Safe — dynamically
uniform protocols.
Infrequently some
machines jam

20-40%

See Birman, pg. 459ft.

03/12/2010

- P L P
Lightweight W
(group) N T .
membership i R
D | Tl
A"’. P
P

Heavyweight

/ D membership

In the Spread group communication framework daemons contro
membership and protocol behavior (order, flow control).
Messages are packed for throughput.

Performance

- the 4 horseman plus remote collection

- event processing modes

- alternative (ERLANG)

- Latency

- Operations vs. analytics: don’'t mix TAs with OLAkgep queries
simple and use separate complex background arallptioccessing. Keep
search from destroying your operational throughput

- Concurrency: contention and coherence

Monitoring and Logging

CPE, Astrolabe
Schlossnagle on Spread-based logging

Distribution in Media Applications

0

Large Scale Community Site

0 Storage Subsystems for video,

) Audio-Server for interactive rooms, clever adaptagi new uses
0 Distributed Rendering in media production

) Massively Multi-Player Online Games (gamestar dethure sony
everquest)

(0]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 112

Search Engine Architecture and Integration

Storage Subsystems for HDTV media

In a recent workshop with a large german broadwagtnization we have
been discussing several options for large scatagtosubsystems. They
should be able to support around 20 non-linearmgpdtations with
approximately 50 concurrent streams of HDTV congtated in those
subsystems. We are talking between 50Mbit/sec @otbit/sec for each
stream and bandwidth as well as latency need @avalhinterrupted
editing. The move toward HDTV was combinied withrgpfrom tape

03/12/2010

based editing with its distribution and copy latesdo disk based,
concurrent editing of video material. The changstarage size and speed
required a new infrastructure and the broadcastrozgtion was worried
about the scalability and usability of the solugmoposed by the
industry. The worries were not in the least causethe fact that all the
proposals fell into two completely different campkassic NAS/SAN
based storage subsystems using fiber channel ®sittic. and the newer
architecture of grid-based storage, also calledastorage.

The organization had a midrange NAS/SAN combinasiibeady in
production and the strength and weaknesses oétbinstecture are fairly
well known: while file-systems can grow with littheaintenance and
organizational effort there are some limitationghia systems where
bottlenecks restrict scalability: there can be ssvidesystems running on
several NAS front-end machines but if there aredpatts within one
filesystem few things can be done to relieve thesston the NAS
carrying the filesystem as well as the SAN coninglthe associated disks
(see the problems myspace engineers reported aboutirtualized
SANS). Storage processors used in the SAN alssqgiue limit on
scalability. Internal re-organization of disks wiitlihe SAN can be used to
improve performance on critical filesystems. Thame proven
management tools to support server-free backug &iers will require
the reconstruction of disks which is a lengty pescdue to RAID. One
can say that the subsystem performs well but wiitgh management
cost. It is used for several types of content tikéabase content or media
and there is little doubt that a new system basedAS/SAN would be
able to offer 500 or more Terabyte of storage Withproper access and
throughput rates. Another big advantage of thesataachitecture is its
support for POSIX APIs on the client side whicloalé standard and
unmodified applications to be used.

The diagram below shows a typical solution of a &S\ combination.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 113 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 114

DBPoo0I:11-20
Diff. File Systems

VmWare

FC Pool:1-10
switch

Posix
Interfaces
NAS
1.3 FO
SP2
_ _ FC <
Unix Client switch 5
Other .
Server@ J
LUNs:1-20
Second L
site NAS M
(DR) 1 FS B 8
B 0

On the right side of the diagram Storage ProcegS#ts partition disks
into different LUNs and allow partial shutdown b&tstorage e.g. for
maintenance. Several NAS frontend servers existany different
filesystems. The subsystem also stores data fraabdse servers. LUNs
have to be put into pools for filesystems and alteamsparent growth. If a
NAS server crashes the filesystems it carries aagailable. In case of
disaster there is a switch to a passive systemhakismaller than the
master storage center. Still, it is a rather expersolution for disaster
recovery and the possibility of active-active pgiag should be
investigated as the distances are small.

The situation on the grid storage side is much nsoraplicated. The
technology is rather new, few vendors use it anthafe vendors most
created proprietary solutions consisting of appieces and the grid
storage system (e.g. AVID). To get a technical fed grid storage we
compared it with a well known grid storage systéme: google filesystem
(see the section on storage where a detailed gésaris given). We were
also careful to note the differences in requireméeicause most grid
storage systems tend to be specialized for cemt@rcases. The diagram
shows only the major components of a grid storggeem. And the
question was whether the promises of unlimitedadxkty were justified.
Those promises were based on the fact that thaelbbandwidth and
storage capacity would increase with every blad&lled in the system.

03/12/2010

Fast N /wacko.avi (C = C11:R1, C12:R2,...

lookup
Few meta-
= Meta-data server]
P data
write(,wacko.avi",
offset)] Meta-data server]
Constraints:

-nr. replicas

blad -Read/update
— Processor blade R1 modes

Ej @ -Chunk size

-Reboot time

client

Posix
API ??

Processor blade R2 1

B = .

| | Processor blade R3 |

Storage grid

/

-Reorganiz.

The claim of unlimited scalablity seems to be inftiot with the obvious
bottleneck in the system: the master servers. Witnglg put a limit on
scalability? We did not have a running system wherecould take the
measurements needed for regression analysis amngtacessing with
Gunthers “universal scalability formula” (see clepin analysis and
modeling). The solution was to check for scalapiitoblems with
master/slaves architectures e.g. in GoogleFS. Awilisee in the chapter
on algorithms below Google uses quite a numberagdtar/slaves
architectures without real scalability problemse™ore requirement here
is that the master is only allowed to server met@dAnd those have to be
kept small. This is different to the NAS/SAN sotrtiwhere a NAS server
plays the role of master for its filesystem (dologkups and keeping
file/block associations) AND has to collect andveethe data to clients.

So with some architectural validations we couldthetworries about
master bottlenecks to rest. And bandwidth as weeflarallel access from
clients should be excellent due to the direct cohae to the blades. In
case of disk crashes or bit-rot the new disk onkreould be easily re-
created from replicas and in a much shorter timaa th the classic
solution.

But other worries became much more visible: The éfRBoogleFS e.g. is
non-standard, meaning Non-Posix. Typically in sgergrids there is a
tight coupling between appliations and the griddAnbig question: what
should be done with the huge number of CPUs runimitige grid? What
kind of work should the do in addition to serviratal? How would
programming work? It became clear that some comusngere missing
in the picture and the diagram below shows a gatewmd scheduler
service added:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 115 03/12/2010

7 Meta-data server]

— 88

. Grid [Grid —| Meta-data server -
Posix Gateway | | ip
File API L
client — ™ Processor blade R1 |—
]
MabRed Grid 1
apReduce Scheduler | 7. " —— ||, Processor blade R2
AP Q—'b =5 5

| Processor blade R3

Storage grid

The gateway is needed to attach Posix based ctietite grid — for
applications which have no customizable storagafate. And the
scheduler needs to accept parallelizable jobs etdldite the tasks over
the blade CPUs using the classic map/reduce pdttatrmade Google
famous (see chapter on scalable algorithms belowarf@xplanation).

In the end the following results were written down:

Grid Storage vs. NAS/SAN

Posix-Grid gateway needed e Posix compatible

Special caching possible but not needed for « Special caching difficult to implement in
video (read-ahead needed?) standard products

Huge bandwidth and scalable * Hard limitin SPxx storage interface but
Maintenance special? plannable and limited lifetime anyway
Proprietary? * Simple upgrades

Parallel Processing possible * Standard filesystem support

Special Applications needed » Dynamic growth of file systems via lun-

organization

Maintenance effort to balance space/use
Proven, fast technology

Expensive disaster recovery via smaller replicas

Several different filesystem configuration
possible

Without virtual SAN hot-spots possible on one
drive

Longer drive-rebuild times

Key points with grid storage: watch out for proprietary lock-in with grid
storage and applications. Watch out for compatibility p roblems with existing
apps. Without real parallel processing applications there is no use for the
CPUs, they just eat lots of power (atom?). You should be a ble to program

Questionable compatibility with existing apps.
Disaster revovery across sites?

Standard Lustre use possible? (framestore?)
More electric power and space needed for grids :

your solutions (map/reduce with Hadoop). Definitely more prog. Skills
needed with grids. NAS/SAN won'‘t go away with grid storage (which is
specialized).

Some of the points were converted into possibléesttiprojects and the
list can be found at the end of the book. Of egdecierest would be a

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 116 03/12/2010

Lustre implementation on our own grid (framestaerss to run such a
system successfully), a ZFS implementation on NA&Gthe
proxy/gateway servers and using Hadoop for trariagoahd indexing
video content.

But not only the grid storage solution can be fertbptimized: the
master/slaves concept of the grid can be usecgusiell with the classic
NAS/SAN solution as can be seen here:

NAS Diff. File Systems
Master
]
Non-Std.
Interface A FC
1.3
Unix Mas.
Client| | ip
L

It comes as little surprise that the API problerhthe grid solution show
up here as well.
Audio Server for Interactive Rooms

- concept of ubiquitous media, mobile devices, irtiva rooms.
- Blog upload of media
- RWTH Aachen reference

<<picture interactive room>> (Stanford or RWTH)

Interactive rooms are facilities where users eqetpwith mobile
computing environment find infrastructure which lelea collaboration

and communication, e.g. through the use of largeé g&nels and beamers.
Users can interactively zoom in and out of predenta and have their
equipment present information on wall displays.

Everybody who has done software design in groupsbtices the
difference laptops with wireless communications ake on group
performance. The presentation of visual or audiormation at the correct
place in an interactive room is a problem that sd¢ede solved in this

context.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 117 03/12/2010

The audio servers developed by Stefan Werner ahstbheile der Medien
Stuttgart is part of an interactive room concepihefRWTH Aachen. Its
goal was to allow a large number of audio creatm@chines (without
speakers or audio hardware) to create audio coatehtontrol the
playback of the audio sound through a central asdiger which
controlled a 7.1 audio system.

This design allowed audio content to be playedantfof several different
flat panel screens in the interactive room, depemadin the configuration
of the clients.

The software developed consisted of client andesgrarts and included a
kernel component for the MAC OS based clients. Rivi€oded audio was
sent between clients and server. Distribution motd like near-realtime
requirement for playback (10ms response timekgrJand clock scew
between machines had to be compensated for andlgewthms to
compensate for the effects of distribution haddalbveloped.

11

Server (&D

Clients "D

Software architecture of distributed audio server:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 118 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 119

?P) V)

Aldio Hardware

P D

< GBit Ethemet

Client Server
Agd;u_ .ﬂu_Jdu:r_ Appiication level AudinSpace Server
Application Application
o \
e i iy,
[CoreAudio HAL] i ‘ CoreAudio HAL
——— TCPIP v
AudioSpace Driver \‘-[TCPRIP] Kernel level ‘ [Audio Hardware Driver]
5
r
Hardware

MacOS X 3rd Party Software AudioSpace

Distributed Rendering in 3ADSMAX

Rendering is the process of media data creation feav data using
matrix, differential and integral calculationsidtno surprise that these
calculations put a heavy burden on a single CPU.

Just to make the importance of distributed rendeclear | have taken
some numbers from Markus Graf's thesis on “Workflamd Production
Aspects of Computer-Animations in Student-Projef& af].

Creating a computer animation requires renderiegdlw movie data
(animation data, light information, surface proprtetc.) into frames. In
professional productions each frame takes betweerhalf of an hour and
ninety hours to create. Some numbers: let's sawarg to make a movie
five minutes long. This means 5min. x 60sec. x @oks and results in
9000 frames. Let's assume only 10 minutes rendeinmg per frame we
end up with 1500 hours rendering time. Usuallyaanfe consists of
multiple layers which can be rendered independeitiys reduces the
individual rendering time per layer but adds tofila@ene rendering time.
At 5 layers per frame and only 5 minutes rendetimg per layer we need
a whopping 3750 hours of rendering time.

This is when distributed rendering becomes an isBue following pages
describe distributed rendering in 3dsMax. They Hasen written by
Valentin Schwind.

Understanding the Rendering Network Components of

3dsMax
The following components are common to all rendgnetworks:

03/12/2010

. An Autodesk application that sends jobs to the eengd
network (the render client).

. At least one Windows or Linux computer that does th
rendering (the render node).

. A workstation that distributes and manages the jahsing
on the rendering network (the Backburner Manager).

. At least one workstation that monitors the jobsiing on
the rendering network (the Backburner Monitor).

TCPAP or Wire

Render Backburner Manager Rﬁgg;
Client {Windows workstation) IR R EEEEEE RN
Backburner 5 Backburner
Aut(.:)de.sk N — o ‘
application P onitor arver
running on SGl, A - i
Linux, or -
Windows 4 : Rendering
workstation - :
Backburner - Engine
Manager :
d)i‘:‘) Yy -
N -
Backburner M | m
- [
Monitor (via | F A Backburner
Web browser) TCP/IP i Server
¥ . ; ‘
Backburner _ - Rendering
: : Other workstation = Engine
Menitor (via =
on network &
Web browser) i
FiEREEERIRERNEDR

Note: Rendering networks for Discreet Inferno® , Flamesdieet
Flint® , Discreet Fire® , Smoke, Autodesk Backdga@onform,
and Lustre require additional components in additimthose
shown. For more details about these rendering mksyeee the
latest user's guide for Autodesk Burn™ and/or #tesit

installation guide for Lustre.
The following list provides more detail about eacimponent.

Render client—This is the Autodesk application running on an
SGI®, a Linux, or a Windows workstation. From herey create
and send rendering jobs (such as a Flame Batch eetu3ds Max

scene) to be processed by the Backburner rendeeiwgprk.
Backburner Manager—This is the hub of the background

rendering network running on a Windows 2000, XPhigher
workstation. Jobs are submitted from the rendenclio
Backburner Manager, which then redistributes therorgy the
rendering nodes on the network. To view the pragoéshe tasks,

use Backburner Monitor. .
You can either run Backburner Manager manuallyarit as a

Windows service. Running the Manager as a Wind@mace
starts it automatically when the system is booBatkburner
Manager then runs continuously until either thekstation is shut
down or the service is stopped.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 120 03/12/2010

Render node—T his is a Windows or Linux workstation on the
rendering network that processes jobs sent byeth@er client and
assigned by Backburner Manager. Each render nade ru
Backburner Server to allow it to communicate wite Backburner
Manager. Render nodes use common network protbkels
TCP/IP and/or Autodesk Wire® to obtain frames dmhttransfer

resulting rendered frames back to the render client
Backburner Server—This is an application that runs on each

render node in the rendering network. Backburneve3eaccepts
commands from Backburner Manager to start andtb®p
rendering engine that processes the frames or tasitee render

node.
Rendering Engine—T his is the Windows or Linux rendering

engine that renders frames from jobs submitted ffartodesk
applications. Many applications (such as 3ds Maxjettheir own
rendering engine; Inferno, Flame, Flint, Fire, Seaknd
Backdraft Conform share a single rendering engatied Burn.
Cleaner is both its own rendering engine and aaeng engine for
Inferno, Flame, Flint, Fire, Smoke, and Backdraih€@rm jobs

requiring transcoding between video formats.
The rendering engine is installed with Backburnenvgr on each

render node. You can install multiple renderingieeg on a render
node. This allows the render node to render jotns fdifferent

applications.
Backburner Monitor— This is the user interface for the

Backburner rendering network. It allows you to viemd control
jobs currently being processed. Jobs in the rengeretwork can
be stopped, restarted, reordered, or removed ntiseng the
Monitor. You also use Backburner Monitor to ideptiny render
nodes that are not working and check the overallthef the

rendering network. ' . .
Backburner Monitor runs natively on a Windows waaki®n but

can also be run through a Web browser from any station on
the network.
Using partitioning to speed things up

The above architecture allows the distributionnofividual layers
and frames to rendering servers. This problemnsdarassingly”
parallel which means it lends itself easily to flataation because
the components (frames, layers) are independezdalf other and
can be rendered separately.

It comes as no surprise that this method puts & éimthe overall
performance improvement that can be achievedtlitagime that a
layer or frame needs to be rendered because #kisstalone
sequentially on a server. Partitioning the movte inames or
layers is a rather coarse grained way to distrithe#evorkload. A
fine grained version would be to partition eachrfesor layer
further into smaller parts. Those parts could thgain be
distributed to several servers and the overall imtbe best case
reduced to the time needed to render a complateefa layer

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 121 03/12/2010

divided by the number of fragments (if we assume no
communication or synchronization costs).

We have now increased the granularity of the pamiihg of the
workload and ended up with better parallelizatibnis pattern is
frequently used in distributed systems and appligsalso to the
case of locking and synchronization: The more §jreened locks
are set, the better the parallelization of the.t¥é& will discuss the
downsides like increased software complexity anthda of
deadlocks in the chapter on concurrency and synctation).

Distributed rendering in computer animation is cptaally rather
simple but can still offer some surprises. Wheitritisting
workloads to several server machines the managityare
expects identical interfaces on those serversi@agrcept certain
frame sizes etc. While the interfaces of the rerpodeedure calls
are all the same on those machines this does rant that the
resulting rendering is correct. In case 32bit afittmachines are
used together rendering artefacts due to diffexmdering
precision can be seen. In case of coarse-graiiipaing frames
will show differences, in the fine-grained case diféerences will
be seen between rectangles of the same frameaer lajerface is
therefore not everything!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 122 03/12/2010

Part Ill: Ultra Large Scale Distributed
Media Architectures

while (true)
identify and fix bottlenecks();
drink();

sleep();

noti ce_new bottl eneck();

}

This loop runs many times a day.
(Todd Hoff, youtube article)

This recipe for handling rapid growth is probabgry common. But the question
is whether this is all we can do? The following teas are trying to answer the
following questions:

- What are the concepts used in large scale sitdgrpaand anti-patterns?
- Can we model such sites and use the model to pisatitenecks?

- Are there systematic ways to avoid scalability sggs?

- Certain statements show up repeatedly, e.g. “keegry simple”. Can we
find parameters for simplicity in such sites?

- Do large sites favor certain types of software, epgn source?

- How do business models and architecture interact?

- What is the development methodology behind ultrgdaites? How do
they deal with extremely fast growth?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 123 03/12/2010

Analysis Framework
In this second part of the book we will look at mdarge scale sites like
wikipedia, myspace, google, flickr, facebook etar@oal is to find the core
principles and architectures used in scaling thvsusize. And from there we will
extract essential components like distributed cagheplication and drill down to
the algorithms used in implementing them.

What kind of questions are we going to ask thoshi@ctures? The following list
names core categories for scalability:

- The role of hardware — when to invest in biggengstead of more
complicated software. Is it true that switchingébit hardware with its much
bigger memory support is what made MySQL scalablae end?

- What are the core areas for scalability? Globdtifistion, CDN,
Loadbalancing, application servers, distributechaay, database partitioning,
storage system.

- What is the role of programming languages? Arestloertain specialized
areas where on language dominates?

- What kind of software is used? Open Source or jpetay? Windows
possible?

- How do we minimize hardware costs for fault-toleh

- How is monitoring done?

- Is there a certain path to scalability that is ored by all sites? Where are
the main bottlenecks?

Last but not least we will try to describe the tigtof those sites as well. How
they started, what the major inventions were andllif where they might end up
in the near future.

An excellent starting point for site analysis isyided by Todd Hoff. He used a
list of questions for the architects of lavabititscribe their site, its architecture
and scalability solutions as well as the problenheythad [Levison]. The core
parts of the questionnaire are listed below:

<<questionaire Hoff >>

* What is the name of your system and wherewea find out more about it?

* What is your system for?

* Why did you decide to build this system?

* How is your project financed?

* What is your revenue model?

* How do you market your product?

* How long have you been working on it?

* How big is your system? Try to give a feel fmw much work your system
does.

* Number of unique visitors?

* Number of monthly page views?

* What is your in/out bandwidth usage?

* How many documents, do you serve? How margges? How much data?

* How fast are you growing?

* What is your ratio of free to paying users?

* What is your user churn?

* How many accounts have been active in thé¢ pasth?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 124 03/12/2010

How is your system architected?

* What is the architecture of your system? Tathout how your system works
in as much detail as you feel comfortable with.

* What particular design/architecture/implenagian challenges does your
system have?

* What did you do to meet these challenges?

* How did your system evolve to meet new s@atihallenges?

* Do you use any particularly cool technologiesalgorithms?

* What did you do that is unique and differémt people could best learn
from?

* What lessons have you learned?

* Why have you succeeded?

* What do you wish you would have done diffehgn

* What wouldn't you change?

* How much up front design should you do?

* How are you thinking of changing your arcltigre in the future?

What infrastructure do you use?

* Which programming languages does your sysisa?

* How many servers do you have?

* How is functionality allocated to the servers

* How are the servers provisioned?

* What operating systems do you use?

* Which web server do you use?

* Which database do you use?

* Do you use a reverse proxy?

* Do you collocate, use a grid service, us@sting service, etc?

* What is your storage strategy?

* How much capacity do you have?

* How do you grow capacity?

* How do you handle session management?

* How is your database/datatier architected?

* Which web framework/AJAX Library do you use?

* How do you handle ad serving?

* What is your object and content caching sgg®

* Which third party services did you use toghbulild your system?

* How do you health check your server and neks®

* How you do graph network and server statsséind trends?

* How do you test your system?

* How do you analyze performance?

* How do you handle security?

* How do you handle customer support?

* How do you decide what features to add/keep?

* Do you implement web analytics?

* Do you do A/B testing?

* How many data centers do you run in?

* How do you handle fail over and load balaig@n

* Which DNS service do you use?

* Which routers do you use?

* Which switches do you use?

* Which email system do you use?

* How do you handle spam?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 125 03/12/2010

* How do you handle virus checking of email anpdoads?
* How do you backup and restore your system?
* How are software and hardware upgrades ralg@
* How do you handle major changes in databakersas on upgrades?
* What is your fault tolerance and businessticaiity plan?
* Do you have a separate operations team magagur website?
* Do you use a content delivery network? If whjch one and what for?
* How much do you pay monthly for your setup?
Miscellaneous
* Who do you admire?
* Have you patterned your company/approachamemne else?
* Are there any questions you would add/remcivahge in this list?

Added:

- did you use or change to a certain programmingudage for certain areas and

why?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 126

03/12/2010

Examples of Large Scale Social Sites
Large sites eventually turn to a distributed queuamd scheduling mechanism to
distribute large work loads across a grid. (ToddfFHbighscalability.com)

Architects are falling from their towers and stagito use common-sense
technology (like HTTP, RSS, ATOM, REST) more and aral are abandoning
‘enterprise’ patterns and tools (think JEE, Port&8©AP etc).
http://log4p.com/2009/03/12/qcon-2009-2/

We will begin with a presentation and discussiosarhe hopefully prototypical
sites. Most of the papers or talks can be fourtbeaexcellent site from Todd Hoff
on scalabilitywww.highscalability.comTodd Hoff collected numerous articles
and presentations and frequently creates abstrénts) we are going to use here
heavily.

Wikipedia
This site has been chosen for several reasontsofiedl information about
its architecture is public. Second because ofzis and focus on content it
seems to represent a certain — older — type of ebte.
The discussion mostly uses information from [Mitsjzand [Bergsma].

Interesting aspects:

- content delivery network and geographical distitut

- mysql partitionings and clusters

- hardware choices

- monitoring and tracking

- application architecture and scalability

- load balancing technology used

- media related optimizations (storage, compression)
Myspace
This is one of the few Microsoft-based large scéies. We can use a short
wrap-up of a Dan Farino talk by Todd Hoff [Hoff] wh highlights some
very interesting aspects:
[Farino] Dan Farino, Behind the Scenes at MySpace,c
http://www.infog.com/presentations/MySpace-Dan-
Farino:jsessionid=3219699000EB763C9778865D84096897

- Correlation of registered users and technology geameeded.
This really is a nice list.

- Database partitioning used (vertical, horizontal)

- The role of caching

- Tooling on Windows platforms

The diagram below shows the first phases of Myspaoéution. It started
as a rather simple architecture with two web sesraed one db server
with direct attached storage (disks). After reaghs00000 users this
architecture stopped working. Vertical partitioniwgs used to split the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 127 03/12/2010

main database into several databases with difféopits. Soon updating
the now distributed instances became a major pmable

As a first scaling measure the disks were put@an&an and the database
server relieved. Later came a switch to horizopéatitioning of the

database.
Begin: simple ws
architecture fDB
ws
Vertical partitioning ws DB
server
ws DB
server
San for DB relieves ws = >
DB server DB Ub
WS server
Horizontal partitioning Ws G
Shard API “BB OR
Ws server
Shard API

Further growth brought a new bottleneck — the SBbime applications
were hitting certain discs within the SAN very hartl caused excessive
load. Other discs in the SAN were idling. This wsas/ed by moving to a
virtual SAN which can internally re-organize datadks transparently and
thereby removing hot-spots on certain discs.

Then came a rather big change: the introducticeanadbject cache. The
creators of Myspace mention that they should hatreduced a cache
much earlier (actually, most large-scale architesgwse memcached or
something like it). As can be seen the Myspace teadna focus on the
database and storage layer for a long time, optngnithe hell out of it.
The new object cache did probably change read/watte and overall
traffic numbers considerably and it is questiondides the database and
storage layer might have evolved with an earligontuction. Also, the
fine dependencies between cache and databasezat@amiand query
behavior (see chapter on database partitioning) latede an optimal
integration of the cache rather hard.

Finally the database servers were migrated to 64rbhitectures (again
rather late but windows OS was not ready earlied) equipped with a
whopping 64 gigabyte of RAM. Again, not really aptise given the
database centric scalability of myspace which vezsidor a long time.
The experience of moving towards a 64 bit architectvas very good and
it looks like databases can really use the advahaedivare now possible.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 128 03/12/2010

This is not the case e.g. for a huge java VM rugmn such a box which
would spend hours in garbage collection.

Virtual San

Object Cache

64 Bit/64 Gig Ram

Flickr

[Hoff], [Henderson]

Ws
DB
V
Shard API S S
Ws DB A
Shard API server N
Ws
DB
Shard API v
Dist. server s
Ws Cache DB A
Shard API server N
Ws DB
Shard API server
Dist.
Ws Cache
Shard AP 212
server

Z>un<

Again picked for its huge multi-media load togethdh community
functions. A rather detailed list of features oghscalability.com.

- API

- Search

- Load Balancing
- Database Org.

- Master-master shards

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 129

03/12/2010

Flickr &

Architecture D)) v

Ly

-r;!tJquJbJu;L\taxJzﬁthJ_ﬁﬁmm
-~ 0000 =«

W (k4 | | Bt | |Ed
4 | |t .ﬁl -LritrJ“ |63
i:-.'?':_-'ffkf'l‘.,' W |. el sdsdsd

By Sz Egin '™

From Henderson, Scalable Web Architectures,

Throughput numbers: 40000 pictures, 100000 cacheatipns, 130000
database queries
Per second!

Flickr is based on the LAMP stack with the maindson the data store
(“push problems down the stack” approach). Thiagple is used in
sessions as well: no state is best. Keep sessitmistcookies. Do NOT
store local sessions on disk (even memory is béehderson suggests

centralized sessions (what is the difference?)
Pull additional information from DB but avoid peage queries. But

Henderson claims that scaling the DB is hard.

Loadbalancing: hardware expensice, software saistiocky but nice
with group communication providing virtual IPs witl-over. Also layer
7 dispatching on hashed URLSs, e.g. to cached pagk8erent cache
servers (CARP)

Asynchronous queuing: some tasks take time and toeeel done
asynchronously. Image resizing e.g.

Relational data: best is to buy bigger hardwaree u90/10 ratio of reads
to writes master — slave replication is OK. Flidkes 6 reads per write.
But writes do not scale!

Caching: watch out for invalidation problems witrased memory.
MySQL query cache gives bad performance (not the @mes who say
so). Every write flushes the cache. With 10 reagtsngite there is no
chance that cache values can be re-used.

Write-through and write back problems (mention Biarma discussion of
distributed filesystems, NFS does have consistpnalylems with

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 130 03/12/2010

caching). We need a chaching strategy list. Sidetaching with
memcached where application writes to DB directigt then updates
cache.

High-availability. Master-Master replication, cailon problems, schema
design to avoid collisions. Replication lag, autorement problem (some
are saying don't ever use it..)

Data Federation: vertical partitioning of tablesiethdo not need to be
joined. Split tables e.g. into primary objects {s$@nd store a reference to
those primary objects in a central lookup tableallgays in which cluster
the user data are stored. Migration problem betvgdands, locked data
structures needed. (bucket-split approach useddrglpress does not need
central lookup — the association between clusterese@nd user data can
be calculated from the splits. Needs good numbesihgme for users and
application logic gets complicated in case bucketsaries due to

machine differences.

And it raises the number of db connections nee@egage creation.
Facebook approach: try to keep a user and hisdsiergether on one
shard — but how do you know where to split? Dulales create joins
across separate tables? Simply duplicate the ddtéeathe application

logic deal with the two updates needed in caséahges...
Do not use distributed transactions, accept insteiscies and catch them

over time with repair tasks running in the backgrbu

Multi-site HA: most use master for write and baclsites for read only.
SPOF for writes but hot/hot or master/master iy \&ard. Master/Master
trees for central cluster? AKADNS like service wikkamai managing
your domain (latency, load split). Are more sniatlatacenters really
cheaper than two big ones? (compare with Theo Sshémgles local DNS
solutions for short latency requests) (Amazon isnopg a CDN in 3
continents where static data will be available fr88)

File Serving: easy, many spindles needed. In mepmatyon disk. Limits.
Inavlidation logic: use new URL after changes, dgatale cache
entry.CDN: cachen invalidation problem. Push contethem or they
reverse proxy you. Virtual versioning: Requeststamnversion and are
stored with version information within a cache. Moelvrite converts
versioned URL to path.

Authentication: permission URLs (waterken?) embeddé&ens, self-
signed hash which can be checked without goingBolBvalidation of
permission URLSs is tricky — needs automatic exmrat

File Storage: stateful == bad. Move the problenthgstack again — do
you need RAID with collocated data? File size —sdibenake a
difference? Flickr filesystem without meta-data.p&pghold meta-data in
special servers.

<<presentation on redmine>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 131 03/12/2010

master-master shards

meta-directory fur php

indirection, transparency lost but cachable
dual-tree central DB (master/slave)

master-master plus read slaves

db schema questions: where do comments go?
de-normalization

per features assessment

filesystem: picture

read/write separation, much more reads, parallel?

meta-data and write in master only, apps must¢ake of meta-data
special filesystem

session state in cookie, signed
good loadbalancing and availability
load spikes: first day of year plus 20-40 percent

solution: dynamically turn off features (195)

user visible transparency break (diagram)

needs monitoring

cal henderson: no math, no pre-calculations, measmu monitoring,
calculate trend,

peaks due to catasthrophes

lessons learned:

feature, query awareness,

money?

backup: 1,2,10,30 days

Facebook

PlentyOfFish
From [Hoff]
- supposedly run by only one person??
- Business model and technology
- Storage and growth
- Database strategy
- Click Through Rates and advertising

Twitter — “A short messaging layer for the internet
(A.Payne)”

[Hoff], [Blaine]

A Rails application!

Stores images for more than one million users omZon S3.

Twitter's approach to solving their performance audlability issues is a
great example of thinking big while taking smadipst. The team set about
iterative removal of bottlenecks. Firstly they tackled multi-level caching
(do lesswork), then the message queuing that decouples APEstgU
from the critical request patlsread the work), then the distributed cache

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 132 03/12/2010

(memcached) client¢ what you need to do quickly). Evan was asked
about strategic work to take them to the next Ioxth. His responded
that they were so resource constrained (can yoiebekhere are only 9 in
the services engineering team) and so under watbrwslume that they
have to work on stuff that gives them most vékles small steps). But
crucially, they create solutions to the bottlenegleking sure that
whatever they fix will not appear on the top 3 pgeob list again (which is
thinking big - well, as big as you can when yogrewing like a hockey
stick). http://apsblog.burtongroup.com/2009/031king-big-and-taking-
tweet-sized-steps.html

http://gconlondon.com/london-
2009/presentation/Improving+Running+Compone

nts+at+Twitter

The following is an excerpt from an interview byiBienners with
Twitter engineers [Venners]:

The concept of iterative removal of bottleneck® @pplies to the way
languages were handled at Twitter. Ruby was us#dibdhe web front-
end as well as the backend of Twitter. While tlegifility of Ruby was
appreciated in the front-end it showed certainaitsfin the backend:

- Stability problems with long-lived processes likeeedhons

- Excessive memory use per Ruby process and bugs garbage
collector

- Missing optional types in the language (like safagls in E). The
developers noticed that they were about to wriggr thwn type system in
Ruby. This is the opposite to what developers ustagcally typed
languages notice: that they are writing their ownainic mechanisms

over time. Probably a good argument for both meishain a language.
- No kernel threads in Ruby and therefore no wagteilage multi-

CPU or multi-core architectures besides runningshRuby runtimes in
parallel (which is the typical advice given for @éypers in Erlang
runtimes, E vats and all other single-threadedimeg but did not work
due to excessive memory use by Ruby). The devedapere willing to
sacrifice some consistency and comfort for moreatis. Scala with its
shared nothing architecture.

What does this tell us about language use in ldiige scale architectures?
Language does both: it does not matter (lots déifit languages used in
those sites) and it matters a lot (with growth séamguage concepts are
nor longer optimal and need to be replaced by miffeconcepts). Ideally
the same language would be able to offer alteraggragramming
concepts. And finally: the stability of an “old”rtial machine like the

JVM is not to be scoffed at.
Interestingly the Twitter developers reported dlsat adding functional

concepts provided to be very useful. They learoeppreciate
“immutability” when later on they changed some ftimes back to shared
state multithreading because they noticed thaah@roblems were well
suited for the use of functional actors. And figahey learned that it is
beneficial to test new technologies in important fierhaps not mission
critical areas first.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 133 03/12/2010

Digg

Google
- Sorting with MapReduce
- Storing with BigTable
- Will discuss both later in algorithms, togethertwiihe API to the
engine

YouTube
Picked for its huge multi-media load due to videos/sg.
Again a short wrap-up by Todd Hoff on the architeet[Hoff], based on a
google video.
- sharding
- dealing with thumbnails
- caching strategy
- Video Serving
- CDN use
- Replication solution

Amazon

[Hoff]

- service architecture
- framework haters

- shared nothing

- eventually consistent

we will discuss the EC2 architecture later.
LiveJournal Architecture

Probably one of the top influencial sites (memcdotte.). Good
presentations available by Brad Fitzpatrick of Dangm

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 134 03/12/2010

NEY

web request
L secure request
=== mail request

Akamai

User — | Internet [——| Internap N
userpic request

I ‘ conditional

Secure database
Soiveis BiglP -’: Mail o user data

Proxy I -_Il
Web Pool of Peers
web || | MEMCACHE |
HetApp Servers _J
| Pool of Master/Slaves
==
Jesus ; .
| GLoBAL
"~ | CLUSTER[

[Carllman_l.l'l [Cl;e[m [Sa;la m | Gr{e-;anr[n I ije;em IBigBt;medI [Syndicationll

USER CLUSTERS |

LavaBit E-mail Provider
(for the excellent questionnaire, their DB scalamproach and the
difficulty to scale-out a single server applicatidke e-mail, the problems
of web-mail with IMAP and no client caching, wrorepd granularity etc.)
[Xue], [Levison]

Stack Overflow

[Hoff] Stack Overflow Architecture,

http://highscal ability.conm stack-overflowarchitecture
htt p:// bl og. st ackover fl ow. conl 2008/ 09/ what - was- st ack-
overflow built-wth/

[Atwood] Jeff Atwood, Scaling Up vs. Scaling Outidden Costs
http://www.codinghorror.com/blog/archives/00127ht

If you need to Google scale then you really havehwmice but to go the
NoSQL direction. But Stack Overflow is not Googld aeither are most
sites. When thinking about your design options I&apk Overflow in
mind. In this era of multi-core, large RAM machi@@sl advances in
parallel programming techniques, scale up is stilliable strategy and
shouldn’t be tossed aside just because it's not @aogmore. Maybe
someday we’ll have the best of both worlds, buhtw there’s a big
painful choice to be made and that choice decides fate. [Hoff] Stack
Overflow Architecture

The quote by Todd Hoff on the architecture of St@slerflow shows why
| am discussing it: Stack Overflow is a medium digge, built on the
Microsoft stack (like PlentyOfFish) and it does ssale-up instead of
scale-out like most of the other sites here. Tleeesome subtle

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 135 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 136

dependencies between hardware solution, softwaldiraadly
administration costs which become clear when we &alook at the
components used by Stack Overflow [Atwood] to achi&6 million page
views a month with 3 million unique visitors a moifFacebook reaches
77 million unique visitors a month) [Hoff]

2 hosts for stack
overflow, .NET

LB
Lenovo ThinkServer

RS110 1U, 4 cores, 2.83 /8
Ghz, 12 MB L2 cache, 8)
GB RAM, 500 GB RAID \8 Gbit
1 mirror array Eth.

Web

Lenovo ThinkServer
Server

Lenovo ThinkServer RS120 1U, 8 cores, 2.5
RS110 1U, 4 cores, 2.83 /8 Ghz, 24 MB L2 cache,

Ghz, 12 MB L2 cache, 8 48 GB RAM, RAID 10
GB RAM, 500 GB RAID /B array. SQL Server with

il

1 mirror array —" Full text sear
?
J B (Lucene?)
walls . /
- Lenovo ThinkServer
RS110 1U, 4 cores, 2.83
Ghz, 12 MB L2 cache, 8
GB RAM, 500 GB RAID
S VPN 1 mirror array
U /

For other site

Jeff Atwood mentions a couple of very interestiegsions learned in the
context of a scale-up solution based on mostly ceroral software
(ASP.NET MVC, SQL Server 2008, C#, Visual Studi®@2deam Suite,
JQuery, LINQ to SQL, Subversion, Beyond ComparsudiSVN 1.5):

- Scale out is only possible with open source sowatherwise the
license costs are just too high.

- Administrating your own servers is necessary bezpugviders
are unable to do so

- Go for maximum RAM size because it is the cheapestto scale
- High-speed network equipment in the context oftfanlerance is a
huge cost factor (load balancers, firewalls etc.)

- DB Design done wrongly (copied from wikipedia) need
refactoring due to the large number of joins nee&®en a DB that is
mostly in memory cannot do many joins. Go for al@ss design
(BigTable approach).

We will take a look at the DB design of Stack Oi@«fin the section on
DB partitioning to see what went wrong.
(http://sqlserverpedia.com/wiki/Understanding_thac&Dverflow Datab
ase_Schema

There is much more to learn from Stack Overflovift A#wood compares
scale out architectures with the decision of Plexfifysh to buy a monster

03/12/2010

HP Proliant server and comes to some surprisinglasions when ALL
costs (power, licenses etc.) are calculated. Wedgituss this in the
chapter on datacenter design where we will takmh &t extra costs
incurring due to centralization as well.

Massively Multiplayer Online Games (MMOGS)

“You have gained a level” was the title of a recgmecial edition of the gamestar
magazine focussing on the evolution of MMOGs. Ameré is no doubt that
MMOGs have grown up quite a bit. This is not oréflected in the quality of the
graphical representations e.g when groups of Slicgents get together to
perform a raid against some common enemy mongtersiieer numbers of
participants which go into the hundreds of thousaswhcurrent users and several

millions of subscribers show the social acceptafamline gaming as a hobby.
How serious in online gaming? There is real monagenfrom selling characters

or equipment through auctions for example. Thisra#ser large ramifications for
the technological base of those online games: sedeus money depends on the
correct storage of game state transactional featbgeome very important.
Gamers hate to lose anything due to server cragimelshaving said the “S-word”
already it is clear that most MMOGs today are dlgarver based due to security
reasons (cheating is a major concern for gamerspkso because it allows for a
rather attractive business model: montly paymewots fgamers.

<<stiegler: c/s model>>

Player 1 Player 2 Player 3

Host Client Client

Company CPU DB

Communication Game Hosting Char Data

This means the architecture is a rather traditichaht server model. Peer-to-peer
approaches to gaming are discussed as well but eems to be currently no
way to run the same numbers of users on thosetectlries — not to mention the
fact that with a client server architecture the pany running the servers has an

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 137 03/12/2010

easy way to bill clients for the services. Alsoingacompanies fear cheating in
peer-to-peer systems.

Even features like teamtalk — realtime communicakietween game participants
seem to require servers at this moment.

Support for collaboration between participants delseon each game. Some
games allow the development of new worlds by playal of the games allow
collaborative actions like raids. Some games noysdae peer-to-peer
technologies like bittorrent to download patched apgrades to player machines.

The data exchanged during a game are surprisinggyl.sSometimes only 50 to
60 k are needed to synchronize actions — a godd fitodem connection lines.

Cheating is a problem. Every bug will be exploibgdplayers as well. Sometimes
the game servers can detect manipulation or thefuiegal client side software
and a player might get punished (put into jailrothe worst case lose the game
figure that had been created spending countless lwath the game)

- social superstructures (money, love, guilds, cheati

- collaboration (raids, development of worlds by sgnoups), hotspots,
flash-crowds

- extra channel communication (direct talk)

- patches and downloads via p2p

- serverfarms, clusters, proxies, worldserver, dvesgeuser splitting

- communication data

- large numbers (players, servers, money)

- distribution on content level through worlds.

- Transactions and availability

What is the current architecture of large onlinenga like Everquest from Sony?
The Game is divided into so called worlds whichviie an easy way to split
workload. More than 1500 servers worldwide runghee, split into cluster of 30
Machines per world. There are 3 types of servethinas: proxy servers (doing
fast calculations), world servers (holding worldeistate and database servers
which store the persistent state of each playemaorttl.

But let’s hold on a bit before diving into the teatal details and take a look at
something that it perhaps even more important fMQGs than the vast
technical arrays of server machines: A clear conckfrontent mapping” onto
the available hardware. This is basically simpfgran of partitioning only that in
the MMOG areas this partitioning is an intricataypbetween game story and
content and physical hardware and its networkingaécording to [Scheurer] if
we talk about database sharding today we are asgoge concept from game

design.
On Shards, Shattering and Parallel Worlds

The evil wizard Mondain had attempted to gain colntver Sosari

a by trapping its
essence in a crystal. When the Stranger at theoéhldtima | defea

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 138 03/12/2010

ted Mondain and

shattered the crystal, the crystal shards each helefracted copy
of Sosaria.
[http://lwww.ralphkoster.com/2009/01/08/databaserding_came
_from_uo/] (found in [Scheurer])

A shard is a copy of the game world. Players betorgcertain
copy only and this shatters the world into diffdrenpies. Because
of the binding of users to shards there is no shwgbrld (or
continous world) illusion. Users are aware of thht iature of the
world, especially if they can even experience séfeslated
evidence like the need for server transfers. So adhiyIMOGs like
WoW use shards at all? Sharding or shattering altimwvery
efficient mapping between game content and senfestructure.
It can happen on different levels of the game wartipies of huge
parts of the world are called realms, copies oflkgsegtions are
called instances. The latter shows that not onhterat but also
actions can be mapped to separate infrastructeneegits.. The
smaller the section the better it is suited fohkpgrformance
action like PvP (player vs. player) because thelamof
participants is limited.

But as Scheurer points out, shards need not ontpbsidered a
game deficit due to technical necessities. Somstima@ing
different copies of a world allows players to charige world, e.g.
after running into social problems within a certairard. Different
play modes of a game can be represented with shandell e.g.
fighting vs. non-fighting. And finally, games caower the
sharding on the content level e.g. by embeddingliaeds as kind
of parallel worlds within the game story.

So how does a sharded architecture look like? dhaing gives
some examples.
Shard Architecture and visible partitioning

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 139 03/12/2010

Sharded Architecture

Client

Client

From: Project
Darkstar, Sun

’ Player 2 } Player 1
PID 2 PID1

Pay Information

Login Server

Auth DB ‘

Realm Selection Server
(Realm List / Realm DB)

Session-1D 984

handover

(R1 and R2 are in the
same Realm Pool)

Session-ID ... Session-1D 984
PID 2 PID 1
Instance-1D 17 Instance-1D 17

Updates via PID
Continuous Continuous ﬂ
World Servers = World Servers
). Custers) [| | | | (Clusters) Updates via PID
handover Log via Session-ID

(Both Players will join
The same instance)

Session-1D 984
PID 1
Instance-1D 17

Session-ID ...
PID 2
Instance-1D 17

Distribution Server
Realm Pool 7 o Y o
@@‘ Instance Servers ‘

(Distribution Servers are often
split per Realm Pool)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 140

03/12/2010

Game server 1

Game server n

Load Control

Load System System
monitor Mot || Mgt System
| | Mgt.
game game
™~ Wl
Load
Proxy balancing
player
ll l l player
continent 1 continent 2 continent 3
Game Game
World World
Game portal portal
World
World Shard 1 Server Shard n
copies transer
C1 Cc2 C3 ||shard C1 Cc2 C3 ||shard
Serv || Serv | |Serv || Serv Serv || Serv | |Serv || Serv
server
and
control

Shardless Architecture and Dynamic Reconfiguration

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 141

03/12/2010

Game

Export of
game map

_—

Coordinates and visibility

Binary space partition tree

e

information of static
world elements

Area of
mutual
visbility

Grid node computing and administrative elements

Borders: in-process, inter-process, inter-virtual-n

ode, inter node

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 142 03/12/2010

Static bsp to compute grid mapping

Connected
by visibility

—

Could be
moved to
different
node

Fast comm.

Dynamic reconfiguration of partitioning based on
local inconsistency and static visibility regions

Processing
element 1 Area 1 Locally consistent
through event
Mutual visibility zone propagation
Processing Area 2
element 2

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 143 03/12/2010

Dynamic reconfiguration of partitioning based on
local inconsistency and static visibility regions

Processing
element 1 Area 1 After area split
' Mutual visibility zone
Processing Area 2
element 2
Mutual visibility zone
‘ Area 3
Processing
element 3

Feature and Social Management
[Stiegler] people spreading, (e.g. instances)
“dead MMO slide”: temporal content mapping needed

Awesome MMO!

Good MMO

Release of a
new feature
T T

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 144 03/12/2010

Content level: game balancing to avoid flash crowds and h otspots

Traffic
controlled
through
quests/tasks

Interesting new game /

elements attracting
players

Deployment day
flash crowds Feature management across time

Daily changing user
behavior

Lifecycle development
of users

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 145 03/12/2010

Game world

Beta testers

1 1
1 1
1 1
[L 1

O New players

content

Security in MMOGs
<<rene Schneider on tainting in WOW, Kriha on &tag games,
Secondlife copy bot etc., EU study>>

Methodologies in Building Large-Scale Sites
-open source
- instrumentation
- customization
- multi-component
- tracing and logging
- no special language
- permanent changes
- second order scalability (extension, rebuildases of crash)
- cheap hardware
- no licenses
You are not going to build an ultra-large scaleiDoes this mean the following
does not matter to you? Think again. The goal isféRercise is to create
awareness for possible scalability problems anattimeepts for solving them.
Even in smaller applications you will then be atolédentify possible bottlenecks
quickly and design a scalability path up front.
Limits in Hardware and Software — on prices,

performance etc.

. DB table sizes possible? Connection numbers antipiaxing
options?

. server failure rate of 3.83%

. Google query results are now served in under amestingly fast
200ms, down from 1000ms in the olden days

. 100s of millions of events per day

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 146 03/12/2010

. servers crammed with 384 GB of RAM, fast processamd
blazingly fast processor interconnects.

. 1TB of RAM across 40 servers at 24 GB per servairlavoost an
additional $40,000.
. 1U and 2U rack-mounted servers will soon supptetabyte or

more or memory.
. RAM = High Bandwidth and Lovi,atency Latency always
underestimated.

. a cluster of about 50 disks has the same bandwfd®AM, so the
bandwidth problem is taken care of by adding masksd

. bandwidth of RAM is 5 GB/s. The bandwidth of diskabout 100
MB/s.

. Modern hard drives havatencies under 13 millisecond&hen
many applications are queued for disk reads lagsnzan easily be in the
many second range. Memory latency is in the 5 recwsl range.
Memory latency is 2,000 times faster.

. while application processing can be easily scalesl|imiting
factor is the database system.

. Even the cheapest of servers have two gigabitmethehannels
and switch.

. I'd much rather have a pair of quad-core processmnsng as
independent servers than contending for memorydauahsocket server.
. MySQL scales with read replication which requirdaladatabase

copy to start up. For any cloud relevant applicatibat's probably
hundreds of gigabytes. That makes it a mighty paodidate for on-
demand virtual servers.

. Max. 250 disk writes per second and disk.
. 15000 writes/sec against memcachedDB
. Kevin rose has 40,000 followers. You can’t drop stinng into

40,000 buckets synchronously. 300,000 to 320,000sda day. If the
average person has 100 followers that's 300,00000§gs day. The most
active Diggers are the most followed Diggers. Tdeaiof averages skews
way out. “Not going to be 300 queries per secon@)@ queries per
second. 7gb of storage per day. 5tb of data a&®$s 60 servers so
MySQL wasn’t going to work for us.

. Queries per second?

. SATA drives: problem of “silent read error” whereead returns
less data than requested. [Webster]

. HDTV means a seven-fold increase in bandwidth gstem
storage required

. Streaming video delivery: data rates up to 1.2lgytes/sec in 4k

Non-linear-editing formats [Coughlin].
. Disk cache: 32Mb-64Mb
(http://www.heise.de/newsticker/Serverfestplatte-®4itMByte-Cache--

/meldung/13650)1L
. Cloud Storage numbers (comparison Rackspace vs. EC2
. IOPS numbers

See also the Google hardware description on CNetHaise (the h2 unit)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 147 03/12/2010

From: Stephen Shankland, CNettp://news.cnet.com/8301-1001 3-

10209580-92.html

A History of Large Scale Site Technology
Todd Hoff started a list of technological breakigbs in the development
of large scale sites in his article on cloud basethory. [Hoff]

e It's 1993: Yahoo runs on FreeBS£pache Perl scripts and a SQL
database

e It's 1995: Scale-up the database.

e It's 1998.LAMP

e It's 1999: Stateless + Load Balancedatabaset SAN

e It's 2001: In-memory data-grid.

e It's 2003: Add a caching layer.

e It's 2004: Add scale-out and partitioning.

e It's 2005: Add asynchronous job scheduling angleaa distributed file
system.

e It's 2007: Move it all into the cloud.

e It's 2008: Cloud + web scalable database.

e It's 20??: Cloud + Memory Based Architectures

Growing Pains — How to start small and grow big
Top down planning of scalable solution needs ar@geal and lots of
money in the first place. Typical social sites tssanall. How exactly
interact users, site-management, technology amdsiméicture services
provided by others to allow growth? Does a commgutioud where you

can rent computing power and services really helfagup company?
Option: visit a local social community site, e.agarh a radio/TV station?

Feature Management

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 148 03/12/2010

Avoid flash crowds, distribute functions, spreadiypopulation.
Examples in the section on virtual worlds and MMOGs

Patterns and Anti-Patterns of Scalability

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 149

Think end-to-end first

Before you start with punctual scalability measyeeg. sharding the
database) you should have an overall architectuttetihe major tiers
including caching layers

Meta is your friend

- using a meta-data directory up front for flextyiland virtualization
(table of shards, director in media grid) Problasisoon as clients
directly connect to sub-level components the metctbry can no longer
virtualize the connection.

Divide and Concquer

- sharding and partitioning. Problem: as soon astiards scale no longer
or the partitions do not fit anymore. Mostly causgdne variable
exceeding all scales (e.g. power users on one stiaedbig app on one
disc makes the disk subsystem unbalanced)

- copy and replicated to allow many concurrent chnifiroblem:
how to keep the copies synchronized

- caching: Problem: how to invalidate copies, e.ggbgerating new
references instead of deleting old ones.

- Breaking transparency (from SAN to DB shardingdatiire
shutdown in case of overload)<<diagram>>

Parallel does it better

Request resources in parallel to avoid sequent@dss times — but
remember that this will also increase your commatmn traffic and
bandwidth needs and put load on many machinesaldsbeduler
framework for this.

Same size same time
Build requests with roughly the same size and tgoahavior following
the RISC pattern in CPUs. Scheduling is betteetprally sized requests.

Build Batches
Collect requests and send larger units. But regpectsame size same
time” pattern as well.

- no harmless function: Have an architect lookvatg function that uses
resources or crosses tiers. This includes espgeilsib every form of
query against the database. Even better is tolatdcthe effects of a new
feature on the overall architecture across allfagad tiers (this again
requires the existence of a canonical architeatiagram for your
application). Make features switchable so you can them off in case of
problems or overload.

03/12/2010

Async is your friend

Do whatever is possible outside of a request. Rezgss, parallel-process
or post-process but do not use request time taleatcexpensive things.
Use a queue mechanism for safe deposit of asynchsarquests.

Profiling is your friend
Measure everything (requires instrumentation wheéxfuires open source
in most cases)

Only 100% will do

This is an anti-pattern for scalability. Think abethere you can cut
corners by relaxing certain rules for consistefi¢ye road is the goal (use
eventually consistent algorithms wherever possiitein the business
goals.)

Performance problems are sand dunes — they wander

This is a lesson that is sometimes hard to acedpn you have fixed a
specific performance bottleneck or problem, thébfmm immediately
shifts to a different spot in your architecture. &dhyou think twice about
this effect it is a rather direct derivative of aahts law: removing the
bottleneck with the biggest impact simply turns tlegt bottleneck into

the biggest one.
The following paper from facebook is a good example

Real-World Web Application Benchmarking by Jonatkteiliger
explains why Facebook uses a custom testbed amdagbpand not e.g.
SPEC [Heiliger]. An important statement of the @etiis that Facebook
saw a major effect of the memory architecture efrthlatform. It shows
how careful one has to be with statements on wikasgyood
performance and throughput: it is very context dejeat:

As a social network the Facebook architectureriéréan common - even
though it may look like a regular 3-tier architeetin the beginning. They
keep almost everything in RAM using huge clusténmemcached and
use many cheap UDP requests to get to those datamEeans that their
access paths are already highly optimized andrdiitdo e.g. Google with
its big distributed file system. Only then will meny access time become
the next big bottleneck. And it is a reminder thththings said about
performance are relative to platforms and architest and what fits the
one need not fit the other.

Finally the paper shows that performance/wattdstecal value for
datacenter use.

Integrate lessons learned at eBay: Randy Shoupuf8h

Test and Deployment Methodology
- how to test concurrent systems
- how to generate load
- where to test: rapid deployment, production tests
- start with a single server in production

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 150 03/12/2010

- quality aspects?

- A/B testing with split user groups

- dynamic feature enablement or shutdown
- tool development

- monitoring and profiling

- external testing (e.g. Gomez)

Client-Side Optimizations
(with Jakob Schrétenttp://www.slideshare.net/jakob.schroeter/cliergsid
performance-optimizations
Probably the best information you can currentlyaethis subject.

wir hatten vor zwei Wochen nach lhrer Veranstaltildijra-large scale
sites” schon mal Uber das Thema Frontend bzw.tetiele performance
optimization gesprochen. Also was man bei groRebdaiten beachten
sollte, damit die Webseite nicht nur schnell auf 8ervern generiert wird,
sondern auch schnell im Browser dargestellt undefiibrt wird. Gerade
durch immer anspruchsvollere Layouts und mehr Lagikden Clients
(JavaScript, AJAX, Flash, ...) sehe ich dieses Thalmavichtigen
Bestandteil der Performance-Optimierung an, welbfider zu haufig
auch vernachlassigt wird, da sich viele Entwickleinr auf die Serverseite
konzentrieren.

Important Keywords:

order and position of loading files

- file references in <head> are loaded before pagendered (so watch
out, which files really need to be loaded)

- if possible, load additional files after DOM diaring

- load css before js files

optimize images
- PNG often smaller than GIF
- remove unneeded meta data in image files

avoid and optimize http requests (which also halgeading servers)

- combine js/css files

- use image css slices (combine images to sapedytiests)

- use more than one host for serving files (CDdB tb 2-parallel-request-
limit in most browsers

- avoid http redirects

shrink data
- gzip compression for html, xml, css, js...
- minify js/css (e.g. YUlcompressor, Dojo Shrink§a..)

intelligent browser caching
- use etag header

- use expire header

- use http 304 not modified

js performance

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 151 03/12/2010

- reduce onload actions
- js best practices
- choose the right AJAX library

tools

- Yahoo's YSlow Firefox extension

- Yahoo'’s smushit.com (image compressor withoatiguloss)
- speed limiter for testing site performance (eigbscarab)

Soweit meine ersten Ideen. Yahoo ist sehr aktoleim Bereich, unter
Anderem gibt es hier eine interessante Prasenthfigh Bildoptimierung:
http://video.yahoo.com/watch/4156174/11192533

Zum Beispiel wird auch genannt, dass bei eine \@gaing von 500ms
beim Laden der Google-Suchseite die Anfragen um 2084ck gingen,
oder bei Amazon 1% der Kéufe aus blieben als dite 380ms langsamer
geladen wurde. Dies zeigt, dass minimale Perforeamerschiede
durchaus auch Auswirkungen auf das Geschéft haben.

A Model for RASP in Large Scale Distribution
- SPIN/Promela
- canonical architecture
- queuing theory
- simulations
- failure tree models

After looking at the various large scale sites awe need to ask ourselves
whether we are able to define some core architestused by those sites. Let us
start with the classic web site architecture toehsemething to compare to.
Canonical or Classic Site Architecture
Reception, user agent, distribution, processingregation, retrieval,
storage, global distribution, DNS aliasing, loa¢hbaing equipment,
media storage, database setup and replication

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 152 03/12/2010

Presentation services

Clients. Application services
Resource managers
Directory and
security services) Packaged
| solutions
Browser Managed User / i
content profiles i
I e U]
c 1 Customer
> ontent relationship
Internet management
‘ 8 Web management
5 i [application 7
e Web server Services .
Pervasive . Load _|proxy | | Content __| |Application | | Integration /| Legacy
device Device / balancer |server delivery logic hub applications
" gateway I 7 T i
. 1
"‘ £ Application] 1
: /W Transcoder / || | Static database I :
Third-party / content services
systems or . " 1
services > - Enterprise
Public nkr private Gateway Application databases
networks services data
Web services .
directory Enterprise securFW management
' En?e_rpnse System management
Universal layer

From: McLaughlin et.al., IBM Power Systems platform

For availability and scalability reasons lots gblieated components are
needed as shown in the diagram below. Almost eleger needs load-
balancing, switching and component replication.

Mem
CDN dS;?gC cached DB
App server
cache server M
Repl.
" RP [DS .
Local « AS read
DNS/alias \\ LB
Load .
C
Bal. / M replic
Geo-
—| Distrib./ \ Rp y D8 | e
: 7 AS write [|Virtua
DNS Load T LB SAN
Bal. > c M
ANy 27
RP AS read Repl
N l
C DS
read
i Repl.
izl Sz Search Servers >

File Systems

What are the conceptual building blocks for sutds$i The diagram
below lists some components used by ultra-largke sits.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 153 03/12/2010

Message Search
Queuing engine

Content
Delivery
Network

Application
Layer

Daemon

Processes

Static

Caching
layer
Y DB
replicas .
Global DB partitions
Distribution/

routing

CARP

caches

Switching/ Virtual

Storage

Load balancing

equipment

Classic Document-Oriented Large Site Architecture
(Wikipedia)
Message Queuing System (Twitter)

Twitter seems to be ideally suited to be based message

gueuing paradigm with background daemons processongests

asynchronously and a huge cache holding messages.

Input event processing

daemons

e
/

Output . Cache
processing

daemons

C Output event

J processing

daemons

Social Data Distributor (Facebook)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 154 03/12/2010

From Mark Zuckerbergs paper in “Beatuiful Architeet’.
According to him Facbook went through several etrohary steps
which required new software technology. First cdheerealization
that the social data within facebook needed tohlaeesl with other
applications. This meant opening up the business laf facebook
as a web services API through which 3rd party ayoosd access
the social data in a secure and privacy respeetang The service
interfaces needed for different languages and potgovere

generated from meta-data of the interfaces. _ .
To avoid having users offering their facebook creidds directly

to 3rd party apps facebook developed a token biasiedated
authentication system much like it was done byrtipalliance and
others. Users still authenticated against facelaomokreceived a
token which could be presented to 3rd party apgtina for use in
web service calls against the facebook API:

Client
Client login
. and token
generation
3rd party . Facebook
App. Web frontend
l service l Multiple
interfaces interfaces: thrift
Business . Fbook APl | generator
logic
Authentication FQL Batching queries
tq facebook with FQL
via token Privacy

D |
B s
FBook

FQL was invented to reduce the number of requests 8° party
applications for social data kept within faceboAkthentication is
done like in liberty alliance with facebook actiag an Identity
Provider. Lately facebook seems to allow OpenliDhentication

through other providers as well.
Finally, with the Facebook Markup Language it isvrimossible to

closely integrate "3 party applications within the facebook portal.
This allows excellent but controlled access toexrsisocial data.

<<need to look at the open facebook system arahist model>>
<<OAuth now used for social plug-ins, see Heiselart>

Space-Based Programming
[Adzic]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 155 03/12/2010

Queuing theory, OR
To guarantee the availability of a business satutiee architecture needs
to provide performance, throughput, decent resptinsss etc. Those are
all quantitative entities: the time it takes tovseg a request, the number of
requests per second arriving or being serviced@ieuing theory is a way
to analytically calculate request processing wigyatems as pipelines of
gueues and processing units. Queuing theory descttite interplay of two
distributions of events: arrival rate and serviogetwhich are both in most
cases assumed as exponential (random) distribuffdreskind of
distribution (random, constant etc.), their mead standard deviation are
the most important input values for queuing forrsula

Basic Concepts

It is not the intention to provide a complete ovew of queuing
theory here. What we should look at whether thesriiment is
helpful in designing ultra-large scale sites. Tasdave will first
take a look at basic terms and laws of queuingrthaind then
think about their applicability in large scale dgsiThe
introduction is based on two papers: The applicatioqueuing
theory to performance optimization in enterprisplaations by
Henry H. Liu [Liu] and a paper on queuing analysysWilliam
Stallings [Stallings]. We will also take a lookthe “guerilla
capacity planning” by Gunther.

The queue processing abstraction looks like irdiagram below:

Feedback

Queuing center

Incoming Dispatch ;;ocue;stid
Requests discipline . a
[) O O Processing
server
Arrival rate Waiting items Service time/
utilization

<« Residencetime ——

These processing elements can be connected tgofmeass
pipelines.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 156 03/12/2010

A different way to visualize queuing concepts iewh in the
diagram below. Here new tasks arrive at times TlinTthe
system. The tasks need different service timeswisishown as a
difference in length of S1...Sn. The buildup of warkhe system
can be seen as the addition of lines in the lowaérdf the diagram.
The dotted line crosses the x-axis exactly at thg-time of the
newly arrived service.

Arrival and
S1 S2 S3 S4 service time
TO T1 T2 T3

Work in
system

Wait

times

w3 W4\\

TO
After: K. Hazeghi /B.Hansch

Task enter and exit behavior defines the overatilmer of tasks in
the system at any moment:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 157 03/12/2010

Work in
system
Wait
times
w0 wi w2 w3 wa ™,
noom 1 1 *
tasks in | I | | . §
system | I ? ? . %
2 e - jwatt
| H § § times
1 ! : [‘ : :
%o 1 T2 T3

After: K. Hazeghi /B.Hansch

The terminology of queuing theory is very usefutiescribe the
request flow through such architectures. The falhgwist is taken
from [Liu].

<<list of queuing theory terms>>

« Server/Node — combination of wait queue and processing element

« Initiator — initiator of service requests

« Wait time — time duration a request or initiator has to spend waiting in line
« Service time - time duration the processing element has to spend in
order to complete the request

« Arrival rate — rate at which requests arrive for service

« Utilization — portion of a processing element's time actually servicing the
request rather than idling

* Queue length — total number of requests both waiting and being serviced
* Response time - the sum of wait time and service time for one visit to the
processing element

* Residence time - total time if the processing element is visited multiple
times for one transaction.

« Throughput - rate at which requests are serviced. A server certainly is
interested in knowing how fast requests can be serviced without losing
them because of long wait time.

Generalized Queuing Theory terms after (Henry Liu)

“time” in this context always means an average alsl all values
here are of stochastic nature. Queuing Theory th&eso called

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 158 03/12/2010

Kendall Notation to express the core qualitieswdujng centers
mathematically.

Kendall Notation M/M/m/3/N/Q

Probability
Wait queue size: N, distribution
unlimited for service

tim?: M,D,G

Probability

distribution

for arrivals: Leave

M,D,G . reate
)00 | ([0 o (s)| U=

t
Service policy type S; (Fifo,
shortest remaining time first Number of
etc. service

channels: m

Population Size: B
(limited or infinite)

Table 1 Kendall notation (o/a/m/A/N/Q)
o | The type of probability distribution for the arrival
process, e.g., Markovian, General, etc.
o | The type of probability distribution for service
time.

Number of servers at the queuing center

Buffer size or storage capacity at the queuing
center

The allowed population size, which may be finite
or infinite

The type of service policy, e.g., FIFO.

Rl Z| = 3

After H.Liu

Specific versions of queuing models are expressadjiKendall
notation like this:

M/M/m/N/N/FiFo which denotes: Markovian distributiof arrival
and exponential service process distribution, tmalver of servers
in the center, the wait queue size at the centtlamn population

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 159 03/12/2010

size. The last parameter is the type of serviceypdBuffer size
and population size can be infinite in which cageane talking
about an open queuing model usually denoted as Mrhiv/del.
Please note that the service distribution is asdumée
exponential which means that the system will shppoeaential
degradation of service time in case of increasad.l®his is based
on empirical observations and confirmed by manyuqge
specialists [Stallings].

Scheduling can either be fair (round robin, FCHE(} or unfair
(shortest remaining processing time first, priokigsed) and pre-
empted or run-to-completion. Pre-emption typicaliyises higher
overhead due to cohesion costs (storing state,mEngpnages
etc.).

Two important laws from queuing theory are statetmabout the
performance of queue processing centers. Theofirstis Jacksons
Law which states that it’s really tt&ervice Demancdot the
Service Timewhich is most fundamental to the performance of a
gueuing system. [Liu]. Service Demand is the averagmber of
trips to the queuing node times the service timgh@t feedback
Service Demand is equal to service time.

The second, Little’s law states that the numbeeqgtiests both
waiting and in service is equal to the productwdughput and
response time.

<<simple questions and formulas>>

(b) Exponential Service Times (M/M/1)
P = P W= P
I-p I-p
T -
r -~ r - Pl
I-p Tol-p
Jp T,
o, =— o, = ——
- p "1 p
PR = N]=(1-p)p"
PR < N| = Z(l p)p’ After:
=0 Stallings
P7, <T]=1-e P
| 100)
m (y)=T, x ln\ ’
’ 100 -y)
7 100p |
m,(l'):—"‘xInI P '
e p 100 -y

Typical questions about queues are: what is thieation of the
processing element? (arrival rate x service tirdev many items

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 160 03/12/2010

are in the system at any time? (r) What is theaesp time? (Tr)
Advanced questions are: How big must a queue betttose
requests? (Is increasing the buffer size realligaer way to
control your queuing system?)

Queuing Theory can shed some light on everydayghena as
well. Instinctively we do not like multiple singkerver queues e.g.
in banks or shops. Such queues force us to chasarahstick to it
even if processing is rather slow in the queue aweelchosen
(aren’t the other queues always faster?).

A
Ny —]
S
N <
—>M Server 2
Arrivals Departures
>
2 = arrival rate .
.
L]
A
N) :
%m Server N

(b) Multiple Single-server queues

After:
Stallings

The global arrival rate lambda is divided by thentwer of servers.
Unfortunately this division is static and does adjust for the
situation within a server or between servers. éwiorst case
server 1 could be busy and server 2 could idleawitlhe chance
for an item in server 1 to take advantage of thet.fNow let’s
compare this with a real multi-server queue:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 161 03/12/2010

Server 1

Dispatching N Server 2

Queune

Arrivals ID]:]:I discipline Departures
s .

A = arrival rate .

» Server N

(a) Multiserver queune

After:
Stallings

Here all servers get items from a single queuendgJgueuing
theory one can show that the muli-server queuevallbbodecrease
in residence time by a factor of three and a deser@awaiting time
by a factor of seven! [Stallings] The multi-sergereue allows
variations in the arrival rate to be compensategdnations in
service time by different servers. It does not anlgid idle
servers, it also distributes extreme services timese equally
across all waiting items. We all know the ugly effen a single
server queue when one item causes a very longesdrmie. This
reduces the variation in response time.

<<single queue server or servers>>

While the difficulties of multi-queue server dessgare abvious
due to the independence of the queues (this ddemsaeen that this
kind of architecture is less important: it is hépvwised in priority-
scheduling service stations, see below) it is mharider to decide
whether one queue with one fast server is bettar tine queue
with multiple but slower servers). The followinghiased on
B.Hansch, Introduction to Queuing Theory [Hansch]

First we need to calculate the utilization of asgmr system
according to Little’'s law:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 162 03/12/2010

Ll *C
Utilization calculated form arrival

and service rate times number of
channels. From [Hansch]

This formula can be further refined to cover thfeef of
differences in variance of arrival and servicesate

2 2
(1:4 + Vg)

Expected number of jobs in the system. Rho means utilizati
Variation in arrival and service rate is relevant.

From [Hansch]

Now we distinguish three different cases of sergia¢ions and use

arrival rate, service rate, variance of arrivald aarvices to

calculate the expected number of tasks in the syatzording to

the above formula.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 163 03/12/2010

—HEI-I:: E[N]=1.8

(a) A=1,8;¢c=2; =1
Mittlere gesamt Ankunftrate =18,
Mittlere einzelne Bedienrate =1.0, [T11 |".—’
E[N]=1.8
Variationskoeffizient des -0

Ankunftstroms ' by A=0.9;c=1;p=1->Erg. x2

Variationskoeffizient des
—~{III~@> EN=09

Bedienprozesses s
(c) M=1.8c=1;p=2

From [Hansch]

A further increase in variance of arrivals and Em¥ turns the

results around:
—> }-l : E[N]=32,5

(a) A=1,8;¢c=2; =1
Mittlere gesamt Ankunftrate =18,

Mittlere einzelne Bedienrate =10, _'[:_L[['-’._. E[N] = 66,6

Variationskoeffizient des
Ankunftstroms

Variationskoeffizient des
Bedienprozesses

b) A=0,9; c=1; y=1 -> Erg. x2

—TITT@+> EN=333

(c) A=18; c=1; y=2

From [Hansch]

Now the service station with more service unitslightly better

than the single but faster server.
Are these results “physical” and what do they meanrme

observations and thoughts:
What needs to be explained is the big differeneéen two

service units compared to one faster unit. Whatrealy hurt a

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 164 03/12/2010

multi-service station? Probably the worst case thases serious
ineffectivity is when the two units are not fullyilized. Because
we assume that the granularity of service is cdliyehe complete
task an empty unit cannot “help” the other whichusy. This is a
well known anti-pattern in parallel systems: thargrdarity of job

schedulings decide about utilization.
In our case the utilization is dependent on prapeut being

available — in other words the arrival rate isicait for the supply
of tasks. With an arrival rate constantly belown2 a service rate
constantly at 1 per unit we see that both the demalice unit as
well as the faster single service unit are conbtamtterutilized.
But why does this hurt the dual-sevice unit more®/@vhen the
variance of this (negative) input and service bérashanges can
we get a better utilization as is shown in the sdatiagram.
<<need to calculate E[N] with different/higher aai rate.>>. This
observation fits e.g. to the design principles bdtlihe Google
Application Engine (GAE) which kills requests tliake longer
than 30 seconds to complete: if a task is theafrdispatch its
processing needs to be standardized to ensurzatitin. Having
many processing units and just one huge task dutdagrease
efficiency.

The dual-service shows two critical phases: notiaoal not
enough input to fill both units. But the secondec&sot enough
input) is dependent on the granularity of requattge can make
the requests small enough then both units shouéblgeto run
concurrently. Is the difference to the single seevinit merely an
artefact based on the assumption that the queeetiefty is
determined by the number of concurrent requestsarservice
station? In any case it is important to realizé tha variance in
arrival rates is an important factor in multi-seevunit designs.
And this automatically leads to the idea of somekanwing the
arrival rate into an optimum rate for such syst¢se® below:
haijunka). And don’t forget that the service disttion is
exponential, leading to a sudden increase in setinee in case of
overload.

The second observation is that the differencesdmtviwo slower
vs. one faster unit are rather small. Even forctige with two
gueues with different priorities the differenceveetn the high
priority queue and both single queue models is gergll but the
decrease in effectivity for the slow queue is cdesable!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 165 03/12/2010

Mittlere gesamt Ankunftrate =09

einzelne Bedienrate high =15 .E: |. I l I H."
T ~@—

y P (A=0,45; c=1; pLow=0,5 uHigh=1.5

ariationskoeffizient des .

Am(‘unlftstroms‘ I =1 - El'g_ QLOW+QH|gh

E[N]Low=9; E[N]High=0,43

einzelne Bedienrate low =05

Variationskoeffizient des

Bedienprozesses vg=1 — _!_[.J_l_._’_’@" E[N] = 0,81
() A=0,9; ¢=1; p=2

From [Hansch]

This raises the question whether priorization yeialla useful
method, especially in the context of large-scaktespys.

<<design question: is priority worth the compleRifijake a look at
the alternative web server concept based on prisciheduling of
responses below>>

And finally: changes in service rates are hardctu\ae, both for
the single server station as well as the dual Gatial parts in
algorithms as well as the overhead due to multipiés (cohesion)
will put limits to scalability.

Applications of QT concepts in multi-tier Systems

Instead of trying to calculate complex wait and/sm scenarios
we will use some lessons learned from simple gq@eniadels and
apply them to large-scale multi-tier architectufe@sither down we
will also look at simulations of queuing models.dtg Palladio
System of KIT [Reussner <<check bib>>].

The following topics are important from an architee point of
view:

- Service-wait pattern in multi-tier systems

- Index in data

- Service Demand Measurements

- Cost of slow machines in mid-tier (cohesion attieas
sometimes contention as well) : does queuing thesaly apply?
Requests go back instead of leaving the systenughrthe final
queue.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 166 03/12/2010

- Queue length (timeout,of client : whole residenoest
important) output queues? Buffering? Asynchronautpuat?
- Funnel architecture of multi-tier systems
- Heterogeneous hardware and self-balancing algosithm
- Dispatch policies in multi-queue server designs
- Unfair Dispatch disciplines
- Request Design Alternatives
- Finally: QT applicable to multi-tier systems dueréguests
not leaving at the end?

Service Demand Reduction: Batching and Caching
Liu describes a rather important quality of modewunti-tier
enterprise application: it's “service-wait-serviait” behaviour.
The diagram below makes this rather obvious:

Proxy Server Server Server

T e [T e [| T
=) | | =)

Average response time therefore is the sum @ ﬁ
of trip average x wait time plus the sum of -
service demand iterated across all nodes.

Note that all these requests are

synchronous (internally sequential) and in

all likelihood also in contention with each

other — which means that wait times occur

due to contention

Reducing wait events and service demand (numbeqoiests)

will therefore considerably increase throughputemtuce response
times in enterprise applications. Liu mentions salstrategies
(which turned out to be completely agnostic of paogming

languages or runtime platforms):
- array (batch) processing requests in groups. (teduof

service demand). This reduces the average numiep®to the
gueue processing center and is the same as sayeestzle sites
describe as their “multi-get” feature for accessiaghes or

services.
- caching at high levels to avoid requests alltogethe

Liu claims that “Because of this significant impeswent on
performance, every enterprise software applicatloyuld adopt
and implement array processing even during the/ stalges of

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 167 03/12/2010

product development life cycle before performarnssigance and
acceptance tests begin.”

But let us first ponder over this claim a bit. Derdang that batch
processing (request bundling and avoidance strasmgpuld be
used from the very beginning turns it into an aexttural quality
of enterprise systems. We are no longer reallyrtglk
“optimization” here, even if Liu calls it this wagiven the
sequential, synchronous nature of multi-tier aegtiires this is a
reasonable thing to do. But what are we actuallgglovhen we
introduce batch processing? Exactly where do wetkertime and

throughput? B _
Clearly we have fewer requests at a specific qpeoeessing

center when we start batching requests. But indalidervice time
should increase because of batched requests tader|to be
processed. We will save on protocol overhead (sgnaind
receiving the requests) and interrupt processing &and possibly
also on context switching time if our individuabreests would be
sent by different threads otherwise. But if wergaruse internal
parallelism during the batch request processirgynbt really
obvious where we make our wins. And if we can us@lelism
internally at the receiving queue we could use d@lss to process
more requests and would not have to use batchialy &atching
does not change the fundamentally synchronous Wwpasocessing
either: initiators will still have to wait for theemote requests to
finish and in case of batched requests they AL ldrtedbe
finished. Below we will take a look at the use ofair dispatch in
a web server and we will learn that getting ridexfuests within a
service station is extremely beneficial to througth@lternatively
we could return requests on an individual basesethy reducing
wait times within the upstream queue processingeceat the cost
of increased transport protocol effort. This is stimng that we
will have to investigate further when we talk ab8@ processing
options later. | have a feeling that we need taespqueue
behaviour in terms of service time and contentioly.d guess |

Em@'ﬁé%/ (5&%‘%’89 p@&m&a{%ﬁbe%ich reelsigvait time. (|
would have guessed that it reduces trips to theeaed by doing
so indirectly also wait time). Introducing cachiaigthe application
server level obviously has the biggest effect asdtices a whole
number of requests later. When frequently usedctdpre no
longer cached applications can experience seveferpance and
throughput degradation.

Service Demand Reduction: Data-in-Index
An interesting case of service demand reductiddasa-in-index”
technology which can be used to avoid going todafgta tables.

Select C3 from T1 where Cl=<value> and C2=<value> order by 1 ASC;
Select C3 from T2 where C1=<value> and C2=<value> order by 1 ASC,;

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 168 03/12/2010

With T1 and T2 being huge tables and C3 being thg @lumn
returned it pays off to add C3 to the indexes oa@d C2. The
reduction of unnecessary logic is just another caservice
demand reduction while increasing the storage spagdeduces
wait time. The proposed duplication to avoid jams very
effective technique used in large-scale storagesys It simply
takes some time to get used to this trade-off betveokup-time
and storage utilization. <<link to the well knowriee on “how I
learned to love data duplication...”>>

Intuitively we feel that pipelines of processingles work best if
all nodes experience the same service demand. Anathy
according to Liu is to express this using utilinat(being equal to
throughput times service demand). A processingpifd performs
best if all nodes show the same utilization. Aviserdemand is
expressed as trips times service time it explaimg @gual service
times are seen as a way to achieve equal utilizatig. in CPU
internal pipelines. Longer response times at opeliie stage
cause longer wait times upstream. (And now we kndny web
requests should be short when synchronous). And imp®rtantly
utilization is easily measured and compared betvggstems and
equal utilization stands for a balanced and theeeftable overall
system. [Liu]

Service Demand Measurements
As we are going to use our analytical results asutiktics to
define measurement points in our architecture @mg vnportant
point needs to be discussed: the measurementsvafesdemand.
Just measuring the service rate in the processiitg and keeping
them close to 100% is a dangerous way to judgedhiermance
of our system: Once we reach 100% utilization ofmocessing
units we do not know how much additional work atijueesides
within our system waiting to be processed. We rnieadake the
trade-off between customers waiting and optimaization of our
processing units visible and measurable at allgitneavoid
creating long wait times which in turn cause tintgooblems and

dead request processing.
The n-tier funnel architecture

In concrete web applications many architects deweam more
conservative interpretation of balance by demandifighnel
shaped request pattern from the beginning to tdeoéthe
processing pipeline:

<<diagram of request funnel for web applications>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 169 03/12/2010

|
Network

Clients Q
Arriving requests Arriving raquests
‘m
!.!N; £ 200 75 50
ko Web Serviet Data 25
1 b server L -] ongine | -] source
| (N=75) (N=50) (N=25)
:g:‘ 125 25 25
D Waiting requests Waiting requests Wailing requests
Database
‘+

This is based on the experience that short incseafseait times or
service demand at some point in the pipeline cae deéastrous
effects on overall throughput due to upstream &fe&nd that by
simply adding more threads the service times flaregjuests
increase as well. <<what is the physical explamafoo this?>

Cost of slow machines in mid- or end-tier
(cohesion at least, sometimes contention as well)
Service access layer, cloud of resources alloatddorocessing
stalled, how does each tier allocate and scheédgigests?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 170 03/12/2010

DS
RP \ / ws / AS \ read
Geo-
Distrib. | | L RP WS AS M Wl?itSe Virtual
DNS S C SAN
] A\
\1 DS /
RP WS ‘ AS read
Server with
problems

Multi-tier architectures typically use layers oabb
balancing/switching between horizontally arraigsedvers. A
request can therefore use many different paths @&otny to
backend system. We need to look at two scenaiiss; \ivhat
happens to one request when a certain server petihe
experiences performance problems and second, whkattdis
mean for all the requests currently in the system?

To reach a certain server a request needs to p@E®g [pnevious
servers. By doing so the request typically allosgter server
resources which are kept until the reuest comels tbam a
downstream component. In other words: a requeskbloesources
on upstream servers. Both contention and cohelaengastream
servers get worse!

It depends on the implementation of those resouroesseverely
other requests will be affected: a Thread-per-refjo®del means
that a thread blocked will not be able to servitteeprequests and
soon the available threads in a thread-pool willlbgpleted. Does
this mean we should use a non-blocking I/O stratagyyvay where
we just save the request stack somewhere and eslerdad to
handle a new request? It will not help us in cdseeserious
problem with a server: all it does is to fill uprauachines
(upstream) with requests that cannot continue. lbzdancing
would soon route more and more requests to theinamga
machines and — if their limits are reached — $tano longer
accept new requests.

This example shows several important things:
- input queue limits are important. We should noegatc
more requests upstream just because we cannohgersgome of

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 171 03/12/2010

them downstream: we would just overload the remaini

downstream servers.

- A slow or broken server affects many requests aaos

cloud of servers upstream.

- A slow or broken server reduces the number of input

connections for upstream servers because they caomard

those requests downstream

- A slow or broken server should be detected as tuak

possible to avoid sending requests against it ameduce request

acceptance upstream

- Non-blocking resource allocation does not help.Héit

strict resource management it can even blow uservers.
Queue length and Residence Time

(timeout,of client : whole residence time impotjasutput

gueues? Buffering? Asynchronous output?

In queuing theory the queue length as is usualatizer
uninteresting parameter and in many cases it ignasg to grow
infinitely. If a fixed queue size is assumed thestrimportant
guestion is usually: when do we start to lose custs because the

queue is full?
Reality is much different here because a full qusuet the only

reason for losing customers: customers can impletmaaouts, in
other words they can cancel requests if they takdang. Queue
size is therefore just one parameter and we ally ceancerned
about Residence Time, not queue wait time.

Some considerations:
Residence Time == Waittime in queue plus time speservice
Residence Time < Customer Timeout

Queue size needs to be calculated so that forem@ixrival and
service rate the residence time is smaller thaculkstoomer
timeout. <<give formula>>

What happens if we reject the request due to ajtidue? The
client is free to issue the request again, perpafimg for a free
slot. This is communication overhead for sure bdbes not affect
our internal servers in any negative way. The tligof course
free to chose a different service station. In taise we lose a
potential customer.

But what happens if we do not restrict queue simbend up with a
residence time bigger than the client timeout? Td@nething
really ugly happens: we end up processing deacesguA typical
example is when a client always uses the reloabwin her
browser faster than we can respond with the prppge. The
previous request is already dead when we wanto ise
response.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 172 03/12/2010

How can we protect us from such a behavior? Caatimg
complete responses is certainly a good idea. ikguments are
asking the client during request processing whesheris still
interested (e.g. by checking the connection ordkyra for a
computation token). If we know that clients useaggressive form
of timeout handling we can even offer them the agercurrent
residence time as a base for their decision.

In every case we need to track the number of closadections or
timeouts we experience throughout the processimogiinmulti-tier
architecture: they can be signs for dead requesegsing. And we
have to decrease queue size (or service time) tiiadhas to
happen in real-time because we want to avoid psings
potentially dead requests.

Output traffic shaping

Many queuing theory algorithms assume independeeteeen
incoming and outgoing requests meaning that trene
connection between requests. This is of course amlgssumption
made for mathematical simplification. In realityeusessions
consist of more than one request and thereforeestgare not

really independent. But what if we could use thdspendencies?
One idea could be to shape the incoming traffiough

modulation of outgoing (processed) requests. Ugaallser spends
some time between requests to think about restitsequest. And
then she will issue a new request. By slighthaglelg responses
we can influence the time before a new requestheilissued. This
may sound like a rather small achievement but gitiensands of
requests per second it might make a differenceiim@achine. | do
not know of any system that currently uses thisgaggh though.

The realism of Queuing Theory based Models for

distributed systems
We will later on discuss a certain type of loadainakr: a pull
based system. This system consists of service nuolliel — on
being idle — request new jobs from a central quAusentral queue
model avoids the problems of multi-server queuesre/lone queue
is still full while others are idling. It shouldehefore lead to a
better throughput. But implementations of this mMddee shown
the adverse effect. What might be the reason fe?th

One explanation could be that there are some irapovariables
missing in the model, or perhaps in most QT modetse it comes
to distributed systems. QT seems to assume ablohatdéatency
between queues and processing nodes. After progessiode
there is no time lost until a new request is bgirgcessed. This
assumption is obviously not true in the case dfpeall servers. If
they wait for a request to finish throughput wilffer due to the
time it takes to send a request to the central gaed getting a
new request back. An alternative of course woultbbaightly

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 173 03/12/2010

overlap request processing at each pull servethimits essentially
only the re-introduction of multi-server queuespél server
would have to know exactly when to requests a neamtcrequest
for processing without losing time. If a requess kawait at the
node it could have possibly been processed at anntide in the
mean time.

The example only shows that important variableeaf distributed
processes are not modelled in QT and that thidezahto wrong
assumptions.

Request Processing: Asynchronous and/or fixed

service time
The overview of large scale sites has shown arasing use of
asynchronous request processing. Other exampke&logle
Application Engine API and the Darkstar Game Engine
architecture enforce fixed or at least limited ggr\times. The
reason is well expressed by Neil Gunther in hisrBae&Capacity
Planning book (see below) where he discusses tigection
between Amdabhls law (the fatal consequences ddlesiion) with
the classic repair man queue model (a wait-basechsgnous
service model).

“Conversely, | have shown elsewhere (Gunther 20@%4dx) both
Amdabhl’s

law (4.15) and Gustafson’s law (4.30) are unifigdtlee same
gueueing

model; the repairman model. Theorem 6.2 tells as Amdahl’s
law corresponds

identically to synchronous throughput of the repzan.
Synchronous

throughput is worst case because it causes maxjoeleing at
the repairman

(Fig. A.1) or bus. In that sense, Theorem 6.2 repnés a lower
bound

on throughput and therefore is worse than the nteewsughput.
Once this

interpretation understood, it follows immediatdiat Amdahl’'s
law can be

defeated, much more easily than proposed in (Nel886), by
simply requiring

that all requests be issued asynchronously!” [Gen}ipg. 218

Interestingly asynchronous requests have beeradided to the
new servlet API 3.0, see [Bartel]. While mostly ggshtowards
Comet style AJAX communication, this would alsmallparking a
request, issuing parallel asynchronous subreqaests- once a
fixed timespan has expired — to collect the ddtig, missing data
and return after a constant service time to the @ever request

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 174 03/12/2010

design could then achieve an effect close to Haguske below): a
partitioning of service effort and time into sanmees blocks.
Heterogeneous hardware and self-balancing
algorithms
<<to-do>>

Dispatch in Multi-Queue Servers

The role of the dispatch discipline in multi-quedesigns is quite
interesting: What would be an optimal dispatchnabiming items?
Load balancers have to find an answer to this guestg. by
tracking the load on servers. An alternative dispatrategy would
be to use pull instead of push: Let the serversraw items when
they are done with the previous item. But how wouéd
implement priority queues in that case?

Unfair Dispatch: Shortest Remaining Processing Time

First
We have not changed the way the system perfornesiatihg yet
and simply assumed it would be FCFS — in other waréhir
schema. Experiments have shown that a fair schex mot be
the most effective. If the number of requests acutyan the system
is used as a measure for effectiveness of a priogesstion and if
only a certain variance of arrival and service eaeassumed it
turns out that the most effective strategy is tkphose tasks with
the least processing time left before completiost fin the case
discussed below the file size requested is used asdicator for
the processing time needed.

<<web server SRPT example>> [Schroeder]

Bty

Wit . L o
| . I ¥ b

| ; | —F —_— i

‘ ¥ . ' 1 | | "\-II Pt

i

il C R
: | . ’ - il
ile ! \'_lu;lin.n.[r:r Léem |4 i A e I
1T ; | | BTl . ubglm o =
|'|:'_'_'_'_.| e = A | T m "-,_“ | i i
i AT il A
U gl ord

b sl e

) y
%,) foece
WL poss ey BEOREY st LW

N : A e T
() Standard Linu - FAIR (b) Modified Linux- SRFT

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 175 03/12/2010

Surprisingly long requests (for large files) werd starved to death
under unfair scheduling. Under the constraint thatsystem
experiences also situations of low load the lasgpiests were then
serviced mostly uninterrupted and this made maaa tip for the
short delays by servicing short requests first.

What is the “physical” explanation for this? ltimsthe fact that
multiple connections and tasks all require a certaerhead for
switching and multiplexing which is reduced by &RFS strategy.
But we cannot only look at slight improvementstabughput in
our large scale architectures: we also need talzdkcthe effects
of our optimizations in case of a different inpigtdbution. In
other words: how does our system behave if we dee®the
expected variance in the arrival rate for some ?im& might
detect a rather disturbing behaviour in this caaeyely that the
system might become much less effective or evaabies due to
the fact that not all the big requests are unabmplete. Fair
scheduling might have been less effective in tise cd an optimal
input variance but it might deal better with leggimal input
distributions. This is also a lesson learned franiding operating
systems: frequently a less effective but more gdradgorithm (for
memory allocation or sorting e.g.) will show a mbenign
behaviour across a wider range of input situations.

Request Design Alternatives

It looks like a common and rather short request aizd latency
allows better throughput. But what if there is g bifference
between some requests with respect to service fitheanswer
givent till now was: use asynchronous processing.tAere
alternatives to asynchronous processing? Surplysihgre are a
number of design alternatives and they start agddsne: In
many cases it is a matter of request architectinethver the service
times will differ largely or show a rather commams&ce time.
Every request needs to be checked at design timenfeecessary
bundling of functionality which creates overly losgrvice times.
Requests can be configured towards a common time.

What else is possible? The section above usedrisdiaeduling to
improve throughput. This is OK as long as arrivalet distribution
allows for low traffic times where long requests aandled
effectively. Otherwise they are starved. Conterseblarouting and
partitioning can prove a viable alternative in tbése: Route
requests of a common service time towards one senhg and use
other servers for different requests. And even noptenization is
possible: Once the requests are partitioned alengce time the
whole further processing chain can be optimizedHerspecific
request requirements: block sizes, network parasete.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 176 03/12/2010

A very interesting alternative is descriptive batghof requests as
is done in the case (like FQL) for internal optation. At the first
glance it seems to create larger request servigestand achieve
exactly the opposite of the intended effect. Bug thuits
descriptive nature it allows internal partitioniagd optimizations
as most SQL processors e.g. do.

An easy alternative which also works in case dtifas in recently
deployed API functions is to dynamically turn ARhttions on
and off if a the system experiences overload.

Finally there is the question why multi-tier ardieictures don'’t
come with a feature that is e.g. very common invoets: the
sliding window feature of TCP allows throttling fquests back to
the client. And interestingly: we find exactly thHeature in the
Darkstar game platform architecture discussed helwerloaded

servers can send exceptions to clients and préweher requests.
In any case the worst design is to allow too maguests into

your system. Or requests of very different sertiices. If one
could kind of chop requests into a common sizeiatime this
would turn out very beneficial to throughput. Thexhsection
discusses the “heijunka” method used in Japandsenative
plants to achieve exactly this.

Heijunka

The last concept we are going to discuss hereigling” or
“Heijunka” as it is called by Toyota. Leveling tsi¢o avoid spikes
in demand or production as these have been fouhdrra
cumbersome and ineffective. The opposite of thpgees is a
balanced system. But the core assumption behiradliley or
heijunka is that you need balance first before gam get velocity.
The follwing diagrams and concepts are taken frioenqueuing
theory pages of Peta Abilla [Shmula] who did supgigin
management with various large companies like amazon

The diagram below shows the levelling effects ojuméa:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 177 03/12/2010

Traditional

Heijunka seems to chop incoming items into equsilted pieces.
This could happen in the spatial as well as theoteal domain:
either blocks of equal size are created (same siaegbound
messages, same size memory or disk blocks etthgdrequency
of requests is fixed at a certain rate (x requestgime unit).

A whole supply chain with levelling element mighbok like this:

Cushme Savice

o
ol
[it b 4 I
Aas ambdly ¥ ralght
A G plck _“-., OXOX u*., _ﬂ*- u*.,
bt deme A
/
= /2\
Lo a I Mok a Bos | TS s Te Curbamad
11
patkage |
Cyola Tima Crehe Tima Cila Tima
n] M " | ey 1 tma
Fraductas i b
15 Mg B8 M 1385 min
S i
15 Mg % | 15 Ming | Pracatang lonae 185
min

To better understand the concept of levelling aaldrixe we can
take a look at car engines. A car engine from ajineering point
of view can be considered as a standing wave: FEnencarburator

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 178 03/12/2010

and air filter elements through the intake manifelalve system,
cylinder area and throughout the cylinder exit ardaust system a
standing wave forms when the engine is running. fideuency of
this wave can change e.g. to get more power buth@aage must
lead to a new frequency throughout the whole sys¥oua can'’t
get more power by simply adding more fuel withagdard to the
other elements in the system. Is this balancettiedlow
utilization of resources as some statements fromm&n on the
behaviour of protocols in relation to hardwareizdition might
suggest? Intuitively the answer seems to be yesvdik protocols
break down when utilization reaches high levelsNi@Srotocols
especially), operating systems break down when wlifkation
(both spatial and temporal) gets very high. Mosteses in
distributed systems run at rather low utilizatiates (frequently as
low as 20%) and system admins get rather nervoes wiese
numbers are exceeded. On the other hand IBM manefsare
meant to run close to 100% utilization. This calydre achieved
with an extreme form of workload measurements, iptiec and
balance in those systems. Does this have somethithg with
synchronous vs. asynchronous processing or thertee of
failures and exceptions?

For more information on queuing theory see Myrogrika’s
Queuing Theory pages at:
http://web2.uwindsor.ca/math/hlynka/queue.html

Tools for QT-Analysis
In QT-Analysis a point where the complexity of ttedculations
exceeds our abilities is quickly achieved. Caltarafor QT exist
which make life a bit easier <<example QT calculato

Clausthal/Hansch>>
http://www.integrierte-simulation.de/

or: http://www.stochastik.tu-
clausthal.de/index.php?id1=Presse&id2=Schulen

With multiple queues, heterogeneous processing anid non-
standard distributions only simulation can be done.

Applicability of QT in large-scale multi-tier

architectures
Finally a word on the applicability of QT. QT maks=sveral big
assumptions about the queuing network under asaiyfsich are
probably not very realistic. The assumptions areerta make the
math calculable. Considering the chain of nodes nmulti-tier
architecture as a markov chain requires the naxbs t
independent. In this case a single node can beetres a simple
gueuing node with most likely M/M/1 characteristiBsir are the
nodes really independent? QT usually models proolustystems
where request leave the queuing network at theaaddhopefully
to allow easy distribution assumptions) do not cdraek (no

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 179 03/12/2010

feedback). But real requests in multi-tier arctitees leave the
system at the entry point instead at the backeddsA request
gets “smeard” across all nodes which are visitathduts
processing and that makes nodes far from beingartient.
Event-driven architectures using asynchronous lifhet

programmed in a subrouting calling style — do nqieet a request
coming back from a downstream component. We wiklat the
Staged Event-Driven Architecture (SEDA) in the deajpn 1/O as
it represents a rather typical form of this arattitiee.

So QT models may lack quantitative applicabilityour systems.
They nevertheless let us explore very interestegistics about
connected nodes and requests and are very imptotaant
gualitative analysis. Still, a model that bringstlaé discussed
“lessons learned” and constraints into one con#istedel would
be very nice to have.

Combinatorial Reliability and Availability Analysis

Systems are getting more complex every day. Midtigystems are
notoriously hard to debug and cause enormous twrssgrvers and
software units. But how much availability do wellgget for the money
or how much redundancy will we need to achieveraedegree of
availability?

Before we delve into questions about reliabilitg @vailability we need to
think about the structure of the problem zone aNit matter what we
want to track: bugs, performance, availability, geor steps — we will
always realize that the system under analysisngposed of low-level
components which interact with each other. On tiojp@se components
we find higher-order components which representities and even
higher ones which finally represent business preeggvViost companies
have a hard time to associate business procesgesexstain server
configurations, networks etc. We will discuss tiyize of architecture
again in the section on logging and tracing wheeenl take a look at
complex event processing approaches. Here we paedrition a rather
new feature of today’s systems: their dependenagxbéernal services.
Architectures which use external services (perti@lpmving a Service
Oriented Architecture —SOA) can no longer just labkhe availability of
components. They need to find new ways to expedigbility and
availability guarantees for external services whlamn become core parts
of the architecture.

Formal, perhaps even pre-implementation analysavaifability is not in
widespread use, due to efforts or skills involvEkis is rather unfortunate
because we will see shortly that adding reliabgity availability to
existing components or tiers is rather difficultlaaxpensive. For real-
world projects we need analysis models that ark easy to learn and
easy to use. Bailey et.al. present three religi®litgineering techniques

which show those properties [BSLT]:
- Failure Modes,

- Events and Criticality Analysis (FMECA),
- Reliability Block Diagrams (RBD) and
- Failure Tree Analyis (FTA).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 180 03/12/2010

We will take a look at those methods and how theykvand also
speculate about dependencies between capacitgatith and
availability.

The simplest method to start a reliability/availégpianalysis is FMECA.

It is a risk assessment method and it mirrors ayuale methods from other
areas. The First Cut Risk Analysis (FCRA) in seguainalysis comes to
mind and they are virtually identical:

Failure Modes, Effects and Consequences (FMECA) Analysis

Nr |Business |[Mode |Reason |Pro |Effect |Severit

Function b. y
1 |Cash dep.|Crash|ATM Low |No low
money
Hang |Line Med |[ATM mediu
: block |m
2 |Credit Funct |[ATM low [ATM low
block

The method starts with the most important busifigsstions and creates
scenarios where those functions fail. The “modegiregses different types
of failure. It is a heuristic methodology and alkearly identification of
potential problems. You can easily extend it witbggerties that deem

important in your case, e.g. the way to detecfdiiare.
Bailey at.al. mention some deficits as well: itiistatic analysis only and it

cannot represent multi-component failures and rddohcomponents
properly. But to me the biggest disadvantage isttiteanalyis is largely
de-coupled from system architecture. It requirgerg good implicit
understanding of the system architecture to comwitipcritical functions
and their possible causes. It is therefore clegebred towards the
business/financial effects of failures and doestelbyyou how to build a
reliable system.

A more expressive modelling method are ReliabBityck Diagrams
(RBD’s) like the following taken from Bailey et.al:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 181 03/12/2010

Web 1
= application 3
E server A
& = e =l
- i = ! o
Client 1\ ssi/T1s A § f Node 5 \
\cammecanon g [(Web) % Database
\ /) Load balancer ficat v |
u A / HTTP server | g A Stora;
\ 3 server \ | 88
J \ / / S Ny s area
; |»/ \ Node / MNode 4 ¥ /\ Node 7 network
/
o T Extranet]) \\\u —]
Client 2 / \\\\ Lnad e \ / fWeb / ~ IDatabase | .~
\ HTTP server application -~ T
/ \\ server | 7
W -
| W / Node 2 Node 5 / L MNode &
\ = o 5 5 fication S5L= Secure sockets layer
& L) . szr:'er TSL= Transport layer security
Chenit 3 i ~— HTTP = Hypertext transfer protocol

Node 6 WAS = Web application server
SAN = Storage area network

S L A S

Client Internet Firawall LAN Edge Firewall LAN WAS Data SAN
Figure 3
A three-tier server configuration for a Web-based application and its RBD

I

That the connection to system architecture is albger can be seen at the
bottom part of the diagram where the componentsiwad in a request are
drawn in sequential order. It is important to realihat ALL of these
components need to be available TOGETHER to aclseree defined
degree of availability. This in turn means that évailability of each

component (or tier) needs to be higher than thgetad overall
availability.

Above the request chain the diagram shows how caoeis are
redundantly implemented and organized as tiersvaheus ways of
doing so are represented in the diagram below:

(B&B)[|(B&BY]| ...
(OR mixed with AND)

More
machines Silent
__ ilen
== more . High- :
failure B 'gh- (passive
reliability back
(individual) machine) backup
A B E:
D
(SPOF
c 0.9999
A B SPOF 0.99 E

Request: ALL tiers
must be available
(-LAND")

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 182 03/12/2010

Instead of talking about “and” and “or” we can als® the terms “serial
availability” and “parallel availability” accordintp [Scadden]

Serial chain of ALL needed components: multiplying avai labilities
gives less overall availability or: the more chain members the higher
individual availability needs to be

N
Serial Availability = H ComponentAvailability ,
i=1

Redundant, parallel components where only ONE needs to be up:
multiply unavailabilities and subtract from 1.

Parallel Availability =
N
L= H (1 — ComponentAvailability;)

i=1

From: Scadden et.al.,
pg. 537

A number of observations follow:

1. If we add more machines we will experience nialleres One big
machine with an MTBP of 0.9999 is better than twwaler machines
with the same MTBF because we now have twice theah for failure.

2. In the architecture above component C with ialvgity of 0.99 will

limit the overall availability of the whole requgstocessing chain to 0.99
* Prest. And even if we could optimize the othemgmnents to zero
failure probability Amdabhls law states that ouritinvould be 0.99. In

other words: the weakest link determines overailability
3. Sometimes a single big and highly reliable maemight be beneficial.

We are using vertical scalability in this case dabsn a highly reliable
platform. Database Tiers frequently follow thistpat.

4. Passive standby can be used to achieve faigsresell. Watch out for
manual steps needed.

5. The redundant tier with B machines present8atailabilty solution
which means that one out of three machines camvftiibut disrupting
service guarantees. The formula calculates theghibty of more
machines failing. Often some wrong assumptionsreaée in this case: it
is assumed that the failure of one machine doebans an impact on
other machines. This is frequently not true becadiske effects of
utilization on reliability: Most components shovwmre unreliable
behaviour beyond a certain utilization level. Thegdam below shows the
increase in utilization that is caused by the cfstmachine B”. The load
is then distributed to machines B and B’ but ifshenachines are now
pushed beyond a certain utilization level our olenaailability will go
down.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 183 03/12/2010

: 1/3 tier redundany with p
p 2, o Nj Y Nek pqy being a function of k due to
- Z (/ ' capacity increase

Normal Normal Normal
Capacity Capacity Capacity

This is the reason why 1/2 redundant configuratmisidrange machines
frequently show a very low utilization of no mohah 20% to avoid
getting into the “red” zone in case of crashes.

Bailey et. Al. also discuss the concept of fail oaed define it as follows:
- switch over to redundant system

- preserve lock state

- roll back lost work.

“The difference in solution availability comes dowanthe shape of the
probability distribution of the lock holding timk.turns out that on
failover there is no perceived outage most of itme t However, because
there is always a finite probability of a long farer due to long lock
holding time in all of these schemes, individualeavailability is key to
keeping down the probability of a long failovertighter distribution
around a fast average failover will also drive deaility higher.” [BSLT]
pg. 587

Failover will be discussed in detail in the sectionJ2EE clustering.

With Failure Tree Analysis (FTA) the third methodgy presented gets
even closer and deeper into the architecture ofystem: FTA assigns
Boolean symbols to all connections between compsnghich express
AND or OR effects on availability.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 184 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 185

Web site down

OR gate

[WaN down [Hosting Web server down
infrastructure down

AND gate

Software failure

7 Firewall
failure

BT line
s, down

/" Switch
, failure

/Hw

OR gate

" was fios. .\
- '-Apphcat\on

allocated less
than 1GB RAM

[Application code |
failure

INHIBIT gate

WAS = Web application server
05 = Operating system p S

H/W = Hardware / Batch /'y

RAM = Random access memory cleanup >D usekrs

WAN = Wide-area network failed 100
BT = BT Group plc -

Figure 2
Fault tree for Web-based system

We can reproduce part of our RBD model from abeva BTM as shown
in the diagram below:

service down

WAS
Tier
down

The value of FTA and FTM is not without questioss@ding to the
literature. Models seem to depend on individuaharg and can become
quite complex and crowded. Automatic analysis issgae but rather
demanding with respect to space.

<<link to critiques of FTM >>

Let us finish reliability engineering with a shdiscussion of reliability
and software. Much of the above comes from hardwavelopment and
relies heavily on reliability estimates. In casénafdware those number

03/12/2010

can be gathered from statistics and are there&dher reliable. But what
about the software part of system architectures® fids always been the
weak link, even in mainframe architectures as lesEnlmocumented e.g.
by K.Klink. Let's assume we are using a state-maelnased replication
technology between our server machines in the egapn server tier (see
below the discussion of PAXOS consensus protoctbilinva replicated log
in Chubby [Google]). What happens if the softwdgoathm has a bug?
The state-machine approach will replicate the buglbmachines
involved and crash each and every one of themniai effect once led
to the destruction of an Ariane V rocket becausgebiiggy software killed
the backup hardware component just as quickly. @feyulti-language,
multi-hardware designs were considered long agsearaeans to fight
individual software bugs. The theory was that dédfé languages and
designs used would prevent all replicated instan€assolution from
failing at the same time. There seems to be quii¢ @ folklore involved
as has been demonstrated by Tichy who performedrieai@nalysis of
software development: He was able to show that witstese replicated
software components still had the problems at éimeesspots in the source
code and could not prevent crashes of the wholesygTichy].

Stochastic Availability Analysis

[STTA] W.E.Smith, Availability analysis of bladerser systems (Markov
Models, Semi Markov Processes, Generative Markodé\&) state-space
modeling approach

<<self management, fitting of long tail function>>

Guerilla Capacity Planning

<<see also John Allspaw, Capacity Planning, oreilly
Integrate slide set>>

One unique Guerrilla tool is Virtual Load Testirlggsed on Dr. Gunther's
"Universal Law of Computational Scaling”, which gides a highly cost-
effective method for assessing application scatgbNeil Gunther, M.Sc.,
Ph.D. is an internationally recognized computertegsperformance
consultant who founded Performance Dynamics Compah994.

Some reasons why you should understand this law:

1. A lot of people use the term "scalability” witihalearly defining it, let
alone defining it quantitatively. Computer systeralability must be
quantified. If you can't quantify it, you can't gaatee it. The universal
law of computational scaling provides that quanétion.

2. One the greatest impediments to applying quegugieory models
(whether analytic or simulation) is the inscrutitylof service times within
an application. Every queueing facility in a perftance model requires a
service time as an input parameter. No service,tmeegueue. Without the
appropriate queues in the model, system performaretecs like

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 186 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 187

throughtput and response time, cannot be predicid.universal law of
computational scaling leapfrogs this entire probleynNOT requiring
ANY low-level service time measurements as inputs.

The universal scalability model is a single equatxpressed in terms of
two parameters andg. The relative capacity C(N) is a normalized
throughput given by:

C(N)=N/(1+aN+pN(N-1))
where N represents either:

1. (Software Scalability) the number of users adigenerators on a fixed
hardware configuration. In this case, the numbeusdrs acts as the
independent variable while the CPU configuratiomegns constant for
the range of user load measurements.

2. (Hardware Scalability) the number of physicabgessors or nodes in
the hardware configuration. In this case, the nundfeuser processes
executing per CPU (say 10) is assumed to be the $anevery added
CPU. Therefore, on a 4 CPU platform you would r@wétual users.

with “a' (alpha) the contention parameter, antl (beta) the coherency-
delay parameter.

This model has wide-spread applicability, including

* Accounts for such effects as VM thrashingl eache-miss latencies.

* Can also be used to model disk arrays, SANd,multicore
processors.

* Can also be used to model certain types ofagk 1/0

* The user-load form is the most common appbeceof egn.

* Can be used in combination with measuremaoitlike LoadRunner,
Benchmark Factory, etc. [geekr]

The following slides are taken from the Guerillgp@eity Planning Guide
by [Gunther]

Concurreny and Coherence

Concurrency effect:

03/12/2010

Single processor execution time
T
1

parallel

>

Time
reduction

e |

Fig. 4.4. Ideal parallelism. The uniprocessor execution tine T4 is reduced to T /p
by equipartitioning the workload across p physical processors

Contention effect: it is really the size of theiakpart of a
computation that limits speedup and scalability.

Single processor execution time
T
1

| parallel

h
LT

- Smallgr
reduction

serial

Fig. 4.5. Amdahl's law recognizes that ideal parallelism (Fig. 4.4) cannot be
achieved in general because there are certain portions of the workload that can

only be executed sequentially (gray). That aggregate portion of the total execution
time is called the serial fraction

This has a profound impact on response times inléprocessor
setup:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 188 03/12/2010

The impact of multiuser scaleup on response time is shown in Fig. 4.7.

Per user response time
T
—> <—

uniprocessor

)

multiprocessor

H_)

Serial latency due to
(p - 1) processors

Fig. 4.7. The effect of multiuser scaleup is to stretch the response time in proportion
to the nmimber of physical processors

Actually this should be true in a single processiup as well:
adding more threads creates an increase in sdiwieevhich
again increases residence time (response time).

Added coherence effect (universal scalability law)

Per user response time
T
— <—

uniprocessor Coherency delay
between p(p - 1)

' processors

multiprocessor m

_Y_J

Serial latency due
to (p - 1) processors

Fig. 4.8. Multiuser scaleup showing the per-user response time growing linearly with
the number of processors due to serial delays (cf. Fig. 4.7), and the additional, but
smaller, coherency delays increasing quadratically due to point-to-point exchanges

between processors

R.Smith mentions another contributor to cohereffileets and
calls it the O(N) Serial Bottleneck [Smith]: It detbes the effect
that a growing number of threads extends the tipeatsin serial
sections of the code. This is e.g. caused by dlgos within

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 189 03/12/2010

critical sections which operate on the number cfdlds in
collections. The more threads the more time is tsipea critical
section. Event thread-packages seem to show O(Nvi in the
number of threads [vonBehren]

The resulting graph which shows a clear maximuncivianould
not be visible with the original law by Amdahl:
4.4 Umversal Scalability Model 59

c(p)
12,

10

20 40 60 80 100 P

Fig. 4.9. Universal scalability characteristic (solid) compared with Amdahl scaling
(dashed), which corresponds to a coherency value of 5 = 0 in (4.31). A key feature of
universal scaling is that a maximum can develop (here located at p* = 25) depending
on the values of ¢ and x in (4.33). Comparison with Fig. 4.1 shows that although
the system does not fail beyvond p*, its available capacity can degrade significantly

Calculation of contention and coherence parameters
The parameters of the universal scalability functontrol the
shape of the curve and therefore contention andreoke effects.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 190 03/12/2010

contention
coherence

The procedure to calculate those parameters isideddy
Gunther as follows:

The procedural steps for the calculation of o and x and C(p) are as follows:

f—

Measure the throughput X (p) for a set of processor configurations p.
Preferably include an X (1) measurement and at least four or five other
data points.

Calculate the capacity ratio C'(p) defined in (5.2) (Sect. 5.4).
Calculate the efficiency C'/p, and its inverse p/C (Fig. 5.3).

Calculate the deviation from linearity (Sect. 5.5.2).

Perform regression analysis on this deviation data to caleculate the

[

o

quadratic equation coeflicients a, b, ¢ (Sect. 5.5).

Use these coefficients a, b, ¢ to calculate the scalability parameters o, &

(Sect. 5.6.2).

8. Use the values of o, x to calculate the processor configuration p* where
the maximum in the predicted scalability occurs—even though it may

=~

be a theoretical configuration (Sect. 5.6.3). p* is defined by (4.33) in
Chap. 4.

9. Use o and & to predict the complete scalability function C'(p) over the
full range of p processor configurations (Fig. 5.7).

The generation of test data is necessary from wihieHiollowing
ratios can be calculated and later be used foessgn analysis:
(from Gunther)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 191 03/12/2010

Measured KRays/5ec RelCap Efficiency Inverse Linearity Deviatio

CPU (p) X(p) C=X(p)/X(1) C/p p/C p1 (p/C)-
1 20 1.00 1.00 1.00 0 0.00
4 78 3.90 0.98 1.03 3 0.03
8 130 6.50 0.81 1.23 T 0.23
12 170 8.50 0.71 1.41 11 0.4
16 190 9.50 0.59 1.68 15 0.68

20 200 10.00 0.50 2.00 13 1.00
24 210 10.50 0.44 2.29 23 T.29
28 230 11.50 0.41 2.43 27 1.43
32 260 13.00 0.41 2.46 31 1.46
48 280 14.00 0.29 3.43 47 2.43
64 310 13.50 0.24 4.13 63 3.13

Fig. 5.3. Example spreadsheet including the normalized capacity, efliciency,
linear deviation calculations

. p
(p) = - —— —
1@@— 1) +@mp— 1)

contention coherence

y =az’+br+c

For regression analyis. Determining a
and b will allow us to calculate the
theoretical maximum of capacity.

The final result is a curve that can be overlayeel the test
values. Gunther points out some very important @rigs of the
universal scalability formula and its parameters:

- both parameters have a physical interpretationcandell
something about the concrete architecture

- The calculation of the theoretical maximum of aaaty
curve avoids premature false peak assumptionshemefore

hardware costs
- Differences between measured and calculates vahurebe
an indicator for problems in certain configurations

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 192 03/12/2010

KRays per Second

———-Modeled

€ Measured

O | TR (R | T 1T 1T T T 71 L
0 4 8 12 16 20 24 28 32 36 40 44 48 5

Processors (p)

Client Distribution over Day/Week/Year

Simulation

2

56 60 64

Queuing theory quickly becomes extremely complek ram longer
analytically solvable in case of multiple queuestehogeneous hardware
and non-exponential distributions. Here the onlytson is to simply
create empirical data, let them flow through a nhadel look at the

results.

The simulation approaches | found were basicallgehevent-advance,

unit time and activity based.

An example of an activity based simulation design be found by
[Perros]. Activity based simulation uses processesodel a system and
according to Perros the method excels when sinmglatystems with

complex interactive processing patterns.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 193

03/12/2010

ST,

- i 1
WT, ' T
e 1 i - 1
| s Eanl |
1 1 I
1 AT. 1 1
L i+l 1 - 1
[1 -1 1
| | |]
1 1 | 1
ay S 4 a9 s+ ST,
ith ith arrival (i+1)st ith arrival
arrival begins its arrival ends its
service service

From H.Perros, pg 94 ff. Arrival time can be during WTi,
during STi or when the processor is idle.

The diagram below shows how the values for the medming request
can be calculated:

Initial Empty system

conditions WI=ST=0,TW=0

©

¥

Generate
AT

Next arrival
occurs when
server is idle

¥

q‘ Generate
ST

Next arrival occurs

[when current arrival

is either waiting or
is in service

TW = AT

Generate
ST

i

®

From H.Perros, pg 96 ff. Activity based simulation design of a single
server queue

Event-advance simulations can simulate many dagpefations within a
few hours by always advancing to the next possfént. This type of
discrete event simulation is described in [Pravanjgether with a list of
DES tools.

Tools for statistical analysis, queuing models and
simulation

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 194 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 195

o (]| 5

= (e Execution Tima [PMF)

maatsil 800
e

N a. |
Clenth (O. Dispatcher {.(O, S,

(] n
@— RequestProcessor {' (O Databate

Diagram taken from the Palladio Component Model
http://sdgweb.ipd.uka.de/wiki/Palladio_Component ddio

A modelling and simulation package based on GEF/ESpecially suited
for performance simulations.

PDQ Pretty Damn Quick. Open-source queueing modeler.
Supporting textbook with examples (Gunther 2005a)
www.perfdynamics.com/Tools/PDQ.html

R Open source statistical analysis package.
Uses the S command-processing language.
Capabilities far exceed Excel (Holtman 2004).
Www.r-project.org

SimPy Open-source discrete-event simulator
Uses Python as the simulation programming language.
simpy.sourceforge.net

Example for an analysis of infrastructure based®vrice and architecture

templates:
http://storagenojo.conf 2009/ 02/ 05/ bayesi an- anal ysi s-of -i t-
infrastructure

Vensim 5.9 Available

Vensim 5.9 now supports date labeling on graphsratite Table tool.
This ability makes it easier to present resuligdople who are not
comfortable with decimal values for time. You camfat the date by
specifying a format string that allows dates toesgypn such forms

as 2009-04-09, 2009Q2, Mon Jan 1, or, for elapsed, as 12:35:22.3
in hours, minutes and seconds. Date labeling imwaidable with PLE
or PLE Plus. To see details on other changes agdixes see:

http://www.vensim.com/new.html

03/12/2010

2009 System Dynamics Conference July 26-30

The 2009 System Dynamics Conference will be heldliouquerque New
Mexico USA. It should be a fun event, do consideraling. See

http://www.systemdynamics.org/conferences/current

Forums for Software and System Dynamics Discussion

If you have questions about Vensim or need supparsing it the
place to go is the Vensim forum at

http://ventanasystems.co.uk/forum/

Architectural Principles and Metrics

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 196

Here we are going to discuss “lessons learned” fraodelling and
simulation for the design and operation of largalssystems.
Architectural principles will help us to avoid bettecks and
inefficiencies. Metrics will tell us when and wiatanges are needed to
our system.

Architectural Principles
- avoid multi-queue service design without mechanigms
balance load further
- use small granularities for job sizes to allow balag and
uniform service times (small variance)
- track availability of service stations in multittieequest
paths closely and dynamically re-arrange requestoeus of one
station is out
- put limits on input request numbers
- avoid resource locking per request, use asynchsnou
request handling but respect the limits set
- use self-balancing mechanisms if possible instéaenote
adjustments by meta-data collected
- put measurement points at input and output locatadn
service stations

Metrics
What are the core metrics we are interested in?g¥game
averages here).
- arrival and service rates, service times
- change over time (trends) in those values
- customer timeout/cancel rate (useless computadita) r
- contention and cohesion values and trends
- service station up

03/12/2010

Which of these metrics do we need in real-time@ther words:
which of those metrics can be used for immediatssibly
automated action? How is this handled in Cloud Qaimpg?

Changes in Perspective
<<what is essential for request construction? >>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 197 03/12/2010

Part V. System Components

System Components for Distributed Media
In this part of the book we are working out way ddnom complete sites to
individual components used to scale across larg&eus of requests and with a
decent response time. The first chapter explas#uses of latency and how to
fight them. The following chapters go into detafscaching, replication and
prediction as techniques for scalability. Muchhese chapters is based on my
own (bad) experiences from large scale portalsitednet sites and | also draw
heavily on wisdom collected by Todd Hoff, David feason, Nati Shalom and
David Prittchet.

Component Interaction and Hierarchy

Latency, Responsiveness and Distribution Architectu re
Low latency is not only important for shop-like dipptions as Todd Hoff
points out in “latency is everywhere and it cosis gales - how to crush
it” [Hoff] where the reader can find lots of pointeto other latency related
resources. Social networks with their focus onatmration and multi-
media may be free

b
Data Analysis and Request Processing Applications
APls
Fragment handler ol
Load balancer
Memory cache Queue
IP service relocator
Log Service
Keylvalue store o) Membership service
Notification Service
Distributed file system Locking service Failure detector

Map reduce Consistent hashing Consensus algor. | |Optimistic repl.

ut users still won't tolerate long waiting times fbeir requests. To get a

grip on latency we will discuss the following togic
- what is latency?

- How does latency develop?

- What causes latency?

- What can be done against it?

No, latency is not bandwidth (even though it hagnéeresting relation
with it). Let’s just define latency as the waitingne experienced after

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 198 03/12/2010

sending a request until the response arrives amtbeaiewed or
processed. Bandwidth decides how much data webwiéible to send or
receive in a certain time. Latency decides howastvill get a (perhaps
rather small) response. An increase in bandwid#sdwt improve latency
but the opposite is usually true. Latency seentseta problem that
plagues especially websites since practically bugeis also extremely
critical in online games, virtual worlds and real multimedia

entertainment or collaborative and highly intenaeites.
And finally and from past experience: latency isyeard to reduce once a

problem is detected (and unfortunately latency lemols get detected
rather late in projects). Also, latency is a spleana overall view of the
behaviour of a system: From a latency point of vimany decisions made

within collaborating systems finally result in goodbad response times.
How does scaling affect latency? The usual expeeénthat with more

users/requests etc. the individual latency gets&@ometimes event
resulting in a system crash through overload.

differentiate bandwidth from latency
- compare with the effects of sharding

How does latency develop (compared to capacityoamdiwidth)?

Todeslisten

Erste Listen mit

\ | Zahlungsunfahigen

\ r“ Unternehmen erscheinen

Steigende Bedeutung des Internets
Das Internet wird kontinuierlich popularer und
Unternehmen erzielen Rekordaktienkurse

1. Generation Internet Platzen der Dotcom-Blase

Wurde zu Beginn \
iberwiegend als \
Experimentierfeld und \

P

Der tiberbewertete Internetmarkt
/ bricht ein und viele Unternehmen
[gehen in die Insolvenz

weniger kommerziell \ \ / /' Web2.0

genutzt A \ // Die neue Generation des
‘\ / Internets von 2001 bis heute
\ \ / // entsteht
....... > \5 /’ >
"""" AESEERE . 7 g
/ | \‘ \ \
1990 /| | 2000 | | 2010
ebseitengrofie / / \\ \\EChévChrv]‘ittlic,r;)
Durchschnittlich / |
14 kbyte ’» \‘ st 93.7 kbyte \

768 kbit/s \| Durchschnittlich

| \
|
5 312 kbyti
Modem / \ Ubertragungsrate \ vie
Uberwiegend mit 14.4 kbit/s \ SDN DSL
Maximum 56 kbit/s Ubertragungsraten ?13 zu 16000 kbit/s
von bis zu 64kbit/s Ubertragungsrate

The slide from Till Issler [Issler] shows the gréwdf pages over 20 years.
Users expect much more content than before aa#eta lot of punch on
the server side to assemble it dynamically frorfed#nt sources. David
Patterson compared the development of bandwidth tivé development
of latency in four major areas (disk, memory, @&RU) roughly over 20
years and came to the interesting conclusion gtahty permanently lags
behind bandwidth (and capacity).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 199 03/12/2010

Latency Lags Bandwidth (last ~20 years)

10000

Note:
Processor Biggest,
Memory Smallest

1000

+ Performance Milestones

e Processor: ‘286, ‘386, ‘486,
Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

Disk e Ethernet: 10Mb, 100Mb,
lOOOMb, 10000 Mb/s (16x,1000x)

 Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,

(Latency improvement DDR SDRAM (4x,120%)

= Bandwidth improvement)
| e Disk : 3600, 5400, 7200,

1 10 100

From: Relative Latency Improvement 10000, 15000 RPM (x 1434

D.Patterson (latency = simple operation w/o contention
BW = best-case)

Processor

Netw ork

Relative
BW
100
Improve

ment

Memory

10

1

He also give some hints about improving latencyclwhie will discuss
shortly but the most important statement for desigrmnd architects is
that they should design for latency and not assuméamental decreases
in latency in the near future. According to Patterthe reasons for latency
improvements lagging behind are that chip technokegems to help
bandwidth more (pins, number of transistors), dis¢éaimitations (speed
of light), better marketing of bandwidth improvenrthe queuing
networks of todays web sites which help bandwidthdelay requests,
operating system scheduling and algorithms whigbdathroughput over

small setup times. .
What causes latency? When we follow a request ftestart till a

response is received and processed we noticeatieaicly is caused by the
many little delays and processing or transmissioeg of our request
across many systems and system levels. A systémtaceles a context
switch to kernel mode and afterwards data are ddpaen user to kernel
buffers. Later the kernel creates a write requasafnetwork device e.g.
and the data are copied onto the wire. There tteeata transmitted at a
certain speed. Repeaters and other intermedi&eproxies, switches etc.
cause further delays and processing times. Fiaalllye target server our
request is received and buffered. After a whil@gplication receives a
notification, changes to running mode and procesgesequest. The more
threads or processes are busy processing othexstsghe more delays
e.g. through context switching times our requesitexperience. Perhaps
it needs data from backend storage systems whiktlkause further
delays. And then the same things happen on itshaeak to where it

%Q%U%[geyotlheory tells us that we need to calculaestim of all residence
times in the queuing network and together withgnaission and
propagation times it becomes clear that the lotigeeservice chain is the
bigger the latency will get. And every componerat tthows especially
low performance adds to it without others compengdor it.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 200 03/12/2010

If we look at a single processing step we noticaething else: Most
processing of a request shows three different ghaséalization or ramp
up phase, processing phase, settle down phasdirgtrend the last are
independent of the size of our request. They aezlftosts that apply even
for a single byte. To adjust for those costs erggiméend to create wider
data path or higher bandwidth connections so tltaerdata can be

transmitted or processed for the same fixed costs.
What can be done to reduce latency? From what stesaid follows that

many small requests are rather inefficient. Wedbdtatch requests or
transmitt larger amounts of data and the same fgoelksk and memory
page size. Fine-grained RPC methods as have bednruslassic
distributed programming models like CORBA, DCOM.etdl

experience a lot of latency for little data. It doet come as a big surprise
that the web programming model is document cenmittic a larger

granularity of requests. _ _
Caching and replication have been mentionen irt¢Psatn] as well and

from past experience | can say that they are a rmakesak issue for web
sites or portals. It is mandatory to shorten tlopiest path by placing data
as close to the consumer as possible. Even DN&ijpsoghould no have to
travel far. Prediction is also an interesting tegha to cut down on
latency. Pre-fetching data is an example. Onlimaggfrequently
calculate player movements ahead and disconnectedserver data.
Once the data from the game server cluster havhedahe game client
the position is corrected — which leads sometimngarhpy movements of

the character. _ _
What else can we do on the server side or in theark? The chapter on

I/O discusses strategies for efficient and fasti&ndling. A key topic
here is to quickly notify applications on incomiregjuests. Avoidance of
context switches and other concurrency technigreediacussed there as

well.
Will partitioning of backend help to improve latgfcThis is not easy to

answer correctly. At the first glance partitionsgems to improve
bandwidth because it adds communication channels.réquest should
not get faster treatment just because of partitignBut what if there is a
gueue in front of the single system and it is dillgith requests? In this
case distributing the request to e.g. read-onkeslavill shorten latency.
This is only true of course if the service timegha systems are roughly

equal as we have seen in our chapter on queuingythe _
Now since we know what causes latency and whabeaitone to reduce it

we can go ahead and optimize all request pathosiirsystem from one
end to the other. Or we can ask another questisth Where exactly is
latency caused and how much of it is relevant calbto arms? We need a
good understanding of basic performance data &bkdisetworks, CPUSs,
memory etc. — this is what the chapter on hardwarebers was about.
But we need something else which is a real bummemeed to know the
timings between all components involved to find where the time is
lost. And this requires a complete instrumentatiball components. As
this is probably impossible to achieve we nee@as$tl to make sure that
our own software is completely instrumented withdstamps and
allocation/de-allocation counters (the latter postrack down
unresponsible behavior by software).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 201 03/12/2010

Should the timestamp data directly drive scalgbiiieasures like running
more virtual machines to process client requestsEsponsiveness of your
application is paramount to you this is probab@yoad idea but it comes at
substantial costs as we have seen: scale-out nesaa@ only effective if
there really is an exceptionally long queue of e=gs lined up at the
server and the latency is not in reality causedlby backend systems. In
this case having more front-end servers would beati at all. Quite the
opposite would be true: your overloaded backentksys would
experience even more requests/sec. and latencylwaarease for all
requests.

If you experience disappointing roundtrip timewili most likely mean
that you will have to go with a fine comb throudjie tomplete software
chain involved: Are there any bad serializatiomp®in your processing
software on the server side? You might run lothofads but what are
they really doing besides causing context switclowerhead? |1 once had
to track a performance problem in a large webfsite bank and it turned
out that nine out of ten threads were always wagiéinsome reflection call
within the Xalan subsystem needed to render thegagur code was
multi-platform enabled and did dynamic checks fteasions available
on each XSLT processor. Unfortunately the Xalarppebad thought that
looking up available extensions would not be agrenaince critical thing
and put a “synchronized” statement around. We \&ble to move the
checks to initialization time and shorten the refjuength considerably.

Later in this book we will cover many techniquesfusto cut down on
latency. Rather extreme ones like moving to “evalhyiconsistent”
algorithms which means giving up consistency fargle — or simpler
ones like using a content delivery network. Thdieas on 1/0O and
concurrency also provide ample opportunities taicedthe response time
of requests by using more parallelism. But aga@fole you install an
Infiniband network and scale up to x-core CPUsdte with TCP and
kernel settings etc. — make sure your measuremesity indicate that
there is a problem.

<<todd Jobson, The many flavors of system lateratgng the critical
path of peak performance>>

According to Werner Vogels, CTO at amazon, the camypenforces
rather strict SLAs for requests: The 99.9 or 9%88entile of a certain
request type have finish within a defined time.sTleiads us quickly to a
core part of architecture related to latency: tteagon of a distribution
architecture. This can be as simple as a spreddsitbaletailed
information on all our information sources and tegpective protocol,
responsible person, uptime range, average and sloes&ponses, variance
In runtimes, percentiles at certain times, secusgyes etc.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 202 03/12/2010

Distribution Architecture

Source | Protocol | Port | Avg. Worst Down- Load- | Security Contact/
Resp. | Resp. | times bal. SLA

News hostX http/xml | 300 | 100ms | 6 sec. 17.00- client plain Mrs.XIN
0 17.20 ews-
SLA

Research | hostY RMI 80 50ms 500ms. | 0.00- server | SSL Mr.Y/res
1.00 -SLA

Quotes hostZ Corba/ 808 | 40ms 25sec. | Ev.Monday | Client | plain Mr.Z/qu
IDL 0 1 hour otes-
SLA

Personal | hostW | JDBC 700 | 30ms 70ms 2 times server | Oracle Mrs.W/p

0 Per week JDBC dr. | ers-SLA

Also add percentiles and variance for request times

Adaptations to media
Media — due to their size and timing requiremendsive even local
processing systems to the limit. Media processangss different systems
needs adaptations on all involved parts of thostiduted systems: on the
archive, producer, delivery and receiver components
Just finding and retrieving media content requggscial archive
technology, organized in several processing anagéolayers with
frequently needed content in high-speed tempotarage and all the long
term content in inexpensive tape libraries. Mettadeie used to tag any
content so it can be found later again. What méhkeslelivery side
especially critical is the fact that in many cagtesrequester is a human
being and not a machine which means that the ongather and deliver
media is very much limited: it is the so calleduest time and all
activities necessary to fulfill a users requestehvhappen during this
time. Caching and replication are typical adaptetim distributed systems
to deal with limited request times. We add repiaraespecially for high-
availability. Luckily in many cases with media ag anain concern we are
not subject to the extreme requirements for bothlability as well as

consistency as would be the case in an airporraawver. [Birman]
On the recéiver side important adaptations for meade bufrering and

compensation algorithms which are able to compersagll problems in
the real-time delivery process. We will see a mixample of

compensation in audio streams across networks.
The adaptations necessary on the producer or @iogeside are in many

cases what compute GRIDs or clusters (a cluseemsre homogeneous,
in-house version of a GRID) can provide: ad-hoc looration of compute
resources to perform e.g. rendering or image pedeg®f media or to
find and server media content in close to real-tiashion. Parallelization
Is one adaptation that allows e.g. parallel remdgeof different frames for
a computer animation.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 203 03/12/2010

Perhaps the most important concept of adaptatipari#tioning.
Partitioning simply means splitting scarce resosiioea way that allows
parallel access or parallel processing. Partitipiéads to independence
between resources and those resources can thenrsbgbendently of
each other, e.g. run on different servers. Paniitigp can also mean to split
complex media into fragments which can be recontbint® new media
containers. This way some media like complex homgepan portal
architectures can be composed for every user ifieaaght way -
personalized but from a limited number of fragmeRtagments on the
other hand require a proper information and distidn architecture to

work and so does caching. n o
The downside to partitioning is that it is sometawesible on the

application level. E.g. when changing a world onem a MMOG is done
by a transfer to a different server which is vieitd the player. Or when
users need to explicitly log in at specific serverget to specific parts of a
virtual world. Partitionings are just as heavilgalissed as the principle of
transparency in distributed systems. Some middlevarcluster
computing e.qg. tries to offer very fine-grained anaiall areas for
application objects within servers (e.g. the opmree game engine
DarkStar, others do a coarse grained separatiantwin onto different
servers and have no way to deal with overcrowdeggaithin one

server.
The following diagram shows partitioning on middbeee, application and

user level. Ideally the middleware would be abl&amsparently relocate
zones across machines, split zones and add moregp@GREr to each etc.
But in many cases there are other limitations dklike the maximum
number of avatars that can be displayed withinreairearea so that users
can still play.

2@” @%\E

Game Application

Middleware

— = =

p— Zone —

Clever partitioning of the main resources in ardbsted computing
application saves a lot of time and money and l¢éawdgell performing
applications. A distributed system with many diéfiet resources and users
is currently unable to promise a complete, trarespaaind consistent

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 204 03/12/2010

replication of all changes to every user. We cdneae this for special
cases and limited sizes but it is not possibleheridrge scale.

Content Delivery Networks (CDN)
Replication is also a key concept in serving medistent. Many
successful online games of a large number of sesit into several data
centers worldwide (see below). Online services Wiexpect lots of
requests replicate the services across a numlyeaciiines and put a load-

balancing infrastructure in front of the servers.
An important aspect of adaptation on the produceseader side is the

question of connections and state required to ssyagent. Protocols
which require a permanent connection between coesand producer
will block precious server side resources for ateesed period of time
and do not scale well. This is one of the lessamied from http. On the
other hand those protocols must still be ableltimasession state or

resource sharing.
Adaptation of the delivery component knows différethniques. They

range from a change in media size (compressioreraklevels of quality)
to changes in the topology (multi-sender) to intemsise of edge caching
machines. Special network protocols like multi-azst be used where
available (like for company internal TV). The udestreaming technology
is also a way to control the delivery componentilé/b.g. an FTP server
will — given enough requests — completely satuaatetwork channel, a
streaming server will restrict network input at ttanfigured level to avoid
saturation.

Edge caching is another approach to take load thendelivery
component by getting the content closer to the waores. Companies use
edge caching technology e.g. from Akamai or Groagk® when a larger

audience is expected for webcasts etc.
The streaming of popular concerts or other evakestebcasts to a large

audience requires a huge amount of bandwidth ateheer side as well as
a high-availability infrastructure to ensure worlde/ uncompromised
reception of content.

But even without real multimedia content the segwih pages and images
to many users stresses a companies infrastru¢tarehis reason edge
caching networks like Akamai oder Groovy Gecko hdeeeloped. The
transport content to the “edge” of the internet, closer to the final
consumers. And at the same time the distributioctoatent ensures the
scalability of events. Many companies have beegluay the so called
Slashdot effect — being mentioned at Slashdot.camsed flash crowds —
large numbers of users accessing the companytsite aame time. The
same goes for product announcements. Edge cacbingrks ensure
enough bandwidth for an estimated number of users.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 205 03/12/2010

Content generation HEEIEEE mmm High-speed

connection

=
—_— Slow
— > connection
{dial-up)

wiww.Col234. com

Cache replication

Caching
appliance

Caching appliance Caching appliance

Content delivery
on the edge

Caching
appliances

This diagram is taken from Marc Mulzer [Mulz] anélsdribes the
replication of content across several layers oheacWhile this will
reduce the stress on the main server machined gignificantly increase
the managing efforts needed to keep those caclhebm®nized. A typical
problem for those architectures is a sudden anaitapt change of
content which is not completely replicated to cacke that some caches
will deliver outdated content even after a longeet Distributed caches
require cache invalidation protocols and in extreases voting protocols

for global commit. _ _
Google recently developed a new tool “WhyHigh” whigas used to

clarify a strange effect in CDN behaviour. Accoglio google some
clients which were closely located together andciWhvere routed
correctly to the same CDN server nevertheless adfeonsiderably
different round-trip-times. The research paper dmyWigh found
inefficient routing (loops) and queueing delay®&responsible for those
effects. It turns out that simply assuming thatCNGwill create equal user

experiences is wrong. [IKrishnan] et.al.
Underestimating the role of caching for high-pearfance sites is THE

major reason for unsuccessful web projects. Weaamithe back to this
topic when we discuss media fragments and perzatialn.

Especially interesting are currently attempts t® asnore peer-to-peer
like architecture for delivery of video on demaiitie British BBC e.g. is
trying an architecture where many different nodms serve partial content
to a consumer. The content bits and pieces areesdied at the receiver.
This avoids the typical server side bottleneckidée on demand where a
server cannot deliver all content through

HA-Service Distributor

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 206

<<Whackamole, spread based>>

03/12/2010

| am following Theo Schlossnagles concept of sépayavailability from
load balancing. This separation allows us to retzegas very different
services which can be implemented in a different than the usual
centrally placed load balancer/HA unit with hotrsthy.

What do we want to achieve?

- We want to prevent IP addresses known to clienssitinenly
disappear because a server went down.

- We do NOT need transparent failover for reasonawe
discussed in the clustering section above.

- We want to prevent requests being sent to “deadtshand
hanging a long time — in other words we want imragglinformation on
unavailable servers to prevent request stalls.

- And we want this to happen automatically withouton
intervention.

- And on top of this we want this to be an inexpeasulution
without having lots of specialized boxes with exgea stand-by units
hanging around at every tier in our architecture.

And we can further split our component into a plaat deals with IP
services and how a host can service an additiéhatiiress and a part that
deals with failure detection and reaching conseabosit a new, valid
configuration of participating hosts. The latteusds very generic and
potentially useful for other services like replioat locking etc. That's

why we will handle this generic service later andhtit into a platform
service for all kinds of other vital functions (deelow also the section on
component hierarchy and dependencies).

A good description of Whackamole, a peer-based-aighlability
component can be found in the mod_backhand desgrifgchlossnagle].
The mechanism differs significantly from virtual bsed load
balancer/HA units which offer only one virtual & d¢lients and distribute
the requests internally. A peer-based HA solutamks like in the diagram
below:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 207 03/12/2010

Hostname = foo.com Config: real IP 1,2,3.4 =

IP alias :1.2.3.4
1.2.35 Se\’r‘(/ee? L |Wack
1.2.3.6 isi
Decisions
1237 on which
Web Wack. server
Server 2
NS takes
which IP.
_ Server Web
€ Wack.
Server 3 Distributi
on of ARP
Web info.
Server 4 e g
ROUter / \
Arp
spoofing Takesdol\/:r
in case secon
of IP
change

Two critical points are updating the ARP informatia other servers
when an IP address has changed to a different Tioistcan be done either
via ARP spoofing or by distributing ARP informatioegularly to other
hosts on the same subnet via Wackamole.

SSL Certificates in SSL connections are problemadiwell as there is a
binding between servers IP and the name of thecgeirvthe certificate
and a whole bunch of certificates will be neededoier based HA:

Every service that works stateless or mostly stagelvith some state held
in a global store e.g. can be rather easily madeviiA peer-based
methods. Having more than just two-machine faildweps also because
it allows a machine to take over more responsikgdit\Wackamole
supports heterogeneous hardware but if a machkes taer
responsibility for another IP it needs to be ablsupport its services as
well which puts a damper on heterogeneity of coAsel. can we really
achieve n-1 failover with peer-based methods? N+his case is only a
theoretical value. We simply cannot fold n-1 loads the one remaining
server.

Distributed Load Balancers
<<Mod backhand,>>
The decision to assume responsibility for an IPr@sklis much easier than
a decision to route a request to a certain serespecially if load
balancing and failover are independent servicdabatfailover does not
determine who will finally handle the request. Andt like in the high-
availability service above we can split the seriicevo components: one
part dealing with the replication of server statstcross machines so that
every server can see them. And another part deaiiigthe execution of
decision functions. These functions (in the diapetow designated with
F) operate on the replicated server statisticstignit distribute the load
evenly.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 208 03/12/2010

The mechanism works like that: there is a configaneof request types
which tells which request should be load balana¥dss servers. In case
of such a request a series of functions will becated. The functions
calculate a decision according to CPU load or tmalver of requests
waiting or other parameters. Some functions implarpeeferences like
handling a request on the receiving server. Orgsrer has been
determined the request will either be re-directethat server or an apache
child process uses an existing connection frommmection pool to proxy
the request to another server. The latter is neffastice in most cases
because it forces the first server to still deahvie request by routing
data back and forth. Ideally the decision is thatgerver who received the
request originally will handle it as well.

Some things complicate load balancing enormousanynweb requests
are short lived (< 1 sec) and there is some overiregeplicating server
statistics at a much finer granularity. A group coomication protocol
based on multicast though can update a small nuoftssrvers many
thousand times per second — if no disk accessedate([Birman]). We
can probably use just about the same as for thevéaiservice above.

Another problem is the weak prediction quality afgmeters like CPU
load. They can change so fast that they can beaedirmast meaningless.
Queue information is probably a much more usefuhmpeter. And finally
there is a chance for request thrasing when sestaiisre-directing
requests to each other. Or requests circulatinfgesig between servers.

The functions can also access request parametidedect re-directions.
What can help to make load balancing easier? Syaogtrolled request

types and their behavior e.g. like in the SLAs ofidzon. Once we know
exactly that 99.9% of a request type will finishnio longer than 2 seconds
we can start calculating service times much bettaiform hardware will
also make calculations easier.

Load balancing configuration: Server stats: CPU, requsts, mem,
. etc., replicated in shmem's
Evaluator functions access

server stats in shmem and
calculate result (own server 17
handles, redirect or proxying Web
of request) moderator | [Server Stat
Server 7 replication
child)IE|| shmem via
. multicast
Configured _
evaluator @ Proxying request
function [
shmem |
moderator
__ ,| Router
Redirect
to other

@ server

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 209 03/12/2010

But does it have to be a push mechanism to dis&ilmad? In the section
on special web servers below we will discuss a Ipagled solution.

Distributed Caching — not an Optimization
There is one mechanism of adaptation that is ugednbost all
components, from processing to consumption of meaident and this is
caching. And there is a big misconception arour@bibaching in
distributed systems, based on the saying that “atera optimization is
bad”. While this is frequently right in the casecaiching in distributed
systems it is absolutely the wrong approach: bexaashing in distributed
systems is NOT an optimization. It is an architeataore element at
several layers. And the proof for this statemesd In the fact that you
can’'t add caching afterwards to your distributedligation without major
changes. Just look at the well-know Struts arctutec without an API to
ask for a cached value there is no way to re-ysewdously calculated
value. Instead, one has to call the specific acmgen to get that value.

This was fixed in the later Portle APl (JSR 168). .
A design of a distributed media application tha¢slaot use all available

caching mechanism on the client side, network atetinediate level up
to several layers of caching within backend semachines will not work
at all. It will neither scale nor perform. Unfortately the possibility to use
those caching methods has to be reflected in thkcapion design or it
won't be possible. For developers relatively kneveaching the article
“Benchmark Results Show 400%-700% Increase In $&apabilities
with APC and Squid Cache” gives detailed numbersrgprovements
possible with caching.
[http://lwww.ilovebonnie.net/2009/07/14/benchmarkis-show-400-to-
700-percent-increase-in-server-capabilities-with-apd-squid-cache/]
Caching and Application Arcﬁitecture

Why is caching so much dependent on the applicatiohitecture?

There are a number of reasons:

1. Caching requires information on the content to dshed.

Can content be cached? This sounds like a stugstigun but in

many cases there are legal responsibilities agsdorith content

and customers might sue if being served with oettlatformation.
2. How long can or must content be cached? Can iga le
aspect, must a technical aspect. Both need to docompromise as
will be shown later.

3. What about personalized content? Every piece dietdn
served might be unique or more likely parts of igint be unique.
Does this mean we cannot cache at all? Should eatenpbntent

pieces (e.g. pages) with personalized content tieect?

4, What about security? Can we guarantee that the same
access control rules are in place for cached cthten

All these questions finally lead us to recognizat tihe information
architecture of an application drives caching guikses. The
information architecture can simply be a spreadsivéb detailed
information on each and every piece of contentooitent type that
is used within the application.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 210 03/12/2010

Information Architecture —
Lifecycle Aspects

Data / changed Time Personalization
by

Country Codes No (not often, No
reference data)

News Yes (aging only) No, but personal
selections

For every bit of
information you
must know how

long it is valid and

what invalidates i

Greeting No Yes

Message Yes (slowly aging) Yes

Stock quotes Yes (close to real- No, but personal
time) selections

Homepage Yes (message Yes (greeting etc.)
numbers, quotes)
Question: how
often?

Frequently we will recognize also that much of ¢cbeatent is
assembled from different bits and pieces of otloatent. Some of
these “fragments” are personal and secret, matiyeoh public.
We can simply go ahead and on every user requasitssembling
the fragments and building a new piece of conteit will be
delivered. This is OK but as we will notice faidyickly — it is
quite expensive with respect to performance (bd?u@nd
network). Why network performance as well? Becauwsaow
realize that those fragments are usually pullechfadl kinds of
backends over all kinds of protocols and with alids of quality-

of-service associated.
Caching Strategies

There is a wide variety of caching options andtsgigs and just
about the only one that will surely not work isgaore caching at
the start of the architecture. There is a chapténis book on client
side optimizations which includes caching as welfou are
unfamiliar with http/html level caching options tak look at the
servlet book from Jason Hunter or at the book ayhHi
Performance Web Sites.

When not to cache
Caching things makes no sense if there is no chifwatehe
cached value is used by anybody during the lifetiinthe
cache value. Stream-based multimedia data aracatyp
example. The chunks get processed sequentiallgtanidg

them within a cache just pollutes the cache foraason.
The distribution of values across a certain typass

important: a scale free distribution (followersitter?) is
certainly problematic to cache as only a minorityaues
will be used but at a high frequency [Henney]. Do yant

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 211 03/12/2010

to cache rare thumbnails? Wikipedia seems to hiffierent
caches for different types of content to preveriupog a
cache with information that has a low locality efarence.
What about realtime information like stock quot&siey
may be realtime but there is usually nothing tchiel
against caching them at least for a little whil@ §2conds).
In the worst case put a timestamp of the creatioa to the
values or graph so viewers can see how old vaksdb/r
are. This should never stop you from caching. dbett the
dumbest thing | ever did with respect to caching teanot
reject a business requirement for absolute reaksitmek
values on the homepage of a large financial psital
Turned out that this caused huge number of XML-RPC
requests against a slow backend system and it khie

homepage request performance wise.
Invalidation Events vs. Timeout

We could call it “the thundering herds of cached
information” in reference to other “herds” like #ads that
return from waiting for a resource just to find ¢héat the
resource is busy again (see concurrency chapteigtar
copies shipped around after re-partitioning ofager(see
chapter on storage below). In all these cases d shamnge
causes enormous concurrent activity to fix theasitun.
Here the herd is caused by some cached values begom
invalid and a whole bunch of requests is goinggittafor
the database(s) to load the new value. Even onyebusy
variable can already cause this effect and |leathited
threads at the back-end. Lucky you if your I/O mrking
asynchronously (see chapter on 1/0) or may of yowgads
will simply block and wait for the result.

<<dogpile discussion>>

Invalidation of cached values is very importantisake
sure the invalidation mechanism is stable and @btkelete
larger numbers of entries at the same time.

Operational Criticality
“It is just the cache” is no longer a good argunfent
treating the nodes which host caches as unimpo@amt
large-scale sites simple do not work without caches
anymore. They would take DAYS to become operative
again. This means changes to the cache infrasteucted
to be incremental and the whole mechanism neels to
available 100% of the time (but not with 100% datdjis
is an important distinction that allows you to retservers
with only some increase in the load on backendesyst

Pre-Loading of Caches
This is highly application specific. You should ltg&now
the exact usage patterns of cached values to emithg
the cache with unnecessary information. Content

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 212 03/12/2010

management systems can benefit from pre-loading the
caches.

Local or distributed caches
In the beginning of application servers there waky local
caches available. This turned out to be one obihgest
performance problems with horizontally scaled
applications. Each and every application served liglown
cached values. Causing repeated access to thenoisclos
the same data and a severe synchronization praieiop
of it: if node one changed a value in the databasly, its
own cache got updated. The rest of the nodes waapgily
still serve the old data. Solving the problem witheouts
associated with the values is not really a good {@ee the

discussion from above).
Distributed caches avoid those problems (I am al&trtg

about replicating caches like the JBOSS treecactla@).
going to discuss the most prominent example nowaday
memcached — below.

Partitioning Schemes
Every distributed cache needs to solve two problems
lookup must be fast from every server and a changee
cache infrastructure (e.g. more machines or a ethsh
machine) should not make all references invalice Th
necessary algorithm is called “consistent hashargf it is
discussed in the chapter on scalable algorithmee tte
simply say that in many solutions the key of thtada
hashed and compared to hashed IP addresses. Ttheithos
the smallest difference to the key hash is thehmiéing
the value. Memcached e.g. uses a two-level hasimitpoe
to distribute values across machines and to findlae
quickly within a machine.

Memory or Disk
Typically page servers for web-based content manage
systems use disk based caches. If they crash the &
still available after reboot. But those cachesl@tal ones,
not distributed. It probably depends on the nunabgrage
servers, the load-balancing used to distribute, ltaal
ability to slowly bootstrap a server etc. whethelisk cache

is still a good option today.
For performance reasons the values should be held i

memory as is e.g. the case with memcached.
Distribution of values
Why would you want to distribute one value acressesal
hosts? It's only a cached value after all. Withesal/copies
your site becomes better protected against notledaiand
on top of that you can distribute requests for tatbpic
across several machines. But your memory requiresnen
will double or triple. You will have to decide alidhe level
of availability and load that your cache shouldvile.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 213 03/12/2010

Granularity
There is a simple rule regarding the granularitgaxfhed
objects: the higher the costs to re-create theeyaly.
through expensive join operations, the more impuritait
to cache complete, aggregated objects. At otheastim

simply caching rows might already be enough.
Twitter has some interesting papers on cache uge, e

having one cache with only references to entriegher
caches. Netlog carefully separates some valueseviaral
calls to the databases to allow incremental inadilich of
only parts of objects. They trade initial constroteffort
against ease of use later.

Statistics
Each cache needs some administration and tweakuhg a
this needs to be based on actual cache behavkauniti
rates. Cache instrumentation is key to performance.
Unfortunately caching ruins other statistics notyndf
your application can serve content from a cache the
corresponding backend systems and statistic conmp®ne

will never see (and count) those requests.
But it gets worse: Once your cache really worksiest

numbers and behaviour in the backend systems halhge
dramatically, e.g. there will be much less readiesgs.
Your architectural decisions e.g. to partition tla¢abase or
to go to a No-SQL store might become questiondiies is
the reason why caching is NOT a late cure for &echiral
mistakes which were made in the beginning (see the
discussion on partitioning options below).

Size and Replacement Algorithms
<<later>

Given that the number of followers is in all likedod a
power law distribution, tracking the mean is probabot
as useful as it might first appear. For normal distitions
caching with respect to the mean makes a lot memses
than for a power law distribution, which is veryesked and
has potentially infinite variance. I'm not surdhg article is
implying that the cache sizing is based on the nvadure or
whether the mean is just being offered as an istarg
piece of information to make things more concretdte
reader.Kevlin Henney
http://www.infog.com/news/2009/06/Twitter-Architeice

- cache coldness, cache concentration, delete after
some time — problems with this approach.

Cache Hierarchies
There is not just one cache used in many web agiits.
It starts with the browser cache, intermediate eadk.qg.
Squid), edge caches, reverse proxy caches, webérserv

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 214 03/12/2010

caches, web application caches (e.g. dynacacmg)ydae
caches (apc), distributed caches (e.g. memcaajes)y
caches of databases and so on.

Caching techniques: cache forever and explicitlyiex
have a chain of responsibility. We had a generjaraxion
time on all objects at Digg. The problem is we havet of
users and a lot of users that are inacti&hain-of-
Responsibilitypattern creates a chain: mysqgl, memcache,
apg PHP globals. You're first going to hit global§jtihas
it you'll get it straight back, if not go to thextdink in the
chain, etc. Used at Facebook and Digg. If you'rehiag
fairly static content you can get away with a besed
cache, if it's something requested a bunch go with
memcache, if it's something like a topic in Digguwse

apc[Stump]
MemcachJeja
| have once mistakenly thought of memcached as-ameimory

database (which at that time | thought to be ratisefess because
most RDBMs already hold much of the data in a mgmache.
Today with disks becoming tape and RAM becoming thss
might change, e.g. in the Cloud.). But memcacheub idatabase at
all, knows nothing about SQL. All it does is st@&ey/value pairs
very efficiently across a possibly very large numbieservers and
with the option to locate a certain value very §lyicFirst a client
hashes a key and maps it to the responsible senvidrat value.
Next the server hashes the key to find the locthyed value.
There is no fault-tolerance nor load-balancing pted beyond a
good distribution of values across machines. [Dgnga

Let's start with a simple example of its use, takem [Moon].
We need to define the server pool serving as caches

$MEMCACHE_SERVERS = array(
"10.1.1.1", //webl
"10.1.1.2", //web2
"10.1.1.3", //web3

)

Then we create an instance of a memcached clgnethcache’)

and initialize it with the server pool..

$memcache = new Memcache();

foreach(SMEMCACHE_SERVERS as $server){
$memcache->addServer ($server);

}

Now we take a SELECT call which i seither long rungnor of

high frequency and wrap it with a call to the cafihst: We first
check whether the results are already in the catherwise we go
to the database, extract the result and put itthacache for reuse.

$huge data_for_frong_page = $memcache-
>get("huge_data_for_frong_page");

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 215 03/12/2010

if($huge_data_for_frong_page === false){
$huge_data_for_frong_page = array();
$sql = "SELECT * FROM hugetable WHERE timestamp
lastweek ORDER BY timestamp ASC LIMIT 50000";
$res = mysql_query($sql, $mysql_connection);
while($rec = mysql_fetch_assoc($res)}
$huge data_for_frong_pagel] = $rec;
}
/I cache for 5 minutes
$memcache->set("huge_data_for_frong_page",
$huge_data_for_frong_page, 600);
} [Moon] Brian Moon, This is a story of caching,

This may be enough for a small to medium size web$hat scale
really changes many things is shown nicely by Faab’s
discussion of adaptations made to memcached to inpkeorm

at Facebook. [Saab]. The author mentions e.gcthratection
buffer sizes became a problem eating gigabytesAdfl Rn
memcached machines and that they had to be mackabla
Concurrent and asynchronous access by clientothantopic
here. But look at the numbers given by Saab ditechanges were
applied:

S?r?ce we’ve made all these changes, we have béetoadcale
memcached to handle 200,000 UDP requests per segibmen
average latency of 173 microseconds. The totalutdnput
achieved is 300,000 UDP requests/s, but the latahtlyat request
rate is too high to be useful in our system. Téign amazing
increase from 50,000 UDP requests/s using the stecdion of

Linux and memcachd&aab]
To get an idea of what makes I/O really fast gthtochapter on

Asynchronous I/O below. Extensions to memcached:

Gear6 provides a number of enhancements to standard
memcached. These include:

1. Memory utilization: Removal of the 1MB object Siast,
finer grained block based memory allocation, anzbat based
eviction algorithm.

2. Density: We use a combination of DRAM and Flash
memory to lower the cost of the cache and incrédaselensity of
our solution. Currently our largest cache is 384G& 1U.

3. High Availability: We deploy our solution with tvidJ) units
in a cluster environment. The cluster enables twdes:

1. Continuous service availability: The cluster areuture
enables fail-over capabilities. This ensures thathe services are
not interrupted when failures occur.

2. Continuous data availability: The cluster replicatéata
within the cluster. This replication ensures thitcache data is
always available in an alternate location, and dooes to be
served to users without interruption or delay. pikn database
and application load are avoided.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 216 03/12/2010

3. In addition the Gear6 Web Cache requires no clgde
code modification and our cluster architecture elesldisruption-
free software upgrades.

4, Reporting and Management: Gear6 Web Cache is fully
instrumented and equipped with intuitive interfattest let you see
what’s happening at multiple levels within your Mached tier.
We’'ve made enhancements that automatically andnzemisly
scan both DRAM and flash memory for failures olufai
indicators. Users can drill-down on any level ogéithcache tier
and get reports on hot keys, clients and instances.
http://www.infoq.com/news/2009/07/webcache

Fragment Architecture and Processor
This section could or should have gone into theptgdreon caching
because in all likelihood fragment handling will ¢é@ne in the context of
caching. When | looked at some early twitter aettiire diagrams or read
some papers | was surprised about the little usadiing they made. If |
remember correctly the API access branch had @#ttding and the web

part nothing at all.
This has changed obviously as the diagram belowshib is taken from a

blog entry by >> who discussed the later architettthanges to Twitter.

[Weaver]
Api . Web
bt f
8 IPage cachle
§ Fragment cache
3] |
g Row cache
=

Vector cache

%-%

The diagram shows four levels of memcached. A fegrtayer assembles
re-usable bits and pieces of information acrosssugend look at the
performance data below! The difference betweencahexand fully
optimized caching is almost fifty! And it shows tHarther optimizations
like multiget or FNV <<describe>> still make a @ifénce too.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 217 03/12/2010

Fregment cadns

139.03

From [Weaver]

So what is a fragment architecture and how do yoldlone? A fragment
architecture is basically a simple realization onrypart. You have to
realize that pages or information containers dedigti¢o clients might be
unige, customized etc. — that they still contahusable bits and pieces
which can be used to assemble pages or contamrenstier users. This is
sometimes not easy to realize because “personahizan context with
security make things look so very unique. But thigrong. If you
disregard the composability of pages you will lesome very hard facts
about multi-tier systems: that by going to the leamds for each and every
bit of information will simply kill your applicatio. This has been a core
lesson learned from building large portal sites ymuaks truly has made

that mistake once and hopefully only once.)
Given your information architecture we can statudd a fragment

architecture that allows us to cache fragmentsftédrdnt granularity,
assemble them to bigger content units and at tine $iane guarantee that
cached items will be removed if a fragment withila@er unit gets
updated. For this purpose we need to capture deperes from larger
pieces on smaller fragments in the information ié&ckure. And we have
to build a runtime system that tracks the dependsriaetween parts,
much like e.g. a relationship service from CORBAwdatrack the
deletion of embedded elements (relational integridnly that we would
invalidate inside out: a small fragment which beesnmvalid causes all
its embedding “parents” to become invalid as w@éches like
Webspheres Dynacache today allow this kind of idasion even across

machines (edge cache). o
This techniqué had beén used by IBM Watson foGlyenpic sites and

the architecture below has been an adaptation lemga financial
organization made by myself. See [Kriha] for agrageescribing certain
scalability problems in building large portals).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 218 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 219

Fragment Based Information Architecture

| Channel Access Layer |

Normalized
Request Object |

Aggregation layer (Profile Info

\Qersonalization ipvalidates

Rule Engine

AL Fragment Cache |

Fragment
Description
Instance Authorization

Integration layer [

1 IL Fragment Cache |
iﬁvalidates

Fragment Request
Object

/Dependency

/ Graph

notifies

Service Access layer |

Datacache 1| | Datacache 2|

| Storage managerl | Storage managerl

Goal: minimize backend access through fragmennatsise
(extension of IBM Watson research)

Again, we don't have to do this but if we don’t wel quickly learn the
number one performance rule of all websites, peradmmunity sites
etc.: In complexe multi-tier applications avoid ecessary backend
requests like the plague. And the second one: Retiat all the
aggregation and processing of the content neelols titone within a
reasonable overall request time. Users don’t Waiis limits your options
for processing the content considerably and neeg&iad of

preprocessing of fragments etc. that is possibéd.at
The diagram above mentions a SAL layer — a Seamess Layer which

shields the application from unavailable or sluglisesponding
backends and services. If you can’t prevent thaests from your
customers to reach out to unavailable serviceshgwe no control of your
application. Your application will show strange betors depending on
the availability of important services. It will dteblock and in the worst
case crash due to resource exhaustion (threadspmetc.). Controlling
threads and other resources is important, there doubt about. But just
like many other services (load balancing, IP fagloservice) also the
fragment processor finally relies on a failure déta service which we

will describe below. o _ _
Ideally your application and its different partdlierm a kind of funnel

that restricts incoming requests and avoids ovetrun

03/12/2010

’“Ilemq P

Network Arriving requests | Arriving requests
- 200 75 50
Web Sorviot Data 25
source |

server L < engine L -
(N=T5) (N=50) (N=25)
;‘@ 125 25 25
ij Waiting requesis Wailing requests Wailing requests

Database

<<example of web-application funnel architecture>>
Queuing theory will help you construct the propsrits on the various
entries into your application parts. But all cohttoes not help if the
threads simply block waiting for unavailable seedaclf you are interested
in the gory details of such problems take a lookgtpaper on Enterprise
Portal Architectures where those typical RAS issaresdiscussed and
solutions provided [Kriha02]. Surprisingly aftet tilese years | frequently
come across brand new application designs whersatine issues of
reliability, scalability and availability are beirgmpletely ignored —
initially...
<<por¥al caching architecture ,including IBM papei>>

Cache fragments, locations and dependencies (withou

client and proxy side caches)

f{ Research data
Full-Page || | . Result } ; ;
Cache g Hang Bean Caché DRl

—

Per usell t]1ers Object
— ;| Cache {|Porta
' uotes | 2
1 (charts, < DB
Result 4. (News SAL
| [Bean cache /| market [0
Controller, Data User % |
— | Servlet [T1JSPs | News |/ Etc.)
Result | Market
Bean cache Data
service
Fully Page Distributed Service
processed parts, cache, raw Access
Page processed data Layer

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 220 03/12/2010

And if | may add a third one it has to do with dahbility and reliability.
Many content serving applications need to accdfsrelnt internal or
external services to get fragments. With Web2.0hmagss have become
extremely popular. Some of those are aggregatdudnaat server
application (acting like a proxy for the browséf)you look at your
distribution architecture you will notice how mughur application
depends on the availability of all the internal @&xternal services it uses.
Compression
The next level of adaptation is the media conteming) transport and
storage. Compression has easy to use (e.g. viaapaog-ins) and the
current development of CPU power makes the tratibetiveen size and
time rather easy to decide. Besides browser cotifigtihere are no
iIssues with compression and we will skip it foistreason here. But there
is much more than compression that makes medar fitistribution:
Important considerations are size (e.g. page sizenw), identification
(how to find the media), meta-data for better estal, round-the clock
availability (gamers never sleep around the wofithess for different
delivery channels and formats (mobile phones v39. Pliese issues go
back to the design of the media themselves and todee solved right at
the beginning. A typical example is the poor hamgllof images on many
web sites. They are frequently of bad quality aatlislowly. But there
are also examples of sites with tons of picturegkwhare both of high

%uality and |oad blindingl¥ fast (s@evw.skatemag.de ..
ven ‘more Interesting 15 the adaptation of co Istribution.

Examples are QoS considerations for portal cor{tbygs a homepage of a
financial institution need to provide absolute fi@ale quotes or can they
be cached for a certain period of time. 10 secaadsmake a world of
difference as this can mean that thousands of bacdlegjuests can be
avoided if a cached version can be used. The digéptadation in QoS

makes the whole concept workable.
Another interesting case is to apply a divide amaguier approach on both

technological as well as content level. This is agpd in Massively
Multi-Player Online Games (MMOGs) where hundredsholusands of
users play concurrently. No central server infradtire would be able to
handle all those concurrent sessions. Thereforgahee itself is divided
into so called worlds which then map to differeetver clusters. As a
player can only be in several worlds at the same this means that the
workload can be split between different clustetse §uiding principle
here is that the content itself — here the gama +dsupports the

requirements of a large scale distributed system.
<<storage compression, wikipedia>>

Local or predictive processing
Up to now most adaptations for media in distribuggstems were targeted
at servers or intermediates. But the receivingitisde truly becomes a
center of adaptations in the case of interactiy@iegtions like multi-
player online games (MMOGS) or collaborative enviments like Croquet
(seewww.opencroguet.cojn The techniques used here separate local
processing time from network request time and aflewadvance planning
of actions on remote machines, processing of diffescenarios in parallel
or even distributed two phase commit. Advancedicapbn mechanisms

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 221 03/12/2010

are used as well which then again include a hibyaof storage and
processing components to shorten response times.

<<diagram of croquet level architecture>>

These mechanisms will be discussed in the chapt&fMOGs and
Collaborative environments. Like porting an appimato a parallel
processing platform like MP this approach requaeketailed analysis of
potential parallelism between clients and servelecdhis analysis must
also minimize communication load for synchronizatanmd it is very
likely that even the game design and story elem@ititbe selected in a

way to support potential independence.
Another client side adaptation has become very laopately:

Asynchronous Javascript and XMl (short AJAX) hasndatically
increased client side processing. While much & pocessing is done to
improve usability or to create new features, @ls0 possible to use it for a
different purpose e.g. to take load from serverstdad of the server
rendering data completely the raw data will be &zhdy the client and
formatted by the client processor.
<<AJAX emample of client side rendering>>

Search Engine Architecture and Integration
<<FAST example, wikipedia lucene use, separatioopefation and
analysis, background, cluster>>
<<anatomy of search engine, scalability in sevéirakensions: number of
documents to index, index size, query numbers>>
Explain separation of OLTP and OLAP systems.
[Jayme..] Jayme , Scaling/Optimizing search on netlog

Special Web Servers (light-weight)
[Laird] Cameron Laird, Lightweight Web Servers.
Youtube and others use special purpose web sekirat are the
differences? Trade-offs?

T T T
‘plot-yaws-disk-long2" ——

thr-disk"

g 250thy’ —a—)

| .|:_. |I |
4 i Il '"u
soo b | | |||. l||h

ve | §
500 F I !ll
I 1T® |

s
0 10000 20000 30000 40000 50000 BOO00 T0000 80000 30000

Apache vs. Yaws (Erlang), from: A.Ghodsi,
http://lwww.sics.se/~joe/apachevsyaws.html

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 222 03/12/2010

This amazing diagram shows apache vs. yaws thramighpache dies at
around 4000 requests/sec. The interpretation byAdmstrong sees the
use of kernel processes and threads from Linukesain limiting factor
of the apache performance. Erlang does not usemytbireads. But then
there must be a translation method to map thosadsrto different user
threads within the language.

A pull based Web Server Design?
Idea: do not push requests from a load balanceetoservers, let
the web servers pull the requests depending onlteal. Is this
feasible? Trade-offs? Would this work without LBfiont (e.qg.
using whackamole, spread, backhand)?

What exactly is the queuing model behind the LB-Btver
combination? | think it represents parallel queuegters, not
parallel processors because each web serversshasgritqueue. If
— due to irregularities within the processing usiisne service
times are much longer the web server queue wilulbevith new
requests because the LB won't be able to reacklyusmough.
Hajunka does not work properly in this case. Idebwervers
cannot take requests from the queues of busy server

So either we reduce the wait queues to one witierLB and have
web servers poll or we could use a group communoitgdrotocol
between web servers that allows request stealiggess always
the next request should be taken. This would reqgome
communication to the LB as well because suddemjyests would
be answered by servers which did not receive thexpaests from
the LB.

Scheduler and parallel Processor

<<gearman etc.>>
High-availability failure detector

Whackamole (IP), group communication protocols?
and lock service

chubby http://www.jgroups.org/

Buffering and compensation for networked audio
Adaptation does not end at the network componeel.l&€ven at the
receiver side a lot of adaptation to the distribotdf media content
happens. The well known browser cache is one exarBpiffering of
audio/video input is another. Media-Players tygicdbn't start playing a
stream right away. Instead, for a configurable amh@d time or data they
buffer content and start playing only when the éuf$ full. Special
delivery protocols try to speed up this phase [@ieeosoft Media Player
architecture) by starting a stream with a burstsphta fill the buffer and

then fall back to the regular streaming bit rate.
Buffering unfortunately comes with the problem offier over- and

underruns. This is finally caused by clock skewbtems between sender
and receiver machines. Several solutions for treblpm exist, some of
which still show visible or audible artifacts. Opessible solution is to

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 223 03/12/2010

timestamp every content package and try to caletle clock deviation
from those timestamps. Single content frames withéd be added or
removed depending on whether the receiver was dbdag overrun or
underrun. Other solutions try to scan the contensimilar frames which
could be duplicated or removed without major affébtfortunately these
concepts still produce artifacts and sometimesireduwge buffers. Stefan

Werner describes in his thesis a very interestitegraative: instead of
monitoring the clock skew he decided to changetagback speed in a
way that kept the buffer reasonably filled. Chagdoetween two different
playback speeds provided a feedback loop thatlyimahde the buffer
level adjust to the real clock skew between thehimas evolved.

<<diagram skew compensation algorithm>>

This is by far not the end of adaptation on thenesr side. It goes as far

as the design of Application Programming Interfdoesideo

applications in a way that allows the applicatitmgdividually handle
problems like lost frames or delayed content. Idedseat those in a
generic way and to relieve the applications frommd¢bmplexity of dealing
with those problems have resulted in disastrousAWlich where both
cumbersome to use and slow. An excellent sourcke$ésons learned in
the design of video APIs is the paper by ChrisZiravideo 1/O on

Linux, lessons learned from SGI” [Pirazzi]. Thelaurtalso maintains
lurkertech.com, an excellent site for all kindsrdbrmation on video, e.g.

how to deal with video fields on computers.

Data Center Architecture

[ALV] Al-Fares, Loukissas, Vahdat, A Scalable, Cootity Date Center

Network Architecture (condo concept)
About routing etc. within date centers.

What are the pitfalls in multicast? For replicatenmd caching? Performance and

throughput?

Microsoft research: data center design for thedliih geo distribution: the

condo model vs. the big datacenter. Cost models etc
Network cross-switch times (google FS paper). Mdiltribution.

Geographically Dispersed Data Centers and Topology

- Master/Slave sites

- DNS Round-trip-time calculations for short path dast responses

(Schlossnagle)
- Anycast
- Licensing and financials

- Slow lines slowing down the application serverpogse

(Schlossnagle)

- [CDK] R.Cocchiara, H.Davis, D.Kinnaird, Data Cenfapologies

for mission-critical
- Twolthree site architectures, Disaster Recovery

[Cooper] Brian F. Cooper, Raghu Ramakrishnan, Wtk&rivastava,

Adam Silberstein,

Philip Bohannon, HansArno Jacobsen, Nick Puz, DaNesaver and
Ramana Yerneni, PNUTS: Yahoo!'s Hosted Data SerRiagform,

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 224

03/12/2010

http://highscalability.com/yahoo-s-pnuts-databaseHot-too-cold-or-
Just-right

Running an application in several datacenters adtrasworld is
becoming normal for large sites. The reason taillige is not the
physical proximity between clients and serversthatshortest/fastest
connection between them. Distributed data centess p lot of problems,
mostly related to replication and disaster recovilgre | will only
mention two techniques for routing clients to tlestserver as described
in [Schlossnagle]. The first one is DNS Round-TFipie calculation in
clients which automatically leads to the fastespomding DNS server
becoming the “authoritative” one. Unfortunately obas in the Internet
can make that association problematic. The otHetisn “anycast” is
described in the diagram below. Here several ID& servers in our
distributed installations run with the same IP &ddrand are announced to
the networks. This way clients will automaticallgtgouted to the
“nearest” DNS server which is available over thertst path. There is a
chance that the next client request gets routeddiferent DNS server
which makes connection oriented protocols like To@éblematic because
a different server did not see the initial partsh&f connection and will
refuse the continuation (wrong sequence numbe. &lge solution is to
use UDP for DNS lookup and return the addressefdbal web server
who will be in the same network necessarily.

Map from:
landkartenindex.blogspot.com

Scale-out vs. Scale-up

[Atwood]
June 23, 2009
Scaling Up vs. Scaling Out: Hidden Costs

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 225 03/12/2010

In My Scaling Herg | described the amazing scaling story of
plentyoffish.com. It's impressive by any measutg,diso particularly
relevant to us because we're on the Microsoft stack | was intrigued
when Markugposted this recent update

Last monday we upgraded our core database seteergbower outage
knocked the site offline. | haven't touched thischmae since 2005 so it
was a major undertaking to do it last minute. Wgragded from a machine
with 64 GB of ram and 8 CPUs #&oHP ProLiant DL785 with 512 GB of

ram and 32 CPUs...
TheHP ProLiant DL785 GStartsat $16,999 -- and that's barebones, with

nothing inside. Fully configured, as Markus desesifat'skind of a

monster

. 7U size (a typical server is 2U, and mainstreamessrare often
1V)

. 8 CPU sockets

. 64 memory sockets

. 16 drive bays

. 11 expansion slots

. 6 power supplies

It's unclear if they bought it pre-configured, didad the disks, CPUs, and
memory themselves. The most expensive configuratarvn on the HP
website is $37,398 and that includes only 4 pramsssio drives, and a
paltry 32 GB memory. When topped out with ultra-exgive 8 GB
memory DIMMs, 8 high end Opterons, 10,000 RPM rdardes, and
everything else -- by my estimates, it probatigt closer to $100,000
That might even be a lowball number, considerireg e DL785
submitted to the TPC benchmark web¢pgdf) had a "system cost" of
$186,700. And that machine only had 256 GB of RARLLt, to be fair,

that total included another maaor storage arragl,abunch of software.)
At any rate, let's assume $10

,000 is a reasoinalifgark for the monster
server Markus purchased. It is the very definitdscaling up-- a
seriously big iron single server.

But what if youscaled out instead -Hadoopor MapReducestyle, across
lots and lots of inexpensive servers? After sontelrconfiguration
bumps, I've been happy with the inexpensive LenidvakServer RS110
servers we use. They're no match for that DL7&mtthey aren't exactly

chopped liver, either:

Lenovo ThinkServer RS110 barebones $600
8 GB RAM $100

2 x eBaydrive brackets $50

2 x 500 GB SATA hard drives, mirrored $100
Intel Xeon X3360 2.83 GHz quad-core CPU $300

Grand total oft1,150per server. Plus another 10 percent for tax, sipp
and so forth. | replace the bundled CPU and meniatythe server ships
with, and then resell the salvaged parts on eBaglfout $100 -- so let's
call the total price per server $1,200.
Now, assuming &éxed spend of $100,000ne could build3 of those 1U
servers. Let's compare what we end up with fomooney:

Scaling Up Scaling Out

CPUs 32 332

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 226 03/12/2010

RAM 512 GB 664 GB
Disk 47TB 40.5TB
Nowwhich approach makes more sense?

(These numbers are a bit skewed because that Dk&%he absolute
extreme end of the big iron spectrum. You pay #yl@iemium for fully
maxxing out. It is possible to build a slightly $gsowerful server witlar

better bang for the buck.)
But there's something else to consider: softwaenking.

Scaling Up Scaling Out
(O $2,31C $33,200*
SQL $8,31¢ $49,800*

(If you're using all open source software, theoairse these costs will be
very close to zero. We're assuming a Microsoft dteme, with the
necessary licenses for Windows Server 2008 and S&pter 2008.)

Nowwhich approach makes more sense?

What about the power costs? Electricity and raecspsn't free.

Scaling Up Scaling Out

Peak Watts 1,200w 16,600w

Power Cost / Year $1,577 $21,81%
Nowwhich approach makes more sense?

I'm not picking favorites. This is presented asdféar thought. There are
at least a dozen other factors you'd want to censldpending on the
particulars of your situation. Scaling up and swabut aréothviable
solutions, depending on what problem you're trymgolve, and what

resources (financial, software, and otherwise) lyave at hand.

That said, | think it's fair to conclude thetaling out is only frictionless
when you use open source softwar©therwise, you're in a bit of a
conundrum: scaling up means paying less for liceasel a lot more for
hardware, while scaling out means paying lesshferardware, and a

wholelot more for licenses.

* | havenoidea if these are the right prices for Windows ServeB20 SQL Server
2008, becauseading about the licensing models makes my brain Hatything, it

could be substantially more.

Data Stores

Social sites inevitably need to deal with multi-n@edata in large proportions.
This content needs to be read, written, searcheakedu-up and delivered in
different qualities (resolution, thumbnails) tofdient clients. The same goes for
the archives of broadcast companies. And it isombt multi-media content that is
needed. Sites need structured and semi-structateda handle users, relations

etc.

Until lately the answer to those requirements wddde been either an RDBMS

or a traditional file system. But with the trendeeer larger sites like

amazon.com, google.com and others new forms ofglatas have been invented:
semi-structured column stores like Google’s bigtakey-value stores like
Amazon’s Dynamo and distributed filesystems likeoGleFS, ClusterFsS,
Frangipani, storage grids and last but not leasitiduted block-level stores. What
is different in those architectures? Basicallgithe relaxation of traditional
properties of stores as we know them since mangsy@asix compatibility for

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 227

03/12/2010

file systems, transactional capabilities and stroomgsistency in relational
databases and so on. But those large sites haa@vdred that they may not need
all those features and the associated price impraéance and throughput. They
discovered that by dropping certain assumptionsséor@ properties they could
get a better performing store and they were wiltmgay the price, e.g. by letting
applications deal with conflicts in the store dithe classic pattern of dropping
requirements, relaxing unnecessary quality rulesparshing decisions higher up
towards application semantics.

Let’s start with some terminology and a collectadrstore criteria which define
the different store types:

Requirements and Criteria

- memory store or persistent

- standard posix or SQL interfaces, REST or non-stahdPIs
- unstructured data (files, key/value), semi-strusduibigtable),
structured (RDBMS)

- read oriented vs. write oriented or neutral

- sequential access vs. random access

- large data sets vs. small data sets

- latency vs. bandwidth

- ACID or relaxed consistency (eventually consistent)

- Conflict resolution when (read/write) and where(stapplication)
- Replicated data vs. non-replicated

- Customizable store properties vs. fixed properties

- Flat or hierarchical namespaces

- Consistency vs. availability (CAP behaviour)

- Behavior in case of extension, scaling

- Caching vs. non-caching

- Data integrity and security

- Multi-hop lookup vs. zero-hop

- Central meta-data vs. distributed meta-data

- Symmetric vs. Asymmetric design

- Failure detection and behavior

- Simple Search vs. structured search

- Many requests or few requests

- Heterogeneous hardware or standardized hardware

- Commodity hardware or special

- Load-balancing and availability guarantees

- Capacity requirements

- Programming models

<<categorization of store technologies and requam@s) use dynamo
paper for a start>>

The big storage categories that we know aboutbdatss, filesystems,
key/value stores and column stores, memory datalzasdinally made of
combinations of those properties. Some of the pt@secan be shared,
some seem to be very typical — category shapingpepties like the

ability to work on highly structured data for an BMS.
<<terminology>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 228 03/12/2010

virtualized storage:

Einig sind sich Hoff und Shackelford auch bei ihkeitik an den
fuhrenden Herstellern von Hypervisoren. Denn dststen laut
Shackleford immer noch keine Dokumente bereitdeie Umgang
mit virtualisierten Storage- und Netzwerkkomponargeklaren.
Selbst der ebenfalls an der Diskussion beteiligire-Verteter
mochte nicht widersprechen und gab zu, dass eskeich
Unterlagen hierzu gebe. Dabei sind diese Themesr Whthstadnden
ungleich komplexer als die Virtualisierung von S&n; so dass

Best-Practice-Dokumente nétiger sind denn je. _
Insbesondere die standig grofier werdende AnzahViviuellen

Netzwerkkomponenten sieht vor allem Hoff mit Solyeben dem
virtuellen Switch des Hypervisors finden sich intwalisierten
Umgebungen demné&chst noch physikalische Netzwdgkkadie
selbst virtualisieren kbnnen, virtuelle Switches \Rrittherstellern,
Netzwerkinfrastruktur, die wie Ciscos Nexus selbdtalisiert
und nicht zuletzt der Direktzugriff der VMs auf déeggentliche

Netzwerkhardware des Servers.
http://www.heise.de/newsticker/Sichere-Virtualisieg-Viel-

Laerm-um-beinahe-nichts--/meldung/136612

External Storage Sub-Systems

Block-level, NAS, Properties of SAN, virtualized SAetc. for scalable
storage. ISILON Systems, The clustered storagdugen.

- server independent storage with multiple accedsspgatdata

- hidden reliability mechanism by RAID levels

- transparent for client software

- scale with respect to capacity but not with conentraccess to
several files [Bacher]. Why not?

<<FOB>>

[EMC] Storage Systems Fundamentals to Performamdesailability
http://germany.emc.com/collateral/hardware/whitpgya/h1049-emc-
clariion-fibre-chnl-wp-Ildv.pdf

GPFS, [Schmuck]

Grid-Storage/Distributed File Systems

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 229

GoogleFsS is a typical representative of highly-sgexed data stores for
sites with huge un- or semi-structured bases ofimétion. Key to
understanding its architecture are the observafrons google engineers
on workload, processing etc. They discovered that:

- most files were read and written sequentially

- appending writes were frequent, random writes atmos-existent
- files sizes were huge

- only google controlles applications would use il @ould be
therefore co-developed. No strict Posix-compatipiieeded

- 1000s of storage nodes should be supported

- Bandwidth much more important than latency

- Some inconsistencies tolerable

- No data loss allowed

- No extra caching needed

03/12/2010

- Only commodity hardware available

This lead to a special storage-grid like architextuhich is depicted in the
diagram below. (taken from [Ghemawat] et.al. axigreded)

Hashed filenames to allow millions in

Leases to chunks. directory.
Non-Posix API
Log and snapshots for
recovery. Copy-on-
APPICAtion| i1y name, chunk index) _| GIS master = foofbar write.
GFS client File namespace ,* | chunk 2¢f0
1 (chunk handle, 1 ;
chunk locations) /ﬁ "‘ Legend:
mmmp Data messages
Instructions to chunkserver —= Control messages
(chunk handle, byte range) Chunkserver state
GFS chunkserver GFS chunkserver _'_Huge ChunkS
chuakdata Linux file system LI.mmc file system to reduce
) L(- meta-data
Clients use serial
processing and atomic Chunk server control replication
append, no cached data. and upload chunk locations to

High bandwidth design. master

Clients who want to read a file need to contactiaster server first. It
controls all meta-data like filenames and the magpo chunks. Chunks
are the basic unit of storage. They are huge cosdparother filesystems
(64MB) and they map to regular Linux files on stlexhchunk servers.
The huge size of chunks keeps meta-data smalls@p&ration of meta-
data server and data server is a well known desagpern and is found in
p2p systems like Napster as well.

To achieve reliability and availability each churdn get replicated across
several (typically three) chunk servers and in caseof those servers
crashes a new one can be built up using replices @ther machines.

The master server maintains the name space fdilersystem. At start-up
it collects chunk locations from the chunk senaard holds all mapping
information in memory. Special hash functions allonllions of files
within a directory. To achieve reliability and alaility the master server
runs a log which is replicated to a backup sereregular intervals
snapshots are taken and the log is compacted. @opyrte technology
makes creating snapshots a fast and easy process.

Google says they have separated control and ddtagachieve higher
throughput and bandwidth. This means the masteesbas meta-data on
network configurations and will make sure that dtsiare distributed in a
way that makes writing the three replicated chufaks The client writes
data to those replicas and then selects a primany the three chunk
servers holding chunk replicas. The primary or@éent commands and
this order is then repeated at all replicas leathng logically identical

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 230 03/12/2010

replica at each node involved. Logically becausersrduring this process
can lead to padding data added within chunks. fi@ans chunks have an
internal meta-data structure as well and they me¢dbe physically
identical with their replicas.

GoogleFS does not offer extra caching of chunkbeatlients or servers.
No cache invalidation is needed therefore. As mlshts process a file
sequentially anyway, caching would be futile. & tbandwidth to a file is
too small, the number of replica chunks can beciased.

What kind of consistency guarantees does Google&\8de? A client
who wants to write to chunks needs a lease fronmister server. The
master can control who writes to files. Most wrigées appends and for
those the GoogleFS provides special support: appgiglan atomic
operation. There is no guarantee to clients theit #tomic append
operation will happen at exactly the position thieyught they were inside
the chunk. The primary chunk server creates arr trelsveen append
operations but makes sure that the individual agpeatomic. Google
applications are written in a way to expect changesder and deal with
them. Google applications according to [Ghemawlat] ase the atomic
appends as a substitute for an atomic queue faredatange: one
application writes and the other one follows regdifhis allows also the

implementation of many-way-merging (de-multiplexing
The principle that clients neéd to deal with thesgncrasies of GoogleFS

is visible also in the handling of stale replicaicks. Clients are allowed
to cache chunk locations and handles but there guarantee that no
concurrent update process is happening and thieaegiiosen is stale. As
most writes are atomic appends in the worst caseetplica will end
prematurely and applications can go back to theden&s get up-to-date
chunk locations.

The master server can lock chunks on servers ecogdcritical
operations on files. Chunk servers are responfibldata integrity and
calculate checksums for each chunk. Silent dataipton happens much
more often than expected and this process ensaresctreplicas.

Isn’t the master a natural bottleneck in this aedture? It may look like
this but the data given by Google engineering saysething else: the
amount of meta-data held by masters (due to the bhgnk size and the
small number of files) is rather small. Many hurddref client requests
seem to be no problem. The hard work is anway tgrtee chunk
servers.

The googleFS architecture based on commodity haedawrad software is
a very important building block of the google presiag stack. Bigtable
e.g. maps to it and many other components. Theendqmbroach looks so
appealing compared to regular drive arrays thagrotendors have started
to build their storage solutions also in a gricelivannor with master and
slave servers running on standard blades. We situds one such
approach for video storage, the Avid Unity Isidole It supports non-
linear editing of HDTV video and has some differesquirements

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 231 03/12/2010

compared to googleFS, most notably the need fdtimeadata at high-
throughput rates. Here replication is used as lndlfor a different
purpose.

While traditional SAN or NAS storage subsystemsdgiby present a
single access point to data for clients the ned-giorage based systems
use a well known pattern from peer-to-peer archites: A split system
with meta-data servers (directors) and active mesme which manipulate
and serve data.

[Meta-data server [

— 88

[Meta-data server [

— Processor blade —

S -

— Processor blade 1

client @ Ej

Processor blade

e

The diagram shows a typical storage-grid architectalso called “active
storage”) with two redundant meta-data serverssawdral processor
blades connected by two switched networks (switclséshown).
Peer-to-peer systems are famous for their scahahitid storage grid
vendors claim “infinite scalability” of their ardieictures. Every processor
blade that gets added to the grid increases batitardl processing
capacities within the grid.

A closer look at the architecture reveals that ot a pure p2p system due
to the meta-data servers used. They are needecheare to improve e.g.
lookup performance by providing a central meta-dédae — something
that pure p2p systems have a problem to guaraNggester used a similar
architecture to allow fast lookup of meta-data (reheertain files are) and
at the same time to delegate the raw data traffpeers.

The storage grid excels in bandwidth, latency adiindancy as well as
recovery time after a disk crash. As parts of fdes distributed across the
blades access to data can be parallel. A replicédicel of three (three
copies per data unit) leads to a highly redundgstesn which — in case of
a drive failure — starts to duplicate blocks acitbheswhole storage cluster
in parallel. This is much faster than the necelgsaeiquential access to a
new disk in a RAID.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 232 03/12/2010

The downside of this architecture is exactly whatses the excellent
bandwidth and latency in the first place: the loSgansparency between
clients and data processors. Only during an ingnelse are the meta-data
servers contacted. Later clients and blades conuatendirectly and
clients learn about data locations. If at a lateetbottlenecks in the
distribution of data show up special client softevax needed to e.g. use

alternate locations.
With respect to scalability the meta-data serves@nts a possible

serialization point as well as the switches usetbtmmect the components
and the clients.

A special feature of storage grids is the abilityperform processing of
media data within the grid. Transcoding e.g. capdréormed on the
processor blades. The effectiveness of those tsamations probably
depends on how localized processing can be dottee frocessing can be
done without access to further data units storedtbar blades then only
the costs for synchronization and control betweansformation agents
need to be paid. If on the other hand processingateonly be done based
on local information — as is the case in some foofrimage renderings,
see the example of distributed rendering with 3DS§the costs of
processing are comparable with the case whergériermed by the
clients themselves.

<<

MogileFShttp://www.danga.com/mogilefs/

S3: grid with focus on latency

The role of data copying and de-normalization @acle systems: [Hoff]
on using lots of disk space to de-normalize dataéncontext of e.g.
Google Bigtable [Chang et.al.] datastores. Tipsiaw to use BigTable

and data duplication.>>
<<Lustre>>

Distributed Clustered Storage
Isilon Systems sells a storage system for unstredtunformation
that looks rather similar to a distributed file t®ya like GoogleFS
except for one thing: The company claims that trstesn does not
use central meta-data servers. Instead, all nodbgvhe common
namespace have all meta data and all nodes captaeades and
writes for every file. And they recommend Infinilshas a high-
speed network layer. According to the company paper
[Isilon2006] Isilon Systems, Absolute Zuverlassigkkirch
Clustered Storage and [Isilon2006] Isilon Systeis,Revolutioin
des Clustered Storage the system scales lineatly 8@ nodes
with an overall storage capacity of 500 Terabytth\airedundancy
factor between 2 and 8.

Unfortunately the company does not say which distad
algorithm is used. The claims are interesting fooaple of
reasons: First, common experience with distribstielems shows

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 233 03/12/2010

that totally distributed systems suffer from peni@nce and
latency problems. Information can be quickly lodathen meta-
data are everywhere but what happens when we pedt¢? Run
a distributed lock manager as the company says?neans we
need to update x machines in a consistent way @siagking
algorithm.

Distributed locking can be done synchronously gnakronously
(relaxed). Synchronous locking is rather expenaive the
alternative suffers from consistency problems. Wé$pect to the
distributed locking algorithm Inifinband could ma&alifference
due to rather short latencies (which reduces tipebgaween
necessary wait-times and actions necessary inofasmle
failures) and high availability of the network.

Multicast solutions will probably not scale up t® Bodes. The
company papers also claim a performance probleim separate
meta-data servers due to overload. This has naot theecase e.g.
with GoogleFS because the meta-data machines dsenar
regular data. Most architectures which separataitata from
data serving show little problems with the metaadsdrvers.

The Isilon architecture looks very interesting eteough it runs
contrary to many other distributed architecturescvlusually
distribute a namespace across machines using aihagorithm
(e.g. Distributed hashtables) or a mapping listtéatata server).
On the other hand: algorithms which involve up 8n&achines (or
a majority of those) might have some serious problith
progress making in case of special failures..Thids furher
investigation. (The fact that Isilons “OneFS” idgrated does not
give me a warm feeling either — who would invesa itechnology
that is proprietary but presents one of the mopbntant interfaces
for a company?)

ZFS
Logical volume manager integrated
Silent data corrupton
Disk, raid and memory!
Managemt for resize etc.
Files per directory
Fixed file size (subversion: small, video:big)
Problem: FS nicht im kernel, dumme interfaces
Disk scrubbing
No overwriting of blocks, always new block and nesvsion
Versioning with snapshots

Database Partitioning and Sharding
One of the best introductions to sharding and fpaming that | found is
made by
Jurriaan Persyn of Netlog. “Database Sharding dblyeis a presentation
held at Fosdem 2009

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 234 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 235

http://www.jurriaanpersyn.com/archives/2009/02/ B24thase-sharding-at-
netlog-with-mysqgl-and-phdPersyn] and covers the basic sharding
principles as well as the rationale behind breakipgour database.
Interestingly the reasons also include maintenan¢ables and not only

performance problems.
The roadmap described by Persyn mirrors the oldyspace to a certain

degree:

1. One server running application code and database

2. Split servers with one running the application argkparate server
for the database

3. More application servers added which turns theldega slowly
into a bottleneck

4. Decide whether to scale-up the database server@ry to a

huge multicore, multicpu machine with 64bit arcbitee and 20 or more
gigabyte of RAM. Or to disassemble the databasesntaller units and
stick with cheaper but more hardware.

At Netlog they were hitting the database with 3008guests/sec. during
peak hours which caused performance and stabilitylems. They
decided to go with cheaper but more hardware artestto disassemble
the database. A database can be split along selerahsions, ranging
from use criteria to categorical and arowth craeri

\ Reads vs. Writes Cheap vs. expensive OLTP vs. Analytics (OLAP)

User |profile |friends|| photos |[messages
Group 1 0001
Group 2 0002
partitioning along rows Topic 2 Topic 1

partitioning along columns

Perhaps the easiest and most common way to getradiefefor the
database is to separate read from write traffisufng a rather high
read/write ratio (100:1 in many cases, for sodialss10:1 seems to be a
better value) we can scale out read traffic acaossmber of read-only
replica servers (“read slaves”). Write traffic getdirectly scaled by
relieving the single write master from doing mokthe reads.

<<diagram of read slaves>>

03/12/2010

App. App.
server server

Switching) Switching
Write requests from app.

servers

read requesgts from app.
servers

Updates to
slaves via
command
log or data
replication

Partitioning a database according to its use (read/write ratio) has been
very common with large scale websites (wikiped@ ased such a set-up
successfully for a while). Today this architectbhes seen increasing
criticism and we are going to investigate somenhefreasons. First, the
number of slaves is actually quite limited. Evesgd slave needs to be in
sync with the master and with a growing numbenafess synchronization
gets harder and harder. Second, we do not reallg slte writes by
introducing read slaves. We are actually repligdtioplicating writes
across our system and thereby increasing the vhatkneeds to be done
for writes. Third, to keep the split maintainable need a switching logic
within the application servers that will transpahgnoute reads and writes
differently. Perhaps hidden in a database classtwiimis separate
instances for reads and writes. Dynamic system gemnant should
update available read slaves to achieve at leadtaeailability. We do not
improve write availability at all.

One interesting example in this context is theuls®n around the
read/write ratio of large sites. From looking atgentations about those
sites we know that this ratio seems to be a ctifaczor for performance
and scalability. But which r/w ratio do we actuaihgan? The one before
introducing a caching layer in front of the DB?tBe one after? Let’s
assume we have a 10:1 ratio before which mightuiite ¢ypical for a
Web2.0 application. This led to the decision ofessaping read/write
traffic by using a write master and several readesd. After introduction
of a caching layer this ratio might drop to 1,4rithe light of this change,
was our DB optimization really useful? With thisioave are no
replicating almost every second request acrosseaua-slaves! And with
the overall requests reduced considerably by thkeeca do we really need
database partitioning at all? All these additicsial’e servers will cause
maintenance problems due to hardware/software gmudl They will lag
behind in replication and cause inconsistent readd.finally: do not

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 236 03/12/2010

forget that these read servers will have to canrinareasing write traffic
due to updates as well! We could easily end up wa#ld slaves carrying a
much higher load than the write master (who doég thiwse reads which
MUST be consistent — another ugly switch in ourligggion logic) and
becoming a bottleneck for the system.

Premature optimization without looking at the oVlesiechitecture (and
request flow) might lead to suboptimal resourcecation.

Read/write separation is not the only way to partih database according
to its use. A very important distinction can be mbétween regular traffic
which results from operating the system (usualliedaOLTP) and
analytically oriented use (usually called OLAP).c0turse the borders
between the two are not set in stone but are del&gisions. And here a
very important design decision could be to absbflteep analytics away
from the operational databases. This means no ¢oaigd queries or
joins whatsoever are allowed. In this architecameasynchronous push or
pull mechanism feeds data into a separate datatd@shk is then used for
long running statistical analysis. Synchronizai®iess of an issue here.
Typical use could be to calculate hits, top scetesin the background
and post those data in regular periods. Nevewtdotthose calculations in
request time or against the operational databases.

A slightly different partitioning is along the cotegity of requests. Not
only queries and joins can cause a lot of loadiwiéhdatabase. Even
simple ordering commands or sorting does haveca pome sites (e.qg.
lavabit) decided to minimize the load caused byisgrand put this
responsibility at the application code. Yes, thas been a no-no! Do not
do in application space what is the databasesAob.certainly the
database can do those things much more effectivies@®what: the
application tier scales much more easily than Htatthse tier and scaling
out via more application servers is cheap but sgalp the database server
is expensive and hard.

Talk about being expensive: stored procedures ssggare a sure way to
cause database scalability problems. What wasadaidt ordering or
sorting is true also in case of stored procedurgdo avoid them to keep
the database healthy and push the functions as asupbssible into the
application tier. One of the few things | would N@uish onto the
developer is maintaining timestamps for optimistcking purposes. And
perhaps some relational integrity rules, but joshs.

Finally, search engines can cause similar overbeddshould be treated
just like analytical programs by getting a separaf#ica of the database
which is not tied into regular operations. Spidgrom extracting data via
connectors puts a lot of load on a database oicgpipin and needs a
different path to data therefore. (Syme@netlog.efor a presentation
on scaling and optimizing search).

Up till now we have not really done any scalingte write requests. The
next partitioning scheme tries to separate wraéitr according to topics.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 237 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 238

It is called vertical partitioning and what it dasssplitting the master
table into several tables using the columns as@&@iciinator. In the
example below “friends” and “photos” are now in agie databases and
tables and hopefully there won’t be any joins neadgolving those
tables. But just in case joins become necessarg th@ common pattern
available that helps: replicating certain tablesdur joins across
databases allows complex selects and joins agaitihefprice of an
increased synchronization effort or perhaps a somestinconsistent data
tier.

Of course read slaves can be used to further afflead traffic in a
vertically partitioned system. And it should beasléhat vertical
partitioning makes the switching code in our apgdlmn logic even harder.
Application access to several shards at once deesaffer from
serialization costs. We will discuss ways to sdhie problem when we
present schedulina algorithms for parallel requests

App. App.
server server
Switching) Switching

Write requests from app.

servers

read requesgts from app.

servers
User table

replicated
from

master for
joins

P

User photo
table | table

Friends User
table | table

Friends master Photo master

Not shown: read slaves per master

The last partitioning concept we are going to dssas horizontal
partitioning. It is needed once a tables numbeowak grows extremely
and causes problems along two dimensions: the simeof the table can
cause maintenance problems when replicas needdieaed or re-
synchronized, during backup procedures and schéarages (alter table
e.g.). And the number of connections can exceembdat limits
(assuming that the number of rows within a tabfleces a growing use of

the table as well, e.g. due to increasing numbeusers).
The number of connections is quite database spexifl finally depends

on how those connections are implemented. Oracieaxiions are well
known heavy-weight resources which are not onlylgas created but
limited in their numbers as well. An Oracle conimats is mostly mapped
to an operating system process which is itselfavjr@veight resource.
MySql connections seem to be thread based whichdsoomnuch cheaper
than an operating system process. But once wentgethe hundreds of

03/12/2010

threads we will experience serious memory allocaéiod context
switching costs. This is discussed in depth inctiepter on 1/0 models.
Ideally the databases would be able to separateections from threads
and dynamically assign both to each other. Suaimaept of multiplexing
requests across threads has been successfullasissynchronous 1/0
within telecommunication equipment.

Persyn discusses other option like master-magpiicadion or cluster set-
ups [Persyn]. He points out that those architestare geared towards
better availability and single request performame,scalability. In the
case of master-master replication this is quitaais:

As every master has to send his write requeststaldee other master the
number of writes per master does not get reduced.

<<master-master replication diagram>>

client
Write return
request
Confirm
Synchronous

replication of
write request

It is less clear in the case of cluster soluti@specially those which could
work with tables across machines

<<check mysql cluster>>

The concept of horizontal partitions or shardslieen used in MMOGs
since many years. Everquest or World-of-Warcrafttpair users into
different copies of world-pieces called shardse@iffely splitting the user
table along the rows. This has some unfortunateexprences like friends
not being able to play together when they got assigo different shards
and a new generation of game software (see Darxstaw) tries to avoid
sharding at all, e.g. by further reducing the gtarity of resource
allocations and assignments.

So how is horizontal sharding done? First two densare needed
according to Persyn: which column should be thefkeyhe shards and
how should the keys be grouped into shards (thed g=atitioning

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 239 03/12/2010

scheme) [Persyn]. Both decisions are dependenbonapplication, your
data and finally require that you come up with gigation scheme as
well: how do you want to reach which data alongchtpath? But again,
also with horizontal shards duplication of othetadaight help to reduce
navigation costs. <<check feasibility>>

A typical key is e.g. the userlID given to your arsers. Several
algorithms can be applied to this key to createeeht groups (shards).

- A numerical range (users 0-100000, 100001-20&200

- A time range (1970-80, 81-90, 91-2000 etc.)

- hash and modulo calculation

- directory based mapping (arbitrary mapping fraew to shard driven by
meta-data table)

All methods are rather easy to apply but differtlyasith respect to their
maintenance costs and effectivity. Effectivity et@mined mostly by two
factors: the first being how equal keys are distell across shards to
generate equal load, and second how equal thebiedysse with respect to
load. Numerical ranges seem to be safe with regpetstribution: we can
simply define equally large ranges, or? The probiemin changes over
time: who says that after some time all keys alleadive and in use? It
could be the case that ranges which were fillety @athe lifecycle of a
site are by now rather empty because users geit sime time. And who
says that all those keys are still active? Oldersarould be almost
dormant and cause little load while the later rangelude many power
users. The same arguments go for time rangesibadistm and activity

can change dramatically leaving some shards idleo#tmers very busy.
Hashing a column valué and applying the modulo atpsr will do a time-

independent distribution of keys across shardsnahgrobably also
distribute power users equally. But what happemssifiard gets too big
and needs to be split again? Using a naive hashadylo algorithm will
suddenly invalidate all our shard keys. Using astgignt hashing
algorithm (see below the chapter on scale agnaklgarithms) will at least
leave the majority of keys valid. Ideally one shibkhow the final number
of shards up-front <<check virtual shards>> whnéver a good

requirement. _ _ _ _
Changes in the number or time ranges are not gsitkamatic but will

require application changes in the mapping of rarigeshards.

The most flexible solution with respect to growtiddehavioural changes
as well as maintenance problems is the directoryeta-data approach.
Here a special table holds keys and their mapmrshards. We pay the
price of one indirection as every application finas to lookup the shard
but it allows us to change the location of keydhwitshards arbitrarily,

e.g. by distributing power users equally acrossdsha
This meta-data pattern is well known and used inyn@chitectures, e.g.

the media grid active storage systems for HDTV makdia content.
Persyn lists requirements for a sharding schemenapl@mentation:
- allow flexible addition of possibly heterogeneoasdware to
balance growth

- keep application code stable even in case of smgehanges.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 240 03/12/2010

- Allow mapping between application view and shardirey (e.g.
using shard API against a non-sharded database)

- Allow several sharding keys

- Make sharding as transparent as possible to tHeappn
developer by using an API.

At Netlog they decided to go with a directory baskdrding strategy.

Now we need to discuss the consequences of a sgastlategy and how
they can be made less painful. Two important tespnes need to be
presented in this context: support through a caclaiyer and how it

works with shards and parallelizing requests aga@garate data sources.

Let’s start with the consequences as mentionedelbgyR. The first
problem that comes to mind is that there are nessshard queries
anymore. This is something your architecture hasctept and
compensate for by avoiding the need for those gseriwhich requires
careful planning. Do not separate tables which nedx contacted during
regular queries. One way to achieve this is to aienalize data by
keeping separate copies of tables in differentdshdersyn mentions the
table of messages posted which could be storedibalie posters shard
as well as in the shard of the receivers. Whdtadimiting factor in de-
normalization? It is the need to keep the copiesyirt which gets harder
with the number of copies as many replication cptebad to learn the
hard way.

Another — brute force approach — is to paralldi®erequests for tables in
different shards. While certainly possible e.ghwvtlte use of distributed
fork techniques like Gearman (by Danga.com) itstiing factor is the
increase in network traffic to all servers thatatises. The beauty of
shards lies in routing certain queries only toaearservers and not in
creating a multicast-like scenario where all stevers are kept busy by
one request which is split and parallelized.

<<duplicated tables, parallelized queries>>

Parallel reads can lower multi-shard access cgsteducing the latency.
But are they inherently bad due to increased lostiloution? Why can
memcached do so many requests per sec.and DBsmfaw? Is this a
result of the threading model used within dataliases

Data consistency and referential integrity are tlogvapplications job.
Because one logical table is now split into seveiféérent instances in
different databases it is not possible to use dlipbaique foreign keys
and globally unique auto-increment mechanisms. tiow clear why
many system architects of large scale sites waamagthe use of auto-
increment: it does not work in the context of skegrthbles in different
databases because it is a database local mech&uosane regular
transactions which can guarantee data consistarityipresence of
concurrency. The alternative lies in using distidaltransactions which
are definitely a no-no given the high load of lasgale sites.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 241 03/12/2010

Which again puts the responsibility for consisteatyhe application. It
needs to use compensating actions in case soméeupdaome shard went
ok and others went wrong but they belonged to émeeshigher level unit
of work.

Balancing shards is actually a second order sddjapioblem: You have
successfully split your data into independent peaonalifferent databases
across different servers to maximise requeststmrds And suddenly you
realize that the original splitting schema doesamger give the intended
results (equally distributed workload) becausediye coincidence some
shards concentrate power users or older shardsi$esse due to
cancellation of membership etc. This problem ieeaeasily solved if you
are using a directory based partitioning schenrecther words some
form of virtualization — which lets you move usébard keys) in
arbitrary ways between partitions. The meta-datetb@pproach of
directories works well also in the context of hetggmeous hardware
which needs to be balanced across users.

Persyn mentions two other important side-effectshairding: network

load increases due to several independent requestéseral databases and
the number of database connections available rbgtdme a limiting
factor. It is essential that your application dbE3T keep connections
open during the whole request. Otherwise the lidnitember of database
connections will not suffice to serve the high nembf requests due to

the split. This may be different across databaseésstyenerally certainly a
good advice.

It should have become clear that partitioning dmatding are far from
being transparent to applications. They need t@rstdnd the ways data
have been split and they need to understand hawtegrate data across
shards without causing too much traffic or overhéadentral role in this
architecture plays the distributed cache in frdrthe databases and its use
has to be covered by special APlIs.
Cache concepts with shards and partitions

- cache as a join-replacement

- cache complex objects, not only rows

- use separate queries to allow targeted invalidatiodrtache

content

At Netlog they store cross shard data as complgcthin
memcached which basically works like a distribuethbase
integration layer in this case. This also expladiresvarious
comments from site architects that memcached shmuatl¢only)
be used to cache row data (meaning single shaa) blat to keep
the joined data across shards in the cache bef@nseare rather
expensive with many single database shards. Ttisede may
even result in a query strategy which seems tes® dptimal from
a database point of view, e.g. because opportsridieombine

different queries are not used. '
The following query example from Netlog shows thehétectural

dependencies between sharding and caching:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 242 03/12/2010

Query: Give me the blog messages from author dig26i

1. Where is user 267

The result of this query is almost alwaysilawde in
memcached.

2. On shard 5; Give me all the $blogIDs ($ites)Df user 26.

The result of this query is found in cachilifas been
requested before since the last time an updatee®t OGS-table
for user 26 was done.

3. On shard 5; Give me all details about thenge
array(10,12,30) of user 26.

The results for this query are almost alwBysd in cache
because of the big hit-ratio for this type of cacWéen fetching
multiple items we make sure to do a multi-get regjteeoptimize
traffic from and to Memcached.

Because of this caching strategy the two separa¢eies (list
guery + details query) which seemed a stupid idef@st, result in
better performance. If we hadn't split this up itw@ queries and
cached the list of items with all their details @sage + title + ...)
in Memcached, we'd store much more copies of itwrdés
properties.

There is an interesting performance tweak we addéede "list"
caches is that. Let's say we request a first pdg@mments (1-20),
we actually query for the first 100 items, storattlst of 100 in
cache and then only return the requested slicaatfresult. A
likely, following call to the second page (21-40l) then always be
fetched from cache. So the window we ask fromatebése is
different then the window requested by the app.

For features where caching race conditions mighahlgoblem for
data consistency, or for use cases where cachinly sscord
separately would be overhead (eg. because the deame only
inserted and selected and used for 1 type of guerypr use cases
where we do JOIN and more advance SQL-queriessee u
different caching modes and/or different API-calls.

This whole API requires quite some php processie@rg now
doing on application level, where previously thissvall handled
and optimized by the MySQL server itself. Memoagesand
processing time on php-level scale alot better thatabases
though, so this is less of an iss[Rersyn]

The mechanism of using release numbers as pareddeys is also
quite nice:

* Each $userlD to $shardID call is cached. Thaxche has a hit
ratio of about 100% because every time this mapphanges we
can update the cache with the new value and stanehhe cache
without a TTL (Time To Live).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 243 03/12/2010

* Each record in sharded tables can be cachedraarray. The
key of the cache is typically tablename + $userIBitemID.
Everytime we update or insert an "item" we can slsoe the
given values into the caching layer, making foh@aretical hit-

ratio of again 100%.
* The results of "list" and "count” queriestime sharding system

are cached as arrays of $itemIDs or numbers withkidy of the
cache being the tablename + $userID (+ WHERE/ORDBWRIT-
clauses) and a revision number.

The revision numbers for the "list" and "count" bas are itself
cached numbers that are unique for each tablenariaserID
combination. These numbers are then used in tredeyist" and
"count” caches, and are bumped whenever a writeyofioe that
tablename + $userID combination is executed. Thesi@nnumber
is in fact a timestamp that is set to "time()" whgdated or when
it wasn't found in cache. This way we can ensurdath fetched
from cache will always be the correct results sitieelatest

update.
Cache invalidation by new keys is a clever wayddgrm those

invalidations without resorting to crude mechanigikes timeouts
which can lead to huge traffic spikes (see cackirgjegies).

Next to memcaching sharded data Netlog uses plgpatieessing
and a separate search engine to separate anapyocaissing from
regular operations. Parallel processing meanssrcdse splitting
larger requests (e.g. to find the friends of frigfar a user which
has hundreds of friends (or followers)) into smaléesks. While
sounding unreasonable it seems to be true thaivitnead caused
by splitting a big task into many smaller ones lgad to a much
faster execution of the overall request. But thisstmot always be
true as we will discuss in the section on queuimegpty where we
show an example that benefits extremely from combiseveral
requests into a larger one. <<add to algorithmi@ects well, can
we explain the effect using queuing theory? E.gt §maller

requests of equal service time lead to better tfinput?>>
Why Sharding is Bad

But there are also critical voices against shardimg) partitioning

of the DB. Bernhard Scheffold posed the followirygpbthesis
(after reading the article from Zuckerberg on Facéts
architecture): Much of sharding and partitioningtué DB is
simply premature optimization. Developers do naterstand the
set-theoretical basis of DBs and try a functionqgdraach instead.
Bad db-models create scalability problems. The Bild scale
way longer than the typical developer suspectsrgevdecent data
model.

And about the database connections: If 1024 cororecto a DB
are not enough it could be a problem with conneatise, e.g.
applications holding on to one connection for toog.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 244 03/12/2010

Social data examples and modeling:
most popular,
friends notification
presence indication
How scalable is the data model in opensocial.org?
<<task: evaluate scalability of opensocial schema>>

Partitioning concepts and consequences

- master/master, master/slaves, read vs. write ipaitig
(wikipedia)

- Scalability Strategies Primer: Database Shardinlylay
Indelicato [Indelicato]

- MySQL Scale-Out by application partitioning. [Seanker
(Various partitioning methods for data, e.g rardmracteristics.
Load, hash/modulo. Application aware partitioning)

- Partitioning and caching

- Database table key organization for scalabilityl@licato]
- Hscale, MySQL proxy LUA moduleniww.hscale.orpwith
some interesting numbers on DB limits discussedi{©p

- Vertical, horizontal, partitioned, dimensional p@ohing,
main lookup,

Some sites might be approaching 1 billion usetkénfuture
(skype article on PostgresSQL to scale to 1 Billisers). Netlog is
using beyond 4000 shards on 80 servers. They rbptidr
maintenance of data as well due to the smallercfisbards. There
is now a whole layer between application and shatdsh
encapsulates the knowledge necessary to accesgtihshards
from within the application. Again, sharding is wiagm being
transparent for applications but it can be put amg8pecial layer and
therefore hidden mostly from the application. Thelgtem lies also
in the proper ways to partition your data up-fratich is really
hard to do.

The hardest part about implementing sharding, heenkto
(re)structure and (re)design the application sottfwa every
access to your data layer, you know the relevamarg key". If you
guery details about a blog message, and blog messag
sharded on the author's userid, you have to knawukerid before
you can access/edit the blog's title. [Persyn]

And like other site architects the Netlog peoplaoré a much
better scalability of the application (server) latfgan the database
layer.

Data Grids and their rules of usage
Billy Newports blog:
http://www.devwebsphere.com/devwebsphere/webspbrteme
_scale/

February 06, 2009

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 245 03/12/2010

Best practises on building data models for elastading

| just read an excellent summary of the princiledoing this at
this

site
http://highscalability.com/how-i-learned-stop-wadng-and-love-
using-lo

t-disk-space-scale. The points especially relet@athieving this
for

WebSphere eXtreme Scale are the following.

Duplicate data, don't normalize it

Here, this is how common data is handled. The comsrezre a
great

example. Duplicate the comments in to each pantéiod the
partition

is then keyed by the main key. This allows logictfee main key
to be

handled within a single partition without havingtédk with other
partitions which are almost 100% going to invohetwork 10s.

Group data for concurrent reads

Here, group related data needed for the partiti@meity
underneath

this object. WXS provides a tree schema for eactitipaable
entity.

Placing all needed data linked to this tree ketgh local and
eliminates network hops to fetch it. This is reatyamplification
of

the "Duplicate data" rule.

Structure data around how it will be used

Model the data in a form compatible with the bussiegic to be
executed on it. This makes writing the logic fast &eeps the data
close the to logic. This avoids joins.

Compute attributes at write time

Add extra attributes with commonly calculated valugon't use
gueries

to calculate them, update the total attribute wé@mething
changes and

just query it. Assuming the queries are more fregtlean the
updates

then this saves a lot of time.

Create large entities with optional fields

This again is to avoid the small entities creatéervusing a fully
normalized model. Normalizing means joins and j@ires
expensive so try

to avoid them if at all possible.

Define schemas in models

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 246 03/12/2010

The framework like WXS can't manage these denomedlmodels
aqtomatically for you. You'll need a model whiclokvs how to do
g]r:z does it automatically when changes are writighe model.
-rI;EJIZeI can run inside the grid collocated with théadso it's going
:(L)m fast.

Place a many-to-many relation in the entity wite fewest number
of

elements

This basically says that rather than having a madhéth has a
Company

has a collection of employees, have a model withpamies and
employees

with a list of companys. The list in the latter eas MUCH smaller
than the other way.

Avoid unbounded queries

This is kind of dangerously obvious but if you hastera byte of
data

in a grid, don't ask for a sorted list of all re#®@and send it back
to my client app. The app will die. Bound it to tio@ 10 or 20
items.

Avoid contention on datastore entities

This kind of goes without saying. If you use a $ngcord in the
grid

all the time then it's going to bottleneck therdrgao avoid or
rather don't do this.

Summary

The linked article is pretty cool and summarizesmaof what we
already

knew about the best practises on designing for®Grda. So, here
it

is, enjoy.

Bernhard Scheffold:

Offenbar mif3braucht er eine relationale Datenbalk@ataStore.
Diese Fehlsicht scheint ja leider weit verbreitetsein, aber allein
schon das Statment ' Structure data around howllibe used'
weist ganz stark darauf hin. In einer relational®atenbank geht
es eben darum, Daten auf alle moglichen Weiserthinden und
so Aussagen Uber das Modell zu gewinnen. Wenuligtitd
Datensatze maoglichst flott "retrieven” will, danwilte er vielleicht
eher auf einen DataStore oder ein ODBMS setzen?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 247 03/12/2010

Ein anderes Leckerli ist 'Compute attributes attevtime'. Das
dahinterstehende Problem der wiederholten Berechenmalit
sich doch weit eleganter und sicherer mit Memoaratosen.

'‘Duplicate data, don't normalize it": Offebar wdl wirklich nur
lesen und nichts aktualisieren. Das ist doch d@traum jeder
Datenpflege!

Database based Message Queues
- Database queues for replication (Schlossnagle)

Read Replication
- Death of read replication: Brian Aker on Replicatio
caching and patrtitioning (does not like cachingywauch, prefers
partitioning). See also Todd Hoff on using memcalciued
MySQL better together and the remarks of Francolsedtecatte.
Non-SQL Stores

Toby Negrin, Notes from the NoSQL Meetup,
http://developer.yahoo.net/blog/archives/2009/08ghameetup.html

Todd Lipcon, Design Patterns for Distributed NorleRenal Databases,
http://www.slideshare.net/questdfdlec/design-pastéor-distributed-
nonrelational-databases?type=presentation

Martin Fowler gave his blog entry the title “Databahaw” and compared
the past years with the “nuclear winter” in langesgaused by Java
[Fowler]. There seems to be a flood of new dateagi® technologies
beyond (or besides) regular RDBMS. This raisegjtiestion of why this
is happening? Isn’t the relational model good ehGug

Im remember discussions with Frank Falkenberg ernvéiue of in-
memory databases. | was not convinced of theirevecause the
argument of keeping data in memory for faster axdas not really
convince me: every decent RDBMS will do effectiaelsing. What |
didn’t see at that time was that the real valuditbérent storage
technology might lie in what it leaves OUT. Seefilliowing comment

from the memcached homepage:
“Shouldn't the database do this?

Regardless of what database you use (MS-SQL, Qfackigres, MySQL-
InnoDB, etc..), there's a lot of overhead in impdenngACID properties
in a RDBMS, especially when disks are involvedclwiheans queries are
going to block. For databases that aren't ACID-ctiang (like MySQL-
MyISAM), that overhead doesn't exist, but readimgdds block on the
writing threadsmencached never blocks”[
http://www.danga.com/memcached/]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 248 03/12/2010

We all know that by leaving out certain featurew meoducts can be
much more nimble. We also know (after reading “Mettors Dilemma)
that most products suffer from feature bloat duedimpetition and trying
to reach the high-cost/high price quadrant.

| don’t want to overuse the term “disruptive” héecause | do not believe
that the new technologies are going to replace RBSBiMa general way.
But it pays to ask the critical four questions witemparing a disruptive
product with the newcomer:

a) what can the newcomer NOT do (but the estallistehnology can —
this is hint about either currently or generallypmwssible goals, markets
etc. and shows us where the new technology mighe baved its strength)
b) what can the newcomer do just about as wehaestablished
technology? This gives us hints on general accédjpyad the new
technology by users of the established technology.

c) what can the newcomer do that the establishauht#ogy cannot do as
well for technical or financial reasons? There vid@ many items in this
bucket but they can be the deciding ones. We niiigtithere connections

to the things that were left out in a)
d) what of the much touted features mentioned uagylare becoming less

important or are outright useless in certain castekhis is a corollary to
c) and both show us the future market of the nehrtelogy.

The last point of course is especially importaihtve can find some trend
that requires exactly those features where thetaelanology excels, then
we can possibly do predictions about the succettseafiew technology.

One of the biggest drivers of new technology tremds certainly the
Web2.0 movement with cloud computing in its waked #re development
of super-large-scale search engines and applicpladforms like google,
yahoo and perhaps the success of large scale MasBtultiplayer-
Online Games (MMOGSs) like World of Warcraft or thebn-game
versions (Secondlive, OpenSimulator)

1. These platforms do a lot of multimedia processsigrage,
delivers, inspection)

2. that is not necessarily or only partially transacél and

3. requires the handling of large blobs (files).

4. High-availabilty and huge storage areas are needed.

5. Frequently a simple key-value store and retrievillde, the power
of SQL is not needed

6. They typically use multi-datacenter approaches wahters

distributed across the world.

7. They frequently need to present the “single image‘single
machine” illusion where all users meet on one platfto communicate.
This requires extremely efficient replication otrathuge clusters.

8. Those Web2.0 applications also tend to grow exthgfiast which
puts a lot of strain on administration and scaigbiReplication and cheap
administration are not exactly those areas wherBB really shine.

9. Integration between different applications is metjiently done
over http/web-services and not via a common dagabdash-ups work in
a federated way and do not require the creatianefbig data store.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 249 03/12/2010

Fowler calls this the move from Integration Datar8$ to Application
Data Stores where applications are free to staie data any way they
want.

Behind the success of Flickr or Youtube a rathgrsborage problem is
hidden: The storage of digital media at home. Rigibntent is growing at
an alarming rate due to digital video and highehiggtal pictures and to
some degree audio (which is different as few peomate their own audio
content). Few home users know how to spell backuphnhess are able to
implement a multi-tier backup strategy which pr@sdafety and
reasonably fast and easy access to older medigpfdiblem is not only
solved with a couple of external discs and someigliae: There are very
hard and also costly problems of digital contemblaed: At least one of
the backup discs should be at a different locdtbomeasons of disaster
recovery. That makes it less accessible and alsbtbaise as an archive.
And then there is the question of aging formats,dystems and operating
systems with unknown lifetimes.

Companies like Google will present themselves asatihive of the
world. They have the distributed data centersdcestontent in large
quantities and in a reliable way. Looking at howrsscurrently deal with
the storage problem | suspect that those servidebenpaid for in the
near future. Of course this will raise huge consemth respect to data

security and privacy.
Another option would be to use a Peer-To-Peer pobto turn the

internet into this archive. It requires a lot gblieation and defensive
strategies against attacks on P2P systems likeaVsubnets, re-routing
requests to attackers or simply throwing away aunaghile declaring
oneself as a storage server. We will discuss thieses a bit more in the
section on advanced architectures and technologies.

Kresten Krab Thorup covered various projects odpots at Qcon and |
have added some more:

. Distributed DB,

. CouchDB, (Document centric database written inrigylaith a
REST interface. Supports optimistic locking, crasity consistency mode
and “read operations use a Multi-Version Concuryebontrol (MVCC)
model where each client sees a consistent snapktiw database from
the beginning to the end of the read operatiordn(fthe technical
overview, [CouchDB]). Views operate in a map-redfashion taking the
documents and functions as parameters. Replicetibirdirectional and
peer-based supporting disconnected operation aaditeremental
replication. Schema-free so clearly not a regud&ational database or OO

mapper. _ o _
. Scalaris, (distributed, transactional key-valugestsn P2P base

with self-managing features and excellent requeslability,programmed
in Erlang. (see below)

. Drizzle, (Lightweight version of MySql see:
http://drizzle.org/wiki/Drizzle _Features comes wvaitth stored procedures,

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 250 03/12/2010

prepared statements, Views, Triggers, Query Cactideaver field types
but has a plug-in architecture for extension. Oad for multi-
core/multi-CPU architectures and lots of parakgjuests.

. RDDB, Restful Ruby Document DataBase, modelled afte
CouchDB with the following features (from [httpdfb.rubyforge.org/]:
Documents are simply collections of name/valuespairews can be
defined with Ruby code, mapping from a documerartp other data
structure, such as a String, Array or Hash. A recalock can be defined
to reduce the initial mapped data from a view. \Gaan be materialized
to improve query performance. Datastores, Viewstarel Materialization
stores are pluggable. Current implementations & Rile system and

Amazon S3.). Clearly not a regular SQL DB.
. BigTable, HBase,

. Hypertable,

. memcached,

. Dynamo ,Amazon.com, highly available key/value etor
[DeCandia et.al.]

They are document-oriented, distributed, REST-ablesand/or schema-
free. They seem to be fallout from major large-sd&lleb2.0 projects (like
memcaches that was written for LiveJournal.com.yTdegtainly cannot
do all the SQL magic of a full-blown RDBMS. Somegéisthey go after

“eventual consistency” instead of permanent coesdst [Vogels].
| cannot discuss all of them but will concentrateSzalaris because of its

interesting P2P architecture and extreme scabhalititt on memcached
due to its importance in the JEE environment fastring.

Key/Value Stores

Semi-structured Databases
Bigtable and HBase are examples of a new typetaf stare. Confused by
the use of “table” and “base” | found the shortlargtion of the store
structure in [Wilson] - which made it clear thagBible-like stores are
neither real tables nor SQL-capable databasesitétethe following
definition of Bigtable: A sparse, distributed, persistent multidimensional

sorted mapand explains each term.
“Distributed, Persistent” means that the dataséweed persistently across

several machines. Typically a distributed file systlike GoogleFS or
Hadoop Distributed File System is used to holdda&. “The concept of a
“multidimensional, sorted map” is best explainedwa diagram:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 251 03/12/2010

{// HBase : sparse, distributed, persistent multidimensional sorted map

"aaaaa" : {
"A]
"foo" : { <t2>:"y,, <t1>:"x"},
"bar" : { <t2>:"f*, <t1>:,d"},
"B":{
o <t3>Lw, <t2>...} },
"aaaab" : {
"A"]
"foo" : { <t3>:, world ", <t1>... },
"bar" : { <t2>:"domination,,, <t1>:*emperor“ }
B
" {<tl>:"ocean"}},
.}

Loosely after: [Wilson]

The diagram shows a map with keys. The first [&egk are called “row
keys” or simply “rows”. They are ordered lexicagnagally has a severe
impact on the way keys need to be organized. TReleeel within the

map is a set of keys called “column-families”. Ténare certain processing
characteristics tied to these families like comgis or indexing. Finally
inside each family is an arbitrary number of coldvatue pairs which
explains the term “sparse” used in the definitibis possible to associate
a timestamp with each value change and in this @asdumn/value pair is
actually a list of pairs going back in time. How fa configurable. The
diagram below shows the terms and the associatectigte of such a map.

.fow key" in sort in

lex. sort order
Column family
(sorted?)

Any number of

"aaaaa" : { columns (sorted?)
"A"{

"foo" : { <t2>"y,, <t1>:"x"},

"bar" : { <t2>:f*, <t1>:,d"},

Old values

e { <'T>:"W"’ <t2>...} }:
Current value
Timestamp per change

Loosely after: [Wilson]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 252 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 253

How about performance and best practices for segti-structured data
stores? Wilson mentions a number of important thitige most important
one probably being the organization of the row key@m.company.www
is a good way to write a key because in that case@mpany.mail,
com.company.someservice etc. all will be in closximity to each other

and an application will be able to retrieve thenthwust one access.
To get all the available columns within such a meuires a full table

scan. This situation can be improved for some cakiihthe data is put
into column-families which provide certain indexXesfaster lookup.
Compression is an important topic as well and @reahoose between
intra-row compression and row-spanning compres$iondetails see
[Wilson].
Forget about joins, SQL etc. and try to minimize tlumber of access in
such an architecture. You might decide to copyduplicate data just to
minimize cross-machine data requests and a powaduiory cache
holding joined data as objects is probably alse@essity. We will talk
more about the use of such stores and their ARIsichapter on cloud
computing below.

Scalaris

Scalaris is a distributed key/value store (a diGiy) with
transactional properties. It does not implemertS@L but does
provide range queries.

There are even more reasons to take a close ldbksaechnology:
It is derived from an EU research projects calletfrgan
[Selfman] where a number of excellent distributechputing
specialists are involved (amongst them Peter vandRd Seif
Haridi), it is written in Erlang, and it intends $olve two nasty
problems: Tying scalable and flexible P2P architectvith the
need for transactional safety with thousands ofiests per second
and creating a system with self-healing featuresutalown on
administration costs. And finally the Scalaris depers won the
IEEE Scale Challenge 2008 with simulating wikipeainatheir
architecture.

The follwing is based on a the presentation of $tesr Schitt and
others [Schitt et.al], Scalable Wikipedia with Bda
documentation from the company onscale.de etc.

Let’s start with the wikipedia architecture and solmad numbers.
Today it is not uncommon for large social commusites to
receive 50000 requests per second or more. (Jirgekel et.al.
mention 40000/sec concurrent hits against the Ftakhe with an
overall number of 35 million pictures in Squid ca@nd two
millions in ram cache, see [Dunkel et.al], page)ZBie diagram
below shows the typical evolution of such a sitthwespect to
scalability.

<<wikipedia evolution>>

03/12/2010

In numbers , this architecture works because bthiabiggest part
of all requests goes to cached data. Accordin@ehitt et.al] this
is 95% of all requests. Only around 2000 requestsecond go to
the database(s). This is still critical enoughdase some
architectural changes especially in the storage aseve have
seen. Clustering databases is sometimes not erzmabthe site is
forced to create another partitioning at the toghefexisting
storage architecture as is shown in the next dmagra

<<wikipedia with partitioned DB>>

And then there is the problem of multi-site datatees which
means replication of data across many machinestiethe
illusion of a single system.

<<mapping of tables to key values>>

DHT design: routing and transactions
Greedy routing (O(log n)), qualities of servicepgum (Paxos)
Churn resistance?

A new database architecture
Is it really time for a complete re-write of databaechnology?
Stonebraker, Hachem and Helland argue for suchnaite. Interesting
usage scenarios. According to [Stonebraker] allenodatabases can be
beaten easily with specialized engines with selfraging features.

Also see the discussion on Lambda the ultimatédmtopic:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 254 03/12/2010

Part V. Algorithms for Scalability

/O Models

Almost every system architect agrees with the state that I/O is one of the
most critical areas in system design and respan$iblperformance, latency and
throughput. But there is surprisingly little conses about the proper architecture
for handling incoming and outgoing data. It beginh the question of how many
threads should be used? This immediately leadstowee next problem: Kernel
threads or green (non-preemptive) threads? Theiqonex blocking vs. non-
blocking adds to the threading problems: the catslifferent between different
types of threads. Asynchronous, event-driven agchites bring a new
programming model with them and they handle netveord disk 1/O differently

in many cases. Do threads have specific tasksaaidlhey all perform the same
tasks? And finally: are threads or events better?

We will discuss some of the concepts and try tavanshe following architectural
topics:

- Connections: how many? Lifetime? Cost for Constomcand as a
resource? Spoon Feeding Effects

- Threads — how many? Different functions or all shene? Kernel or green
threads?

- Data handling and copying

- Memory consumption

- CPU usage and context switching/queue problems

- Resource tracking (connection free etc.)

- Threading Models for I/0

- Nio and how to model 10 processing and how to prigpead/write data
- Synchronization problems with select-type interface

- None-blocking I/O (epoll)

- Asynchronous I/O (linux interface)

- Is a staged/pipeline architecture better? (SEDA)

- Events vs. Threads

- I/O Programming Models in general and on multi-carehitectures

But before we delve into the specifics of I/O presiag we need to define some
technical terms which will be used frequently oae tiext pages.

Definitions:

A context switch means a full context change fraaruo kernel, saving all of the
previous task state and establishing the statecohéwly selected task. It does not
matter whether processes or kernel threads arelsut The operation is
expensive and wastes cycles that could be usedhvatberver to process
requests.

Blocking means that a kernel thread or processatatontinue and needs to give
up the CPU. This will be done by doing a contexitawand the thread will be in

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 255 03/12/2010

state waiting for either 1/0 or condition variabkgfterwards. A blocked thread
does not compete for CPU. Blocking is like a contaxitch rather detriment to
server performance

Non-Blocking I/O means that a system call retumeor (E_ WOULDBLOCK)

if an 1/0O request made by the application wouldlileablocking because the
kernel cannot complete the request immediately.a@pication can then perform
other tasks while waiting for the situation to irope. This is effectively a sort of
polling done by the application. Because pollingastly and ineffective non-
blocking I/O typically also provides a way for thpplication to synchronously
wait for a larger number of channels to offer da¢@ad) or accept data (write). A
typical example is the “select” system call.

Synchronous processing means call and return gtgtessing. The calling code
waits for a response and continues only afteréspanse has been received. If
the called code takes longer to supply the respthresealler is blocked.
Synchronous is defined semantically as to requidiext response. The fact that
a caller will be blocked while waiting for the resyse is not essential.

Asynchronous processing in a strict, semantic definmeans that the calling
code does not expect a direct response. The asyrals call done by the caller
may cause some action later but it would not bespanse. The caller ideally will
not keep state about the asynchronously requestiehaln its purest form
asynchronous processing leads to an event-dri\aitecture without a
sequential call/return mechanism.

Asynchronous I/O: Not so pure forms of asynchrogrydsand receive events
within the same layer of software as is done fOrpfocessing typically. This has
to do with the fact that most I/O follows some resfresonse pattern which
means a request enters the system at one poith@mesponse leaves the system
at the same point. Very popular and effective aralmnations of synchronous
and asynchronous processing steps as can be sternway Starbucks takes
coffee orders synchronously while the barristasvireffee asynchronously in the
background with the customer waiting for the syodaus order/payment step in
the foreground [Hohpe]

Thread denotes a virtual CPU, an associated funttide performed and a stack
allocated. The stack allocation is mostly done static way which leads to
memory under- or overallocation. Threads can bedte¢hreads, visible to the
underlying operating system and its pre-emptiveedaler or they can be “green”
or user level threads which are realized in a ne®mptive or collaborative way
in the user space. Locking mechanisms are onlyatkgdcase of kernel threads
as user level threads are not pre-empted. Theyrater control of a user level
scheduler and the application. While most applucegican only use a small
number of kernel threads concurrently the numbersef level threads easily
goes into the hundreds of thousands. User leveathpackages have once been
popular, fell from grace when systems with multiglieUs (and now cores) were
built and are now getting popular again due toréadization that the locking
primitives needed with kernel threads and sharaig stre exceedingly complex
and on top of that a performance problem due teeased context switching and
contention. It is important to distinguish the ceptof concurrent kernel threads

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 256 03/12/2010

from user level threads mapped to one kernel thrida€r level threads allow the
organization of processing into individual taskshout having to pay the price
for concurrency control. User level thread package=d to do their own
scheduling of user level threads and they cantmivadalls to block the one
kernel thread. Erlang, E and other languages usedhncept extensively for
application code and show extreme performance bgdo. This is because the
one and only kernel thread does not block unnedfsdastead it just continues
with another available user level thread aftefiating an action.

What happens if an application or server code naedse more CPUs or cores?
In other words more kernel threads? Here the andeends on whether the
code uses shared state. If it does either lockiaghanism have to be used or —in
case of user level threads — a second runtime rniedmsstarted which runs in a
different process. Both architectures are notgutiih every case. Currently the
growing use of multi-core CPUs has raised conshderaterest in solutions

which make the use of multiple kernel threads fmsdiut transparent for
application code. We will discuss those approaahmdése section on concurrency
below, using Erlang and transaction memory as elesnp

I/O Concepts and Terminology
A canonical representation of /0O might look likest

Which thread will

Which socket
has read/write
options? How

Connections: Blocking, go after socket?
how many, non-blocking How many
resource or asynch? threads?
weight, DOS, Signaling
slow, mechanism? Blocking?
permanent?
"s Thread FS |
\ \
Net
/' 0s Stack sockets - W
) data |___, | data
/ i

many sockets

exist? Which
code gets
executed?
Parallel?

Let’s discuss the critical components from leftight.

Connections
Connections used to be a hard limit in server aesiperating
Systems did not allow arbitrary numbers due tofélcethat each
connection needs state within the system to be gddrating

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 257 03/12/2010

Systems had to be changed to support larger nurobers
connections.

A special problem is the question of permanent ecthions. Http
was originally designed to close connections atery request,
with httpl1.1 the “keepalive” option allowed a clig¢o request
several resources from a server using the sameacbon. From
the literature it is absolutely not clear whethes is a good thing

to do or not but we will give some hints below.
Slow connections force the server to respond sldyl$spoon

feeding “ the result to the client. This can seleimpact
throughput as it binds precious resources withenstérver and
causes lots of unnecessary context switches.
The operating system typically receives data Viarmpts.
Network data arrive fast and need to be storeckguiBut how
will an application read those data? Reading ashnaggoossible in
one go or doing partial reads? And why is this sarcimportant
guestion? Given a fast network and few clientsreating all
available data in one go might lead to extra stallshe network
layer which prevents the network from running dit $peed.
Actually it will run WAY below speed as re-synchipation takes
a lot of time (see the example the NIO section\Wglo
The Asynchronous Web
When you look at the Web today, it's pretty mucedan
a synchronous interaction model: The user interagth
the application, and the application responds vgitime
updates. When you move into the asynchronous Web, y
have the ability for the application to deliver ®a&hanges
to the client, without the user necessarily hatmgitiate
those updates. In effect, you can push updatdeetolient
running inside the browser.

Asynchronous push provides information to the user
instantaneously, without waiting for the user tquest that
information. An early, and simple, example is stpg&tes
that continuously change. Using asynchronous Web
technologies can keep a user updated of those elsang

When you take that concept and look at it from a
collaborative perspective, you can have one usanof
application interact with the app, and cause chantjat
others will see. Instant messaging and chat appboa are
examples of that.

If you apply that concept to an even broader categd
Web applications, you can create very sophisticatast
interactions. That's especially the case in thetexinof
social networking applications. Some social netwsités
now provide photo sharing that goes beyond simp#tipg
of photos. These applications let you sit down watlr
friends, however far apart you may be physicalhd take
them through your slides, give them a slide shosv the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 258 03/12/2010

Web. That's the kind of capability the asynchronab
can deliver.[Maryka]

Fequest
> - server event
< response
Mg LSt
server ayvent
% TESpONSE

HTTP Long Polling

- 3 T emenslaticn
Ajax 3 lode
meﬂﬁmmw e & prpsentation
Tk Wil L2 [
Mool Application E'
[V EE
2 =t
*
¢ 0 Rrranr vyl
Aol ation e —
Lste [hangs Respuerst

The Keep-Alive Problem
What could be wrong with keeping a — potentially
expensive - connection open, waiting for more retgie
Theo Schlossnagle calls it “a blessing and a cuaed”
points out where the problem really is. It is notyathe

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 259 03/12/2010

memory consumption of a connection which had been a
problem in the past. Nor the slow algorithms deplirnth
event management and notification (e.g. seledt().the
threads being blocked and waiting for communication
this connection. The number of connections and kéret
they are kept open does not matter once you swoteln
asynchronous handling of it: Do not block a threeiting
for more requests which might come some time lateu
are starving your system for important resources.
[Schlossnagle] (paper on backhand).

Actually this is a very common anti-pattern forahghput
and performance. It also shows up in the handlfng o
database connections. If a connection gets assigreed
request automatically and kept for the whole sertiime of
the request this is very convenient for developBus.at the
limitied number of database connections availalgeie
Oracle doing so means severely restricting the rmurab
requests which can be concurrently handled to timeber
of database connections. You need to acquire dease
connections dynamically and only when and as lbeg t
are really needed.

I/O Processing Models Overview

Doesn't this
block as well for

— completion

Blocking Non-blocking
. Readiwire
Syrehronous Reac/write (C_NONBLOCK)
2 muliplexing
Asynchronous I
y (select/pall) A

Why is this —
asynchronous?

Adapted from: T.Jones Boost application performance us

Thread per Connection Model

notifications?

ing asynchronous 1/0

In this model the number of sockets correspondsdamumber of
connections. Some of these sockets might havetadd@read,
some might be able to accept data to write (sekumjlications
have different options to find out about these st&kThe simplest

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 260

03/12/2010

way was to just tie one thread to each socket.tfitead would try
to read or write and block if the socket had nadatin the write
case could not accept more data. This method weshusJava up
to version 1.3 and was heavily criticized.

Application

(Kernsl)

System call - kernel context switch

[I initiate read /O

Read|)

Read response
Data movement from -—

kernel space to user space

Application blocked
AN

From: [Jones]

The reasons where fourfold and had to do with dx#ubse
threads. From a resource point of view threads shose
problematic properties. First, they require a laageunt of
memory in the virtual machine. This memory is nekfie the
thread’s stack and is usually fixed at startup. tmeads can
easily drive a VM towards memory limits. The secqndblem of
threads is scheduling. Scheduling is automatibimmodel and
not under application control. Scheduling also nsezontext
switches and those are expensive if we use kdmresds. And
third as we have seen in the modelling chapterntbee threads
are used, the longer the response time becomes doatention
and coherence reasons. This is especially tri#e threads are
mostly runnable and contend for a time-slice of@RJ. The
fourth reason finally is blocking: making servededlock due to
data not being available again causes context Ismtwhich

ut down on the c s available for thel code.
isnn“)eye oHns means th ?ter a certain num a sis tied

to connections the system will spend most of itetivith garbage
collection and context switching. The “Thread-pem@ection”
Model really puts us between a rock and a hardeplae want
more threads to be able to service more concuregpiests. And at
the same time the related overhead will diminishadility to
service those requests quickly.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 261 03/12/2010

To be fair we need to acknowledge that the problertisthis
model come from specific implementations of it @nd not
necessarily intrinsic properties of the model. Wi aiscuss an
approach that tries to prove the effectivity of theead-per-
connection model by fixing some of the implememtateficits
[vanBehren].

The good side of this model clearly lies in thehétectural
simplicity of using threads for handling I/O: thed¢ad
encapsulates all the connection related stateesstorportant meta-
data like security information per requests and$éat across the
server functions and keeps the simple, sequentgramming
paradigm.

What are the alternatives to threads per connéttion
Non-Blocking 1/0 Model
Let's assume for a moment that we have got onlytbread for all
connections plus the application functions. Cle#rlg thread
cannot block on one specific connection waitingdata or buffer
space. A very simple form of this model would h#we thread poll
all connections, disks etc. in a round robin faskaad process all
input and output that would not make it block.

Applicetion] { Fernel }
I Application is polling!

System cal - kernel context switch

=AGAIN / EWOULDBLOCK _ |“| initiate -ead 10

Application is polling!
Syslem cal - <emel contect switch
ZAGAIN FEWOULDBLOCK |-

-

Resad response
-y

Application is polling!
System call - kernel context switch

I
[
|
g ﬂ

Raad{)
O .[3 I |

kermel space o user space

(-

Adapted from: [Jones]. Allows alternating 1/O and
other app. processing

While conceptually simple the programming turnstoube quite
ugly because the application code needs to dmitsseheduling
of tasks (we will discuss better schemes below,tbeguse of user
level threads in Erlang that keep the programmingpke). It also
needs to manage the state of connections and tequegsicitely

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 262 03/12/2010

because there is not a one thread/one connectatiorewhere the
state of a request is kept on the thread stack.

And it is not a very efficient scheme either beeatigan take quite
a long time for the thread to react on an inpute®becoming
available. That is why polling on non-blocking soes and sinks is
usually avoided. Most systems that offer pollingpabffer a way to
wait for a range of 1/0 devices within one systeat (select),
thereby realizing a synchronous notification model.

All non-blocking or asynchronous I/0O processingrekane
additional problem: partial read or write requests possible at
any time forcing the application to deal with theFhis can lead to
subtle errors when e.g. an application assumeghbdtytes
received can easily be transformed into a stringidé characters.
What if the last character has only been transthittéhalf? <<add
code and author>>

Synchronous Notification (Multiplexing) Model

<<semantics behind interest setting and signals® Randitions?
>>

There are ways to build efficient I/O processingmanly one
thread. One example is to have it wait for ANY ©ection. This is

called non-blocking I/O with synchronous notificatiand has
been around since Unix server programming started.

Applicaton

Read () [

(Kearnel)

Systam cal - kernal context switch

EAGAIN { EWOULDBLOCK : |- | Initiats read 11O

Select {)

Read "esponse
Select - data available (readable) |

Apalication blocked

System call - kernel context switch

Data movement from
karnel sxace to user space

Read ()

From: [Jones]

It is unclear whether we should call this modehagynchronous
one at all. If reads and writes happen they arfopeed
synchronously and there is no overlapping of noramal 1/0

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 263 03/12/2010

processing within the application code. The applcaneeds to
wait synchronously for reads or writes to becomespne and then
needs to perform the actual reads or writes.

The system call for this features was called “d&laad it allowed
one thread to check concurrently on a whole arfayonections
represented by their file descriptors. Unfortunatel select the
limit of connections was set to 32. Nowadays systalis like
epoll in Linux have roughly the same functionabiyt deal with
more connections albeit at the price of slow adstiation code in
the kernel if the number gets really high. Otheplementations
even avoid this problem (see the C10k article betotdesigning
fast servers”)

The code for a one thread solution would look rdudjke this:
While (true)
Try to read non-blocking;
Try to write non-blocking
Do wait for specific socket event() with read oitensignalling on
On event ==read X

Turn off read signalling for socket X

Read from specific socket X until enodata is sigda
Done
On event == write X

Turn off write signalling for socket X

Get data to write

Write to socket X till ewouldblock is signalled

Store the data that could not be written yet.
Done

This non-blocking code is rather clear and avoius a
synchronization problems. It needs to deal witlfed&nt possible
tasks though (reading or writing) which means expétate
management. The bad news is that the code canaohuisiple
CPUs to improve throughput and that lengthy opensticould
starve other connections because the thread thbs wéh
connections also has to perform other chores. Am@ne limited in
the number of channels we can observe with sepait/e

Just about the worst case would be if the threaddalock on
either the database or the file system during tbegssing of a
request. It turns out that not all operating systame able to
combine disk and other interfaces under the nookirig API. If
this is not possible we need to use another thitegtduns in the
background and accepts tasks from our thread wiacoklles the
connections, possibly via a buffered queue. Therttoead does
only write into the queue and there is no danget labcking on
some backend system. Instead, it can immediatehytack to
waiting on the network. To make this work we wougg two
rather common patterns in non-blocking processoegarios: The
first one is to simulate non-blocking operationgmilocking

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 264 03/12/2010

background threads which simply accept tasks isbyebe non-
blocking foreground thread. Notifications are thiehvered to the
non-blocking thread either through a local chanvi@th is part of
the select range observed by the non-blocking thr@a—
assuming that the non-blocking thread comes by&estly
because it waits in select with a short timeoutsgel — the results
are placed somewhere to be picked up later. Thetserps can also
be used to relieve the foreground non-blockingatireom other
tedious work once the channel management gets imaokred.

But what happens if we want to use our multiprooebstter or
there are some threads which have to block andawe ho clever
runtime that secretly simulates non-blocking bebawi

There are basically three szenarios possible:

- several I1/0 handling threads which are responsdsle
different channels. They can run within the santegss (which
either requires explicit concurrency control by #pplication) or
in separate processes (which would be the simptdstion)

- one I/0O handling thread which delegates furthecgssing
to other worker threads.

- A combination of both with a common threadpool of
worker threads.

These options are the same for asynchronous pingessy.

Two small questions arise in this context: whatgesags when a
read or write just goes through without raising an
E_WOULDBLOCK error? The answer in the case of ntotking
I/O mode is simple: Nothing special. The 1/0 getsfgrmed
synchronously and if requested, select will sighalavailability of

the channel at a later time.
This will be very different in the case of asynatwas 1/0 because

here the caller does not expect the call to geutin immediately.
If it does though we have a problem: the completiotification
will then be handled in the context of the called & the
completion handling code just starts the next @atisn we could
finally blow up our stack with recursively calledrapletion
handler code. On the other hand it looks not véfigient to just
forbid the caller of an asynchronous I/O functiorperform the
operation if it is possible without blocking. WelMdiscuss

optimizations for this case later. ' _
The other question is about the behaviour of I/@dtiag threads.

The answer simply is that they are not supposdibick at all.

Now we have to decide which thread is going to katite
channel(s) via select or epoll. Just one threathaltime? Any one
thread at a time? All threads at the same time?

The answer pretty much depends on our operatirtgrayand its
implementation of non-blocking 1/0. Most of these aot able to
be handled by several threads concurrently — theyat safe for

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 265 03/12/2010

multithreading. If e.g. two threads try to changgalling
behaviour concurrently, an exception will be thro®ee the
additional complexity for synchronizing channel ragament in
[Santos]). This means we have to chose eitheojustpermanent
thread or synchronize between all threads so tisaione will be
the owner of the select at any time. Or assign mélgrstatically to
threads which are then solely responsible for miagatpem.

How does processing look in the case of all thredtgsnating in
select management? A thread would acquire a lackdiect entry
and start waiting for events. Alternatively it wdudet suspended
waiting for the lock to become available. On wakém select
the thread will do whatever needs to be done vanlather thread
wakes up from lock-wait and starts waiting in tieéest call.

With two of the three szenarios from above we hatreduced the
concept of worker threads. How many threads aréalkeng here?
Not as many as we would use in a thread per coionestenario
but more than two. Some authors suggest to Usd@re n is the
number of cores available. But we surely do nottviapay large
context switching costs so we keep the number small

How does the scheme with worker threads compaiteetones
where the threads handling the channel will alsethégrocessing
of the requests? With the “all-in-one” threads e&da clear
control of the select call semantics becausedbige by one thread
only and — in case we share channels - we havepession point
for all threads waiting for access to channel managnt. And this
means context switches! How bad are those convaidiees really
(how frequently do they happen) and could theydpdaiced with a
short spin-lock (busy wait)?

The frequency of context switches will probably eleg on the
distribution and frequency of incoming and outgodaga and their
associated events. With only a few events happans} threads
will probably wait for socket access. With many eigehappening
most threads will be busy serving those and therelaances that a
returning thread can go directly to the next sogk#tout wait. As
the wait-time is hard to calculate a spin-lock Wity waiting is
probably too dangerous but we could think abouwirapgromise: do
a short but limited spin-lock to test if socket bews available. If
not, go into wait/sleep. We could perhaps evensadhe spin-lock
time depending on the frequency of events on tbketdut this
sounds a bit theoretical for my taste. And the fegete behaviour
of threads becomes extremely critical. We wouldoptiy restrict
reading and writing to a certain amount of dataguemt to ensure
equal and calculable read/write times per thread.

Alternatively in our concept with worker threads weuld propose
that only one thread deals with connections affdlis thread loops
between waiting in the select and either readiogfa socket and

writing the data into some buffered queue or ggtsome data

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 266 03/12/2010

from a buffered queue and writing them into thekebthat

became available. All other threads would read ftbenqueue and
write into it. The thread that handles the conmectieeds to be fast
enough to keep the other threads busy and prewericessary

context switches due to waits on those buffers.
Instead of contention for channel access we now pavmanent

hand-over costs between the I/O thread and theexdnkeads.
Ideally the channels could be dedicated to spettifieads which
share a common threadpool of worker threads fargdeion of
requests. This would avoid contention at the chilenel.

Both architectures — the one with all threads siggitie channels
through a mutex or the one where only one threas donnection
handling and uses worker threads for delegatiomsdovork well.
There is a tummy feeling that both could exhibé tbllowing
behaviour:

- at low load levels the processing is inefficient tmlerable
- a little bit higher the processing is really rowgid stumbles
along

- at even higher levels the processing runs very #mhoo
with almost no unnecessary context switches. Toeiviang worker
threads would not block because there is alwagsjaast pending
in the queue. The I/O thread does not block mudaulse there is

always a request pending at the channel level.
- at extremely high request levels the single I/@4dlris

perhaps unable to keep the workers busy. It walb &le unable to
administrate large numbers of channels effectiyely select and
epoll problem). We would like to give our I/O thcemore CPU
time but his is not easy when the kernel doesc¢heduling.

Splitting channels and adding cores will help some.
- The concept of all-in-one threads with each onege

responsible for a certain number of channels ntighbetter in the
case of extremely high request levels becauséhtkads do not
need to wait often for new requests. More CPUsoeswill help
but not increasing the number of threads.

Can we run a simulation to prove this gut feeli@yshould we try
to program it and measure the results under load&t\Wind of
instrumentation will we need for this? How self-tratling could
the algorithms be? Wait-time and context switchresa#éso
dependent on the number of threads used. Shoutdywe adjust
those at runtime? Should we take over schedulirmgim
application?

Using buffers to synchronize between threads igeglangerous
for performance: it can cause high numbers of carswitches.
The same is true for naive active object implemtgria.
Scheduling of threads needs to be under the carittbe server
code. This means user level threads, just as edjby Erlang
actors.

Digression: APl is Ul or "Why API matters"

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 267 03/12/2010

The cryptic title stands for an important but fregtly
overlooked aspect of API design: an APl is a ustrface
for programmers. True, its design should be staddehaps
extensible etc. But finally programmers will haeditve
with it and its quality - or the lack of it.

Christophe Gevaudan pointed me to an article bynMic
Hennig (I know him from the former disobj mailingt) in
the queue magazine of ACM on the importance of APIs
The author used a simple but striking examplestiect
system call APl in .NET as a thin wrapper on tophef
native W32 API. The way the select call was desigmad
already its problems but the port to windows maaeorse.
The author lists a couple of API defects that fine¢sulted
in more than 100 lines of additional code in thpl@ation
using it. Code that was rather complicated andr gnrone
and that could have been avoided easily with a&bett
interface specification of the select API.

For the non-Unix people out there: The select systall
lets one thread watch over a whole group of filectiptors
(read input/output/error sources). Once a file dpsar
changes its state, e.g. because of data that értive thread
is notified by returning from the select call. T$eect call
also allows the thread to set a timeout in casieo
descriptor shows any activity.

What are the problems of the select API? The dingt
according to the author is that the lists of filechgptors that
need to be monitored are clobbered by the selsttisycall
every time it is called. This means that the vdeiab
containing the file descriptors are used by théesg<all to
report new activities - thereby destroying theerallsettings
who must again and again set the file descriptass i
interested in. The list of error file descriptots&vbseems to
be rather unnecessary as most callers are onhgsgtéal in
errors on those sources they are really watchingfout or
output. To provide an error list of file descrigdo watch
should not be a default.

But it gets worse: The timeout value is specified i
microseconds which leads to a whopping 32 minute
maximum timeout value for a server calling selétiis is
definitely not enough for some servers and nowecsithre
forced to program code that catches the short tinaod
transparently repeat the select call until a reslenaalue
for a timeout is reached. Of course - on everyrreftom
the select caused by a timeout the callers datablas are
desroyed. And on top of this: the select call duststell the
caller e.g. via a return call, whether it returiie to a

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 268 03/12/2010

timeout or a regular activity on one of the obsdrirke
descriptors. Forcing the client to go through tktslof
descriptors again and again.

The author found a couple of anti-patterns in A&dign,
one of them being the "pass the buck" pattern: ARk
does not want to make a decision and pusheshetadller.
Or the API does not want to carry a certain resibaitg
and pushed it to the client as well. A typical epéarn
C/C++ programs is of course memory allocation. Voic
clobbering the callers variables the API could cdled
memory for the notifications containing file degtars
which showed some activity. While this certainlyd@y in
those languages as it raises the question whoelgidse
that memory finally it can easily be avoided byciag the
client to allocate also those notification variabkehen he
calls select.

But passing the buck can be more subtle: An ARIdbas
not allocate something definitely is faster. Butiymve to
do an end-to-end calculation: somebody then HAS TO
ALLOCATE memory and the performance hit will simply
happen at this moment. So while the API may tedefait
does not lead to a faster solution overall.

Similiar problems show up when there is the questio
what a function should return. Lets say a functietrns a
string. Should it return NULL or an empty stringdase of
no data? Does the APl REALLY need to express the
semantic difference between NULL and an empty g#&in
Or is it just lazyness on the side of the API desi@ How
does the decision relate to the good advice torprodor
the "good case" and let the bad case handle by an
exception?

API design is difficult as it can substantially degse the
options of clients. But avoiding decisions does malp
either. The select example really is striking eshibws how
much ugly code needs to be written to deal witla@d API -
again and again and again...

Finally, another subtle point: The select API ubes.NET
list class to keep the file descriptors. Firststtliass is NOT
cloneable - meaning that the client can alwaysiiecover
the whole collection to copy an existing list. Astaike in a
different API is causing problems here. And secaxntist

is NOT A SET. But select PROBABLY needs set sentanti
for the file descriptors - or does it make senseae one
and the same file descriptor several times inigtddr

input or output? This hardly makes sense but -goein
pragmatic - it might work. The client programmeeda

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 269 03/12/2010

quick test with duplicate FDs and voila - it workdie only
question is: for how long? The behavior of selethw
duplicate FDs is NOT specified anywhere and the
implementors are free to change their mind at ang,tlets
say by throwing an exception if duplicates are fifin
Suddenly your code crashes without a bit of a chaimg
your side. Usiing a set type in the API would havade the
semantics clear. Ambiguous interfaces and onestody
tightening the screws causes a lot of extra ams/in
development projects. | have seen it: A loselyrdsdi XML
RPC interface between a portal and a financial sieateer.
And suddenly the server people decided to be ntact &
their schemas...

All in all an excellent article on API design. Raadnd
realize that API design really is human interfaesign as
well. It also shows you how to strike a balanceveen
generic APIs on lower levels and specific APIs hagis
overloaded with convenience functions, closer to
applications. Method creep, parameter creep etcalap
discussed.

Asynchronous I/O Model

(Solaris Example vs. JDK example: kernel vs. vmdui§ internal
threads. Hand-off costs. Stack management duertedrate
completion of 1/0O.

<<completion instead of notification, problem ohsiironous
calls, system thread notification, concurrency pepis and race
conditions, run to completion problem, programnmingdels>>
<<interplay between app.processing and io compiepoe-
emptive, parallel, polling (waiting)>>

What is the difference between non-blocking I/Ohwvd@ynchronous
notification and true asynchronous 1/O as it isidiggl in the
sequence diagram of Linux AlO below?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 270 03/12/2010

Application l Kemel)

aio_read ())
System call - kernel context switch

1

I initiate read /0

Other
processing

Read response
Data movement from kernel space to user _I -

2?2
. space with signal or callback |'

o
processing

o

From: [Jones]. How are data moved? Is application proce ssing
interrupted? When is completion signaled? Does applicat ion wait
for completion signals?

The first noticeable difference is the behaviouriray
initialization. Asynchronous I/O as it is frequgntinplemented
does not assume that a call might directly go thnod ypically the
calling code assumes a fast return after initiagizhe 1/O. If
indeed the request could be fulfilled immediatéhyill create a
dilemma for the calling code: should it call themgetion code
right away or still schedule the 1/0O for completiatna later time.
We will discuss the problem of continuations below.

The second noticeable difference is the true oppitay of I/O
processing with other applications code: whilekémel is
processing the asynchronous request the appliciatioee to
process some other code.

And the third noticeable difference lies in the wepjifications are
handled. In the non-blocking case with synchronmigfication it
means that when the blocked select call returngeddinaction(s)
on some channel(s) have become possible withodinig#o a
blocked read or write call. In the true asynchranoase there is
also a form of notification but it is called comtpba. It means that
the 1/0 request has already been processed anththdave
moved from kernel to user space or vice versa.

What is left is to inform the application about quieted requests.
This “completion handling” can e.g. immediatelyrsnew
asynchronous request. Or it can detect an erratitton and repeat

the previous request or abort it.
By looking at the sequence diagram we notice thexetare a

number of open questions regarding this handlingpaipleted 1/0
requests: Who calls the completion handler? Howvelmeh does
the application learn about completed requests? Bpplication

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 271 03/12/2010

code run in parallel to completion handling ortipre-empted by
the completion handler?

What would be the ideal solution with respect t@tighput and
performance? Sureley it would be necessary to e@dmpletion
notification as quick as possible to allow the mexfuest to be
started. By looking at the AIO API calls below weeghat there
are system calls which allow the application toreabout the
status of a request either by polling or by waitioga notification.
But both seem to be rather inefficient. And waitfoga
completion notification does not sound much diffeerieom
waiting for a notification about a possible 1/0 uegt with non-
blocking operations and synchronous notificatidmonl the other
hand we allow the asynchronous completion handbrigterrupt
application code we might create race conditiogsitthe
application code was just about to prepare new fdata
transmission. Does this mean we have to synchr@uzess
between completion handler and application coda® dduld lead
to the completion handler needing to block waifimigthe release
of a lock. Or we settle for a solution where cortipleevents are
only sent by the kernel when the application hdered kernel
state (most likely due to performing a system céil}his case we
just assume that there is no chance for a racatcmmtut we pay
for it by having a non-deterministic time span betw end of I/O
processing and the notification of the applicatibhnis is btw. the
solution used by signals.

API
function
aio_read Request an asynchronous read operation
ai o_error Check the status of an asynchronous request
ai o_return Get the return status of a completed asynchroremisest
aio_wite Requestan asynchronous operation
gSuspend the calling process until one or more d@synous requests have
completed (or failed)
ai o_cancel Cancel an asynchronous I/O request
l'io_listio |nitiate a list of I/O operations
From: Tim Jones, Boosting... [Jones]
The code pieces of asynchronous I/O found in tkeedliure seem
to prove those difficulties. When asynchronousu&@s the
suspend system call the difference to non-blocki@gwith
synchronous notification becomes irrelevant: weehave system
call for initialization, one for notification anche for checking the
result. And we have also three system calls albelifferent order
and function in the other case.

Description

ai o_suspen

Let's look at an example using Suns AIO API togethigh a
threadpool [Sunl]:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 272 03/12/2010

Client requests

threadpool @@

@ AIO result D
object
request or Poll Thread

sult object

Return to
thread pool

request
Aioread() Result final? Aiosuspend()
Aiowrite()
| Aiowrite()
kernel clients kernel

In this example the main thread receives clientests and
forwards them into a queue. At the other end ofgiireue threads
from a threadpool extract the requests and stadgsising. This
typically involves asynchronous I/O to some othattadsource. The
worker threads return to the threadpool and waih&w requests
to arrive in the queue. A poll thread performsacking wait for
results from asynchronous 1/O and puts the resuit&ires also
into the queue. Like the original requests thosgcsires are later
extracted by worker threads which check for theustdf the
request has been completed the worker threadetilim the data
to the clients, otherwise a new cycle of AlO reaitévs started.

Raw I/0O throughput in this design is also dependarthe polling
thread reading the results of the AIO operationiskiyiand on the
context switching costs of the worker threads. Suggests other
means of notifications like signals and doors big unclear
whether they would provide better performance.

We can compare this mechanism with the way a tyjeael
handles writes to a serial device in an asynchrengay: An
application writes data to a UART device. The kénopies the
data into a driver buffer, puts the applicationtioa blocked
scheduler queue and writes the first byte intootigut port of the
device. Once this byte is serialized and put onntine the UART
device will cause an interrupt which will extralbetnext character
from the buffer and write it into the output postwaell. Once the
last byte has been consumed the interrupt codecaulse a change
in the state of the blocked application which beesmunnable
again and returns to the user level.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 273 03/12/2010

Theoretically the application could just dump tla¢adinto the
kernel buffer and return immediately to continuensgrocessing
in the user level. Via some wait() or suspend(jesyscall the
application could learn about the outcome of threvious write.
Java Asynchronous NIO
[Roth] Gregor Roth, Architecture of a Highly Scd@ablllO-Based Server
Reactor/Proactor Patterns, framework integration,

[Santos] Nuno Santos, Building Highly Scalable eswvith Java
NI1009/01/2004ttp://www.onjava.com/Ipt/a/5127

Handler State Machine

Ready 1o

read
Waiting to ﬂala :n%;ﬁuer:_ad Reading
(read interest) [HH’;“_ ity y \terest) (no inmres!)

F{r_-qu sl
read

Processing
RBFI:- Sent Request
(anable read interest) (no interest)

Waiting to write Ready to
(write interest) write
Reply partially sent

(enable wiile inlecas!)

Send reply
(enable wrile inlerest)

Writing
{no interest)

From Nuno Santos (see Resources). The state machines cleawg the influence of
non-blocking on the design of the handler which needsamtain device or input state
by itself. A regular thread would just handle one regjaesl as long as input data are
incomplete just sleep (context switch)

[Naccaratp Giuseppe Naccaratlatroducing Nonblocking Sockets
09/04/200nttp://www.onjava.com/lpt/a/2672

[Hitchens] Ron Hitchens, How to build a scalabldtiplexed server with
NIO, Javaone Conference 2006,
http://developers.sun.com/learning/javaoneonlin@®2€oreplatform/TS-

1315.pdf

[OpenJDK] Notes on the Asynchronous I/0O implemeattNov. 2008
Virtual Machine Level Asynchronous 1/O

The following is taken from the paper on asynchtmBO
implementation [OpenJDK] and describes various ways
supply threadpools to the async. event generata fifst
concept involves a thread pool where threads extrac
completion events from ports of an asynchronousicbla
group and dispatch them to user completion handféhen
the handlers finish, the threads returns to waibingorts.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 274 03/12/2010

The design requires that handlers to not blockfindely
as this would finally lead to events being no lanigendled.
It is of course also important to set the numbehofads
correctly to avoid large context switching times.

Complete I/O operation
Invoke completion handler

Ta ® 0@

1-N threads (user-supplied thread pool)

The second case shows the use of two thread oésof
them is used only internally by the event extractmgic.
Those threads are not allowed to block. They vahdhoff
events to threads from the user supplied thread pbose
threads in turn can block during completion hargltut
the threadpool itself needs to support unboundediqg to
avoid blocking the internal threads.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 275 03/12/2010

User-supplied thread pool

QQQQ

Complete 1/O operation

Execute task (to invoke handler)
110 Port
O O

1-M internal threads

The paper also discusses what happens when an 1/O
operation can finish immediately. While this ishet nice
from a performance point of view it means that¢hking
thread (if one from the thread pool) can start cletgmn
handling code immediately as well. And this codéum
can cause another read or write which theoreticaltyalso
finish immediately again causing the completiondiento
be run and so on — until the thread stack explodes.

More frames...

readivwrite

More frames.

read/write

More frames. ..

read/write

sp

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 276 03/12/2010

The implementation tries to allow several completio
handler frames on the stack for performance reasons
limits its number to 16.

In “beautiful architecture” Michael Nygard descrthe
development of an image processing application used
throughout hundreds of stores in the US where ezgul
people can bring in their pictures and have theimtgut in
various forms and formats [Nygard]. Here the main
problem was that the main operators of the systene w
non-technical and in some cases even customersné&tine
most interesting bit was when he described using BHO
for image transport between store workstationssioie
servers. Image transport had to be highly reliablé very
fast too. Nygard mentioned that this part of thejgut took
rather long and showed the highest complexity withe
project. Just matching the NIO features with higkeex
networks and huge amounts of data was criticalséie
that e.g. using one thread for event dispatch and
manipulation of selector state is safe but can tead
performance problems. The thread used to only aeadall
amount of data from one channel, distribute it gado the
next channel. The high-speed network was ablelteede
data so fast that this scheduling approach ledvers stalls
on the network layer. They had to change the sdhmegso
that the receiving thread now reads data from ta@mel
as long as there are data available. But of cahises only
possible with few clients pushing files to younsar With
more clients this can stall those clients consialgraNot to
forget the problem of denial-of-service attacks whkents

Staged EWRHED NN KRR FENRSEHI) reads. .

Handover problems for individual threadpools
Call/response semantics?

We have already talked about the deficits of tlypiest/wait cycle
in multi-tier architectures. Performance or thropghproblems in
one tier can lead to many blocked requests upstegahiinally
large residence times for requests.

SEDA tries to break the request/wait cycle (whgkimply a
call/return pattern) by using asynchronous eveetaéen
processing stages. Each so called stage runs iitshoead-pool.
Ideally a request enters the system at one enteands it at the
other end without leaving any state informatioralbocated
resources in the layers between. The diagram bgthms this
architecture.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 277 03/12/2010

Socke el

I il ‘ "
e ped O o ipdent Sooke kg
o Ll = fik
Geed Y) . :
oackel e natle
I my e e il
bl ipes e

Fiqure 3: Qur scenario napped to the SEDK nodel

Realistically there needs to be some connectiond®t the start
and end of the pipeline because a request typinakyls to leave
the system through the same connection that hasusss to
deliver it in the first place. The diagram belovogis how this is
handled via a so called correlation ID which alldtws association
between a result and a connection. The only pldwreva
synchronous I/O processing is done is right aetiteance of the
system: clients wait synchronously for the respohsbetween
stages issue requests asynchronously to the ragyd dbwnstream
and do not wait for a response. Sometimes eveeatdaivered to
the same layer but in the opposite direction. Bhisuld not be
confused with a simulated synchronous call semémeti@ause the
calling part in that layer does not wait for thepense.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 278 03/12/2010

Apache Tomcat

— MUC
I Al
Order Enfry '_T_:I . 4 S - (E./
-
R——
HTTP Transport T Business Layer

-
O C?D —
Order Recefve [-._/ % -/I

%

1
%
¢

HTTP Transport

T Access Layer

Fool of

Pool of

JMS Producers
puklish into

OO0

JMIS Consvm ers

£

(]

subscribe to

ims:drequestCueue ¥
JMS message

ims:MresponseGusue

r,a—H‘ POJO includes
3) l correlation 1D

.............. +.
[F—
JMS Transport
T
Inbound Router
| imsfrequestCueus
JMS message ? ? JMS message
I:‘ with D wiith
POJC carrelation IO POJO correlation 1D
|® |®
L o
—_— Emm——
—— —
JMS Transport JMS Transport

Outbound Router Inbound Router

jms: i ims:df
| |responsecueue ™ wriceorderauens
Price Order | oo apHTTP -
Service - -

o

Component (5)

Price Order Service

Inbound Router Outbound R

Lyt
stockOrderGueus

jms: i

™ rESRONSE

Stock Order
Service
Component

SOAPHTTP

o
g _
=
[
=
&g
a e
=]
=)

Stock Order Service

Figure 4 Qverall logical flow

SEDA architectures claim much better performanea th
synchronous request/wait semantics. [Faler]. Ottig|ce
frequently voiced concerns the way events arefsemt queue to
gueue across different thread pools: this cantedats of context
switches due to the necessary hand-over.

Building Maintainable and Efficient Servers
In this chapter we are going to discuss the ingmadiof high-performance
servers and the programming models in use to nfedeetservers also
maintainable and understandable.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 279

03/12/2010

Let’s start with some general effects on the pentoice of large sites or as
Jeff Darcy calls it in his “Notes on high-perforncanserver design”: “the
Four Horseman of Poor Performance” [Darcy]:

1. Data copies

2. Context switches
3. Memory allocation
4. Lock contention

Zero-Copy

Probably the weakest point in this list is thetfose: data copies.
While even Java acknowledged the need for fastaramtainers
by offering direct, OS-provided buffers for 1/Oiis laters releases
it is unclear how big the effect of data copiegquivalent
functions like hashing really is. Using referenf@sinters) and
length variables instead of complete buffers wavkdl for a while

but can create considerable headache later.
After all, Erlang is a functional language whicleks a separate

heap per thread and forces inter-thread commuaitéi copy data
across message ports. And it does not look likerigrsuffers a
performance hit by doing so. Quite contrary itambus for the
large numbers of requests it can handle. One adgaruf forced
copies is that both parties need not worry abonteoent access
issues. | guess that many copie made in hon-mesafgy-
languages like C and C++ are simply a result otoomncy or
deallocation worries resulting from missing garbagkection and
shared state multi-threading.

Avoiding kernel/user copies of large data certaislg good idea
though. Dan Kegel gives an example of sendfile¢)tosachieve a
zero copy semantics. Sendfile() lets you send pdifites directly
over the network. [Kegel]. The various data pathi®ugh an
operating system are described here << zero capyigues >>

Context-Switching Costs

We have been talking about the negative effect®nfext
switches already. They take away processing tima flunctions
and add overhead.But how do we avoid context seseh

The amazing thing is that, at one level, it's tgtabvious what
causes excessive context switching. The #1 causatext
switches is having more active threads than yowe pmoecessors.
As the ratio of active threads to processors insesathe number
of context switches also increases - linearly 'g@lucky, but
often exponentially. This very simple fact explauny multi-
threaded designs that have one thread per connestiale very
poorly. The only realistic alternative for a scalalsystem is to
limit the number of active threads so it's (usudibgs than or
equal to the number of processors. One popularavarof this
approach is to use only one thread, ever; whiléhsat approach
does avoid context thrashing, and avoids the neelbtking as

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 280 03/12/2010

well, it is also incapable of achieving more tharegrocessor's
worth of total throughput and thus remains beneathtempt
unless the program will be non-CPU-bound (usuadywork-1/0O-
bound) anyway. [Darcy]

Some of these statements need further clarificathdmy does the
number of context switches increase with the nurobénmreads?
Given a fixed time slice per thread the numberaritent switches
should be the same with more threads — it’s just different
threads are involved. If the time slice is reduasith increasing
numbers of threads we would see an increase irexopsiwitches
but run into the danger of thrashing between thsegthout any
work done. Do current systems reduce the timelice

It is also unclear why we should se an exponeimakase in
context switches with more threads? Let’s takeok kt two other
reasons for context switches besides pre-emptitimeipresence of
more threads: blocking on I/O or condition variablé we assume
that there is a rather equal distribution of thasess threads then
we cannot explain the supposed exponential incr&sdt sheds
some light on context switch reasons in generakckhg need not
lead to a context switch! It is a question of atetture (e.g.
asynchronous 1/O) and user level scheduling todalstmcking for
I/O or condition variables. And: blocked threads aot a problem
for context switch overhead. Darcy talks aboutitetthreads,
meaning threads in state runnable contending ®CHAU. These
will cause overhead.

Less active threads than processing units? Thiesézbe
unefficient because it leaves cores idle.

What are the lessons learned with respect to amoalaf context
switching? The one thread with non-blocking I/O aisdr level
scheduling seems to be the most effective for sepplications.
Instead of short time slices which allow I/O intemsprocesses to
jump in, do their requests and block again quickéywant
asynchronous /O for interleaving of 1/0O requestd eegular
processing to reduce latency. This is very diffeeeg. to windows
desktop OS configurations which emphasize interagtinstead of
throughput. If we need or want to use more thanprneessor we
should try to evolve the single-threaded non-blogknodel by
partitioning threads across either connections;gsses or stages.
By doing so we should avoid unnecessary contextbes again.
How should do this is explained by Darcy:

The simplest conceptual model of a multi-threadehe
driven server has a queue at its center; requessead by
one or more "listener" threads and put on queussnfwhich
one or more "worker" threads will remove and pracdgsem.
Conceptually, this is a good model, but all toeofpeople
actually implement their code this way. Why is Wnieng?

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 281 03/12/2010

Because the #2 cause of context switches is traumgfevork
from one thread to another. Some people even comajpitwe
error by requiring that the response to a requessbnt by
the original thread - guaranteeing not one but womtext
switches per request. It's very important to ussyanmetric"
approach in which a given thread can go from being
listener to a worker to a listener again withoueeehanging
context. Whether this involves partitioning conre
between threads or having all threads take turnadpe
listener for the entire set of connections seenmsdtier a lot

less.
[Darcy]

Here we learn what most database administratorschiggdrn the
hard way a long time ago: a good logical modebisangood
physical model in most cases. While the queue/sdagjgtecture is
conceptually very simple and nice it would causeessive context
switches if one thread can only work in one staggraeeds to
hand-over the results to other threads.

The following architecture avoids the overhead £o$tfrequent
handover and lets one thread handle a requestsaaliatages.
Requests can be put on hold within a stage butities not cause
the thread to block and context switch. It will pimpick a new
request or stage function to process.

System Entry Point

/ Stage A
Cmens)
\ Stage B Stage C
Stage E Stage D
Stage F

System Exit Point

One thread processes a request across all stages with ev ery stage
controlling dispatch via return codes. Requests can be p ut on hold within
stages but this does not block the thread.

Compare this to a naive implementation of stagesSEDA
model where each stage has its own thread poah (éeigh the
threads might migrate over time between stages):

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 282 03/12/2010

System Entry Point

—_ —= f\
Cameas 5 Cweas > Cmend

Stage C

Req. StageA |— - | Stage B

System Exit Point

There is considerable context switching due to hand-over b etween stages
and associated threads. A fully symmetric thread design where each
thread can run every stage (also consecutively) is much be tter.

Interestingly, Darcy also suggests to dynamicatbliytml the
number of active threads to prevent too many treeadtenting
for CPU. In his example he used a counting semaptoorestrict
the number of threads allowed to run. He claimstiia technique
works well when you don’t know how when requestsiean or
maintenance tasks wake up. While causing additicortlext
switches this technique again emphasizes the impoegtof thread
reduction. We will deal more with dynamically manigting
threads in the next chapter on concurrency whetailkeabout the
best way to deal with threads once they have aeq@rock: Pre-
empt as usual or let them run longer to shorters¢hialized
region?

Memory Allocation/De-Allocation

Darcy also mentions a couple of memory allocatssues.
Memory allocation does have an impact on servdpopaance in
two dimensions: allocation /deallocation in under
contention/locking and paging costs. Pre-allocatibmemory
does reduce allocation costs, especially undereoation but might
have a negative impact on paging. What is impoitatd measure
your allocation costs across several allocatioessand under
multithreaded conditions — you might be in for adp
surprise.This trick that is frequently used whetaddructures like
collections need to optimized for concurrent usekland swap
complete sub-trees, branches or generations igomad later —
without holding a lock — deallocate the now isadaséructure.
Lookaside lists (basically pooled objects) are aiseful in
reducing allocation costs. If you are using a attomachine with
garbage collection make sure you understand the anal con’s of

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 283 03/12/2010

the different collection strategies. Generation@l €g. can
allocate memory very quickly but suffers from Idagting
references. More on this topic in the chapter arcaaency. For
I/O optimization it is important that your virtuadachine runtime is
small enough so that you can run several instamcesie machine.
This allows efficient partitioning of connectionstmout an
increase in contention within processes (assunmagyou got
enough processors for your VMSs).

Locking Strategies
We will discuss locking strategies etc. in the nehdpter in detail

but Darcy emphasizes the effect locking does havarchitecture
and suggests a way to structure your code andiatswhdocks:

dataset 1 System Entry Point dataset 2
\ /

Stage A
R1 Stage B R3/4[*
contention
R2 Stage C
Stage D

System Exit Point

The system should be designed so that contention can only ex ist if two
requests meet within the same dataset AND the same stage. [Darcy]

Structuring your application for minimum contentisrat the
architecture level. But there are many smallerghithat can be
done to achieve high-performance servers. [Dancg][Kegel]
mention e.g.

- use of scatter/gather

- request size measurements and optimizations

- Network optimization to batch small writes

- Page size alignments for disk and memory

- Input connection throttling when server is overlead
- Increase default system limits (handles etc.)

- Thread memory reductions

- Putting server functions into the kernel

I/O Strategies and Programming Models
Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 284 03/12/2010

In this last chapter on high-performance 1/O wd twl to answer
two questions:

- Are threads or events a better architecture (ardhwh
asynchronous model)?

- How much asynchronous, event-based processingdbeul
exposed to programmers?

In “The C10K problem” Dan Kegel did a comparisorvafious
non-blocking and asynchronous 1/O system APIs @pgll()) .
[Kegel]. The results were that older APl implem¢iotas
sometimes have a problem dealing with large numdsiers
connections but the newer ones like epoll() anceke() are able
to server tens of thousands of connections ataheegime, or as
Darcy says: it does not matter which of the norekilng or
asynchronous strategies one chooses — they daegaly
equivalent once context switches etc are controlled

The group of doubters with respect to asynchrompoogramming
models starts with van Behren et.al. and theirmdeof threads as
the superior programming model. They do not so nguastion
the performance of event-based 1/O but its eageagramming.
Almost no server architecture they looked at usedernthan the
usual control flow paradigms (call/return, paradiall, pipelines).
And they show that they can achieve much the sarfermance

and throughput with threads. Their core pointsea@Behren]:
- use user level thread packages (they recognizeotitext

switch costs)

- be asynchronous under the hood only

- let threads allocate stack memory dynamicall (toichv
memory issue with VMs)

- change thread related algorithms to perform bétin
O(N) in the number of threads

This list confirms what we have said in the abosetisns on 1/0
in general.

Greg Wilkins in “Asynchronous I/O is hard” [Wilkihsvorries
about the latest asynchronous API additions tsé#melet API and
gives interesting examples of the difficulties itwex:

<<example of partial read error >>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 285 03/12/2010

if (event.getEventType() == CometEvent.EventType.READ) {
InputStream is = request.getinputStream();
byte[] buf = new byte[512];
do {
int n = is.read(buf); //can throw an IOException
if (n>0) {
log("Read "+n+" bytes: " + new String(buf, 0, n)
+" for session: "+request.getSession(true).getld());

} while (is.available() > 0):

From: [Wilkins]. The code does not take partially read cha racters into
account and might generate an exception when converting b ytes
received to strings

Wilkins gives more examples e.g. writers not chiegkor the
current I/O mode selected and concludes with theviing
statement:

Tomcat has good asynchronous IO buffers, dispagchim thread
pooling built inside the container, yet when theperienced
developers that wrote tomcat came to write a sireglample of
using their 10 API, they include some significangb (or
completely over-simplified the real work that netmlbe done).
Asynchronous IO is hard and it is harder to maKeieht. It is
simply not something that we want application amniework
developers having to deal with, as if the contauhevelopers can't
get it right, what chance do other developers rotgd in the
complexities have?! An extensible asynchronou&ROis a good
thing to have in a container, but | think it is tiweong API to solve
the use-cases of Comet, Ajax push or any othercasynous
scheduling concerns that a framework developer negg to deal
with. [Wilkins]

So the right answer is to put AlO into the contgha very good
demonstration of the complexities of pure AlIO pargming has
been given by Ulf Wiger of Erlang fame in his prasgion
“Structured network programming - FiFo run-to-coetfn event-
based programming considered harmful” [Wiger].uses a POTS
(Plain Ordinary Telephony System) design to denratesthe
increase in complexity when first asynchronous paogning with
some blocking still allowed is used and later puva-blocking
AIlO. The resulting code is absolutely non-underdsdrte which is
not a real surprise: pure, non-blocking AIO wheyme event loop
handles all kinds of events by calling into handtartines. Those
routines cannot block and therefore need to expressy branch of
an action as a new state. Continuations are useelasrhis leads

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 286 03/12/2010

to manual programming of complex finite state maehki—
something that is probably best done with the béln explicit
grammer and a compiler construction tool like ANTaR
advanced simulation tools. While it seems to bg &abuild a fast,
simple event-based prototype the programming moegénerates
quickly when the project size increases.

It is probably a good idea to take a look at théecexamples from
Wiger at this point. To save some space here bel\state-event
matrix of the POTS is shown here.

From: [Wiger]
FIFO semantics,

Global State-Event Matrix s it
aware APl
1dle it allm ngng 1inzing B- |wait on- [await awrait awa vl
B A-side hook tone start [t top ging
t P

cok X X X X X X X X X

onhook .5 o o o o D D D D

digit a o — — e =5 by D I =

connect — — — — o — — X X X X X X

requast o o o] o] o o o o o (0] L] o o (o]
connection

reject — — — o — — — — x X X X b4 X b

ept — — — 0 — — — — X X X X X X X

ncel — — — — — — — — X D X I X

t 1 X X X X X X X X o b. 3 X b & X X X

X X X X X X X X X 0 X X X X X

X X X X X X X X X X o X X X X

X X X X X X X X X X X 4] X X X

X X X X X X X X X X X X 0 X X

conuect raply X X X X X X X X X X X X X o p. &

dizconnact X X X X X X X X X X X X X X (o]

reply

Wiger emphasizes the use of blocking AlO as itosalvia select()
or epoll(). Here processes can block for exacthséhevents that fit
to their current state. Ideally the processes i@atthls can use
“inline selective receive” — a locally (logicallyjocking API call
which does pattern matching on events and delwelysthe one
that is expected, everything else is buffered dterl reception by
the process. In this case the process need notaimamseparate
call stack as an additional bonus.
Libevent — an example event-notification library
www.libevent.org
<<what is it built with it?>>

Node.js — a new async. lib

Concurrency
http://www.software-dev-blog.de/

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 287 03/12/2010

Just like in I/O processing the best way to usedeal with concurrency is a
hotly debated topic. The growing number of corethiiCPUs has added some
additional fuel to the discussion. The trencheslgag the following questions:
- what kind of and how much concurrency needs toxipesed to
applications?

- what is the best way to deal with concurrency: stiatate, message
passing, declarative etc.

- what are the results of shared-state concurrenajéocomposability and
stability of systems?

We will start with a short discussion on the effeat concurrency on the
scalability of large-scale sites and continue wwitlook on various forms of
concurrency in game development. Afterwards wegareg into details on those
concurrency forms.

Are we going to reduce latency by using concurrgeciiniques? The portal
example from above and our discussion on lateneg BRown some potential
here. We can take a typical request and dissetdbiindependent parts which can
run in parallel easily. But it is not very likellgat we will go very much into a
fine-grained algorithmic analysis. We are looking ¢oarse grained units to be
run concurrently. This can be requests for sevmekend services as in the portal
example. Or it can be iterations across large detuifibases using one function as
in the map-reduce case discussed below in the @haptscale-agnostic

algorithms. _ _ _
Parallelizing I/O can theoretically reduce the @lieruntime to the runtime of the

longest running sub-request instead of the sunfi elib-requests. But — and this
shows the various faces of concurreny: we do ne¢ b@use several cores to
achieve latency reduction in I/O — non-blocking @piens allow us to overlap
I/O operations just as well (perhaps even betteanalie think about context
switching costs). The parallel iteration and preaas on the other hand really
needs more cores to be effective. So concurrentynza simply doing several
things at the same logical time (but physicallg@guence) or it can mean truly
processing several things at the same physicalusimg more cores.

And while the examples mentioned certainly are m@kbreak conditions for
sites the most common use of concurrency is prgltabhcrease the number of
client requests which can be served by using mareessing cores (assuming
that we can somehow scale storage as well, whicWildiscuss later).

Tim Sweeney wrote an interesting paper on futuogi@mming languages from
his perspective as a game developer (unreal engileediscovered three areas for
the use of concurrency in a game engine: shadingeric computation and game
simulation (game play logic). [Sweeney]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 288 03/12/2010

Three Kinds of (concurrent) Code

Game Simulation | Numeric Shading
Computation
Languages C++, Scripting C++ CG, HLSL
CPU Budget 10% 90% n/a
Lines of Code 250,000 250,000 10,000
FPU Usage 0.5 GFLOPS 5 GFLOPS 500 GFLOPS
Objects 10000's to update | Scene graph trav. | 5000 visible at 30
with 5-10 inter Physics simulation, | frames/sec.
object touches and | collision detection,
60 frames/sec path, sound
Concurrency Type | Shared state Functional Data parallel
(embarrass.)
Concurrency Software Side-effect free Data flow
Mechanisms Transactional functions/closures,
Memory implicit thread
Adapted from [Siveeney] parallelism

Sweeney makes a few important statements frometelopment of the unreal
engine: shared state concurrency is a big painy Trigdo avoid it or keep it as
transparent to the developers as possible by rgrone heavyweight rendering
thread, a pool of 4-6 helper threads which are ayoally allocated to simple
tasks (symmetric approach to threads) and by acamsful approach to
programming [Sweeney]. And it is still a huge protikity burden. The idea is to
use a new form of concurrency control fo game pdgjc with its huge number of
objects with shared state and some dependencita/a®® transactional memory.
And for the numeric computations to use a purehcfional approach with side-
effect free functions which can be run by threadgarallel. Due to the data flow
characteristics shader processing is anyway “erabsirigly parallel” and no
longer a problem. We will discuss STM below buttstath the “classic” shared

state concurrency first.

Classic shared state

This approach to concurrency is called “classicdduese it has been used
inside of operating systems, database enginesthed ystem software
for ages. Those systems have the interesting gyopeconcentrating
concurrency control mechanism within themselvesagdting a
sequential, isolated processing illusion to thkents. Operating systems
do this via virtual memory management and procgsiation and
databases use the concept of transactions toiserta changes.

Sharing state means that two or more processesd$iexecution flows
will potentially have access to the same data edhéhe same time or
interleaved. While one can easily imagine why séime-access to data
can cause havoc (especially lost updates and vaonalysis failure types)
the interleaved access thing needs an explandfbat can go wrong if
data is accessed by two threads? When the fiesadhis done, the second
can do its stuff. Where is the problem? The probexactly in the term
“done”: When the first thread is done there islyead problem giving

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 289

03/12/2010

access to the second thread. The only problem sdavdetermine when
the first thread is truly done. In a single corsteyn that can't be a real
problem: it is when the thread relinquishes confy@lds) and gets
context switched. But what if the first thread ihuatarily needs to give up
the core? In other words, if it gets pre-empted tduge time-slice or other
scheduling policy. Then the second thread mighéssmcomplete data.
Or its updates might get lost when later on thst tinread gets control
again and overwrites the changes the second timedd.

We learn from this that even a single core caneaoscurrency problems
when shared data is used in the context of preiempgne core with pre-
emption is as bad ad two cores running in parailehulti-core systems
we do not need the latter ingredient pre-emptiost $hared data will

suffice to cause all kinds of problems. The proldeare mostly either:
- consistency failures

- suffering performance
- liveness defects (deadlock, lifelock) and finally
- software composition and engineering problems.

And the answer to those problems in the shared statlel of
concurrency is always to use some kind of locking—mutual exclusion
— technique to prevent concurrency for a short tidme this “cure” in

turn is again responsible for some to the problerastioned above as we
will see.

For the following discussion two papers by “classigstem engineers are
used extensively: They are “Real-World Concurrerzy'Bryan Cantrill
and Jeff Bonwick, two Sun kernel-engineers defegdire shared-state
multithreading approach using locks etc. [Cantetfd “"Scalability By
Design — Coding For Systems With Large CPU CoubysRichard Smith
of the MySQL team at Sun, also a system enginesplgénvolved in
concurrency issues [Smith].

Consistency Failures
This class of errors should theoretically no longst in the
shared state concurrency model: locks prevent comtuuse and
corruption of data structures.

- lost update by overwriting previous changes

- wrong analysis by handing out intermediate, temyora
(non-committed) values

- endless loops due to corrupted data structures

- race conditions and non-deterministic results dugming
differences in threads

Unfortunately performance issues force us to uskslan a rather
fine-grained way (see below) which leaves ampleodpipities for
missing protection around some data structuresrddeproblem
behind is actually the lack of a systematic waprve the
correctness of our locks. We are going to dischisssomewhat
more below in the section on engineering issuels gohcurrency.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 290 03/12/2010

Just remember that those problems where the on@geweout to
fix via locks originally.

Performance Failures

There is a rather simple relation between lockspertbrmance:
the more coarse grained locks are used the sa&@oticurrent
system becomes due to even longer serialized, ooodcrent
sections and the slower it will be. And the moreefgrained locks
are used we will see better performance and thyouiggt the price
of more deadlocks, lifelocks and consistency proisleRemember
that our original goal in using concurrency was swinuch to
speed up the individual function but to increasertbmber of
requests being processed. The following problerms hanegative
effect exactly on our ability to run more requésgdorcing the
requests to wait for one request within a lockediasized section.

- coarse grain locking of top-level functions or dstiaictures
- pre-emption with locks held

- broadcast vs. signal handling: thundering herds

- false sharing

coarse grain locking of top-level functions or data

structures
But what does “coarse-grained” mean in this cordtxt
simply means locking the entry to a frequently ysedry-
level function which lets only one process or thrgat into
the system and do useful work while all others hawsait
at the entry. And the same effect can be achievtéd w
locking large data structures like e.g. a compialée in a
database. With a table lock no other thread cark with
rows in that table even if the threads would usemetely
different and independent rows each. “Lock break(tips
does NOT mean to take away a granted exclusivesadne
force!) discussed below is a strategy to breaksmograined
locks up into much finer sections of serializedgassing.

The following table (taken from [Goetz] gives a dadea
how coarse grained locking affects performance. It
compares the throughput of the classic Java HaséTab
(top-level synchronized) with ConcurrentHashMap asd
fine grained locking.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 291 03/12/2010

Threads ConcurrentHashMap Hashtable
1 1.00 1.03

2 259 3240

4 558 78.23

] 13.21 16348

16 27.58 341.21

32 57.27 77841

From: [Goetz], Java theory and practice: Concurrent collections classes
- ConcurrentHashMap and CopyOnWriteArrayList offer thr ead safety
and improved scalability

In large-scale systems such numbers are hard toagmd
warrant the effort to break up coarse grained locks

pre-emption with locks held
In the chapter on I/O processing we have alreaay &l
that a high volume of context switches is a sure
performance killer, mostly caused by too many ttsea
And from our queuing theory section we know thatreno
threads means longer individual request servicegias
well. Now we can top those negative effects byveilhg
threads which hold locks to be pre-empted. Thabsut as
bad as it can get for throughput. More interestirgythe
concepts needed to work around that problem, §.g. b

letting the kernel know about the locks (see below)
thundering herd problems

“Scheduler thrashing. This can happen under Unigrwh
you have a number of processes that are waitirggsingle
event. When that event (a connection to the welesesay)
happens, every process which could possibly hahdle
event is awakened. In the end, only one of thosegsses
will actually be able to do the work, but, in theamtime,
all the others wake up and contend for CPU timenteef
being put back to sleep. Thus the system thrastieftyb
while a herd of processes thunders through. Ifdtass to
happen many times per second, the performance tropac

be significant.” [JargonFile]
Generations of Jave developers have learned tthase

broadcast mechanism of “notifyAll()” instead of thignal
mechanism “notify()” on grounds of improved softear
stability. As notifyAll() wakes up all threads wiait) on a

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 292 03/12/2010

mutex it does not matter if some of those threatisadly
wait for something else to happen: All are wokenalp
will have to check their special condition befoceessing
the resource (“guarded wait”) and all except oniéfadi
back to waiting for the resource to become avaslagjain.
Slight mistakes in the notification algorithms are
inconsequential in this case.

| think that even the original argument based dyustness
of the code is wrong: it actually hides a softwiawg in the
notification algorithm used which should be fixedtead of
covered up. And just think about the consequenmes f
system performance: a possibly large number oatlge
wakes up (context switch) to do a short check en th
condition variable and go back to sleep (contextch
This is far from effective and should be avoidéa Ihell. If
you are not sure about your locks and who is gtongait
for what you need to build a model or lock-grapld an
perhaps track your locking solution with a modetater
(see the SPIN/Promela section in our modelling trqp

False Sharing
[Cantrell] mentions a rather tricky complicationlotal
cache synchronization in multi-CPU systems which
depends on the synchronization granularity, i.e width of
a cached line. If elements of an array are usedc#s there
might be a situation where two of those data elemgimow
up in one cache line. It can happen now that twoare
in contention for different elements of the samehesdline.
The solution proposed by Cantrell et.al. is to pady

_ elements so that two cannot show up in the sanfeedate.
Liveness Failures

The next list of failures all deals with the apption no longer
making progress. The best known and most fearexnefar this is
the so called deadlock. A situation where two tise@ach hold a
resource which the other thread tries to lock néhis is not
possible of course as the resource is already Aaligéadly cross-
over of requests for resources who’s importancensde be
largely determined by the specialty of the respegbersons:
theoreticians tend to emphasize the non-deterrndribaracter of
such deadlocks which turns them into a permaneeathwithout a
safe model or theoretical concept for preventiogactcioners also
do not like deadlocks but do not hate them so nasctie reasons
for a deadlock are easily determined from the statkhe

involved threads and can therefore be fixed easily.
- reader/writer lock problems

- deadlock
- livelock

Reader/Writer problems are a bit more subtle toT$ey are
caused by the rule that once a writing requestademo more read

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 293 03/12/2010

requests are accepted. This means that a cureaiile read
request which tries to do a recursive read rediiesto acquire the
read lock again will be blocked — still holding th@me lock
already and thus preventing the write request fewer getting the
lock and without being able to make progress it&ait again the

situation is easily fixed post mortem.
Livelocks usually happen more on the higher lewélarchitecture

or in the context of lock-free synchronization (Setow).

Software Composition/Engineering Failures
This section deals with general concurrency problamd their
impact on software. The first topic, visible lockeems not so
important but has a major impact on debugging @heduling
abilities. The next questioin is about composap#tesns using
locks and the answer as in many cases dependsesn on
perspective, just like with deadlocks. A short dssion on the
performance impact of lock-free techniques follamsl the
section ends with some remarks on provable coresstn

Visible lock owners: mutex vs. semaphore use
The question is: who knows that thread A has aeduar
lock on some resource? If a mutex is used thekeheel
usually knows the lock owners identity and if inist freed
in time it is rather easy to find the culprit. lfike with
semaphores or some condition variables — nobodw&no
about lock owners explicitly, lock failures and pbkems are
very hard to track and the reasons for poor perémce are
hard to find. The lock graph and overview of a egstre
still very important problem solving utilities.

And there is another reason for making lock ownsibie:
If the scheduler knows that a certain thread hgsieed a
lock it can try to prevent this thread from beirrgqempted.
This is similar to the situation in real-time syagewith
priority scheduling and a low priority process hiolgla
lock to a resource. If a high priority resourcéliscked
waiting for the lock to become available it makesse to
give the lock holding low priority thread the highgiority
as long as it hold the look. This shortens the tum# the
high priority thread has to wait for the lock tocbhene
available. Remember: we do NOT break locks by akin

them away from their owners by force!
Both reasons are discussed in detail in [Cantrell].

composable systems in spite of shared state
concurrency with locks?
Does the use of locks and shared state concurrency
automatically lead to non-composable systemshadsly
depends on your idea of composability. Let’s tryaaalog
problem first: Does the lack of garbage colleciioC/C++
lead to non-composable systems? Theoreticallyribeer

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 294 03/12/2010

is yes because in many cases the responsibilityefap
memory allocated via malloc/free or new/deletenslear
and requires the assembler of a system to takekaaliothe
source code of those components to figure out the
responsibilities for freeing the memory. Practigaliose
systems are assembled every day and the compaogabili
problems are not seen as major. The same is truecks
and shared state concurrency as has been shown e.g
[Miller]. And of course Cantrell et.al. are right saying
that despite those problems components using kaeks
successfully assembled every day. You just dordikn
whether some problem might show up at runtime.

Performance impact of test-and swap with lock-

free synchronization
We will discuss lock-free synchronization below judt a
short statement on performance costs. These aneatst
to run from 2-4 times the costs of traditional lmgk
techniques [Jager], [Smith]. But practicioners oagpble
for large scale system design find this to be adgoade-off
against cumbersome locking problems at runtime and
complicated code to maintain [Sweeney].
Provable correctness?
<<CSP, SPIN, Promela>>
Classic Techniques and Methods to deal with shared
state concurrency
This section discusses some well-known technigodsdioms to
prevent the negative impact of locking on perforoearspin-locks
are a way to avoid context switching overhead. &lieno doubt
that the secret to better performance lies in §remular locking.
The concept of lock-breaking can either be usaeédace lock
granularity either in a temporal or a spatial wdgry interesting
techniques involve different generations of datéctvlare either
swapped under a short lock or simply retired whita dption of still
being available in case someone needs them. Fimla#ymost
important technique is probably a clever architextuhich
separates hot paths from cold paths and uses teeking only

where it is really needed. _
Fighting Context-Switch Overhead: Spin-locks

| started using spin-locks (also called busy-watien Unix
started running on multi-processor machines. Sugden
was no longer enough just to block interrupts from
intervening with critical work in the kernel. It wanow
necessary to prevent other CPUs from doing the skme
the 1/0 section we have discussed the costs oegbnt
switching caused by too many runnable threads. Were
are talking about context switches caused by tooyma
CPUs fighting for a resource or condition. Usingggular
sleep/wakeup idiom which puts the losing threac avait

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 295 03/12/2010

gueue is just too expensive due to the contexthwit
involved.

The golden rule here is to let a thread busy veaitf
resource of condition becoming available. This vgark
course only when the algorithms involved guaratiteethe
lock will never be held for a long time. This exdés e.g.

I/O from being done by the lock holder.
<<how is this used within Java VMSs in connectionhwi

synchronized??>>

lock breaking in time: generation lock and swap,

memory retiring
The time spent under a lock does always have auseri
impact on throughput. Keeping that time short is of
paramount importance. To achieve this we can tiave
all non-critical parts of an algorithm outside bétlock (e.g.
not synchronizing a complete Java method but using
synchronized blocks within the method). Or we nied
make sure that we do not set a lock too high witghdata
structure if the modifications will only affect sthparts

within (table lock vs. row lock).
But what if the algorithm has to work on a larg¢éada

structure under lock? Here the generational-swipnictan
help a lot: We allocate a new data-structure, kbek
existing one and swap references from the old ortleet
new one and release the lock. Now we can cleaheaipltl
data structure taking our time to do so becausare@ot
holding a lock. An idea related to this idiom haeb
described by [Cantrell] et.al. using the lock brgakf
hashtables as an example. Hash-tables need te be re
organized frequently to scale access time in cahgeowing
data. This would imply reorganizations of large amts of
data, copying them over to new containers. Instéadpy-
and-destroy we are using memory retiring in thsecaVe
keep the old data containers and when a requestTo®
check whether it is for the old or new containdisis check
of course is done under a short time lock.

lock breaking in space: per CPU locking
Besides keeping the lock time short we can tryeorelase
the number of cores getting hit by the lock. If manage to
partition a resource across the number of CPUdadblali
we can set partial locks which will only affect oG@U
instead of all. This partitioning of course is Hiygh
application dependent but it can pay off a lotgsign
events, data-structures etc. to certain CPUs.

lock breaking by calling frequency: hot path/cold

path

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 296 03/12/2010

But before we do major code restructuring to achieck
breaking and a smaller lock granularity it is vanportant
to find out where we should put our efforts to thet most
bang for our bucks. A calling frequency analysighwihe
help of a profiler will quickly show the hot andldgaths
in our software. We do not want to use fine-grailoating
in code that is only run once — as is typical fotialization
or shutdown code. Here we can safely use coarseegra

high-level locks which will protect large partsair code.
In frequently called code though we need to use the

different kinds of lock breaking techniques expéain
above.
Making code perform better by making locks morengtar
is a tedious activity which has a major impact foe dverall
architecture. Sometimes it cannot be avoided bydufare
in the lucky position to start a new project yowghtiwant
to go back to the I/O section and take a new ladRarcy]
and his proposed structuring of a parallel architec Or
you might want to take a closer look at the negtisas on
alternative architectures which avoid locks as magthey
can.
threading problem detection with postmortem
debug
Two tools will help you find threading/locking pri@ins in
your code. In case of a deadlock a system dumpaliaiv
you — with the help of your debugger — to recreiatead
states and discover the deadly crossover of resourc

allocation that caused the deadlock.
But frequently your major concern will be poor

performance which is probably caused by threadsesity
running parallel but contending for some resoumest of
the time. A so called thread analyzer traces adlatis and
the functions called and shows the blocking grapjoar
software. If you detect frequent cases of a grdupreads
waiting for one condition or lock you know wherestart
re-organizing your code.

Transactional Memory and Lock-free techniques
Still within the shared state concurrency paradigrtrying to overcome
the performance of liveness problems are a coupiecbnologies which
try to reduce or eradicate one of the core probléme&ing on a level that
is visible to programmers. The basic approach lkthinse techniques is
well established: Transactions separate differemtgssing flows without
bothering the programmer with locking tables or soWwhey do this
essentially be creating a “shadow world” for eaobcpssing flow and no
write in this world becomes visible till the tractian (and iff) completes.
While mostly transparent to programmers (which drdye to mark the
beginning and end of a unit of work) transactigmattection tends to lock
resources and thereby prevents more concurrergngsan the worst case
can lead to a deadlock.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 297 03/12/2010

A special version of transactions uses so callgdirfastic” locking. In

this case locks are held only at two points in timeen variables are read
and when the transactions commits and variables/atten back. During
write-back the transaction system checks whetherobthe variables that
have been read has changed (by some other préaoe3sWe say the read
set has changed and presumably the results — tteesget — are now
invalid because they depend on what was read béfbexe are many
possible ways to detect the change: Sometimesestamp is used which
is taken when a variable is read and comparecdettiniestamp value at
the time of write-back. One could also store copifethe variables read or
create a versioning system for all changes (see ®14€low). If there was
a conflicting change in the read set we need totabtback the
transaction and start from fresh.

It is easy to see the appeal behind optimist Iackinransactions: we just
go ahead at full speed and do all the reads andficaitbns necessary and
at the end we check for possible conflicts. Thderaff is clear: we have
much shorter serialized sections in our procedsetguse the resources
mostly stay in an unlocked state. This means welsiregg concurrency
much better. But this gain in concurrency can gdml lost by larger
numbers of transactions with conflicts and rollback<formula??>As the
number of conflicts will probably increase over ¢imnd the number of
processes involved (the more processes work osatime data and the
longer they do it the more likely we will end witlnflicting read set
changes) systems using optimistic locking stromglyise against longer
running transactions.

“Shadow world” (transactional) approaches do hareesdrawbacks as
well: They require all participating resources &adble to “roll back” in
case of a conflict. This means they are not alloteecteate external side-
effects which are not revokeable through roll badke other drawback is
that in case of a conflict and roll back user pded input nees to be re-
acquired because the new situation might necessitdifferent input.

Looking back at the beginning of the chapter oncoorency we realize
that we can now add transaction monitors to opggatystems and
databases. They all relieve programmers from tlee te explicitly deal
with concurrency and locks. As the need to use waancy and locking
explicitly is probably tied to high-throughput pessing it comes as no
surprise that transactional technologies have bdenus of mid-range
and mainframe systems till now.

But this is about to change drastically and thengeds driven by
hardware: Because the CPUs have pretty much redicbemhd in cycle
speed (already a signal cannot reach all placdsnnatdie before the next
signal is issued) hardware vendors are takingfaréifit route to increase
performance and throughput even further. Instedzlofping up the CPU
clock frequency the number of cores present with@PU is increased.
We will soon be talking 80 core CPUs. This won’tebbig issue for server
side developers used to build application servergjme containers and

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 298 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 299

virtual machines. But it will have a major impact everybody else. Your
desktop application will need to use those adddi@ores just to keep up
its current speed because a single core will ngdorun at such extreme
clock frequencies. This means application devebpait have to look for

places in their code to use concurrency.
“Finding parallelism” by Kai Jager describes thecés behind this

development as well as the technologies proposegef]l The first one is
so called “Software Transactional Memory” and ib&sically an
implementation of optimistic transactions in memory

How would programmers use this? Below pseudo-cedgven which
shows that programmers only have to put bracketsnal the code pieces
which should be handled atomically by STM. Herekbgword “atomic”
Is used.

procedure Transfer(from, to, amount)
atomic
result := call Withdraw(from., amount)
1f result = true then
call Depositito, amount)
end if
end atomic

Pseudo-Code for software transactional memory
(STM), from Kai Jager, Finding Parallelism [Jager]

What is happening under the hood? Here STM needsmpare read-sets
and write-sets of transactions effictiently to figwut whether one has to
fail:

Put differently, a transaction fails when therarsintersection between its
read set and the write set of another transactiat tommits before it.
STM imple-mentations can use this fact to validateansaction’s read set
very quickly and without having to actually comparemory contents.
This however means that transactions are only atamth respect to

other transactions. When shared-data is access&sidauof transaction,
race conditions may still occur.[Jager] pg. 20.

We do not compare memory contents, all it takés mpare change
states. And it is clear that this comparison needse atomic and
uninterrupted as well or we will have inconsistdata.

So what are our core requirements for committinylSfansactions?

- efficient

- atomic

03/12/2010

- lock-free

- wait-free

Jager mentions STM implementations that use ret¢pdéing techniques
for commit but this just makes deadlocks possibimand might have
performance problems. Something like this is doneoinventional
transactions systems with optimistic locking.

When we say efficient atomic comparisons we meamesiorm of
“compare and swap” technology (CAS) with hardwanep®rt. In CAS

we can compare a word or double word of memory astlexpected value
and atomically update the memory word with a neluev& our expected
value is still the current value of the memory @allit is shown in the code
below:

procedure CompareAndSwap(value by reference, expected, new)
atomic
current := reference
if current = expected then
reference = new
end if
return current
end atomic

Use of CAS. Value represents memory location, expected
represents the originally read value and new the new value t o be
set in case expected==value from Kai Jager, Finding Paral lelism
[Jager]

Using this approach we get two additional beneiiits: lock-free and
wait-free. Wait-free simply means we will not bentext-switched and put
on some wait-queue till a lock becomes available.

Lock-free is much more interesting. It means wendbexclude any other
thread from working (except for the atomic CAS iuastion itself which
would prevent other threads from accessing the saamory cell in that
instant of time).

Lock breaking revisitited:

But more importantly, we do not hold a lock andtamre modifying some
shared, critical data structure until we releageldlck. This has a big
advantage with respect to system stability andistercy: We have
touched on this above in the discussion on “lod&aking”. Lock breaking
NEVER means killing a thread and releasing the@assx lock by force.
This would simply lead to unclear and potentiafigansistent data
because nobody knows what the thread had been dbieg it was killed

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 300 03/12/2010

and the lock released. Lock breaking always onlgmsdo reduce the
granularity of locks. It gets even worse: if we agg allowed to kill a
thread holding a lock, what about crashed threlds?g this model we
are not allowed to have a thread terminate AT Alithim a critical
section. How would we guarantee this? (see thebyalkoe Armstrong on
Erlang concurrency, [Armstrong].

Here we do not lock at all and therefore have ramtteks or
inconsistencies to expect. And this is more impurévent than the gain
in concurrency.

What if our goal is not to finish our transactionake our shadow copy
the valid one) but to wait for a certain conditiorbecome true? Condition
variables are used for this purpose and if a thfieald a condition to be
false it needs to be blocked and go on a wait qifetieannot expect the
condition to become available within a very shatigd of time (busy
waiting). Just using the STM mechanism for waitimgconditioin
variables would simply mean we are always busyimgifor the variable
to become available. The automatic roll-back meidmarf transactions
would force us back to start every time. Is theveag the STM
mechanism can figure out that the thread shouldldieked instead? And
how should STM know when to wake it up again? Adhgmanswer is in
watching the read-set of the thread waiting fooadition variable to get a
certain value: Once the check was done and the wedhis wrong for the
thread it makes no sense to let the thread ruhaimtiite set of another set
shows a change in the read set of the blocked vahepseudo code
below shows a thread blocking on a condition vaeiamd STM used to
control access.

procedure Withdraw({account, amount)
atomic
balance := call GetBalance(account)
iT balance < amount then

retry
end if
newBalance := balance - amount
call SetBalance(account, newBalance)
end atomic
A thread waiting for a condition variable, implemented lock-free
and with automatic change detection from Kai Jager, Find ing

Parallelism [Jager]

How can the system detect changes in the readrsat? looking at the
code above we see that changes need to be traokedheough function
calls (GetBalance()). This looks harder than itlyga: A Java VM e.qg.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 301 03/12/2010

can use the load and store instructions in comioimatith a flag for
atomic sections to define and track read/write gaiskly (perhaps even
replacing the regular load/store interpretatiorhvaihe for atomic sections
to avoid tracking the flag).

The use of STM and lock-free synchronization prives is not
undisputed.

Use wait- and lock-free structures only if you dbsagly must. Over our
careers, we have each implemented wait- and lcai-diata structures in
production code, but we did this only in contertsvhich locks could not
be acquired for reasons of correctness. Exampleside the
implementation of the locking system itself, tHesgatems that span
interrupt levels, and dynamic instrumentation fiieis. These constrained
contexts are the exception, not the rule; in noromaitexts, wait- and
lock-free data structures are to be avoided asrtfagiure modes are
brutal (livelock is much nastier to debug than deak), their effect on
complexity and the maintenance burden is significamd their benefit in
terms of performance is usually nil.[Cantrill] pB4ff.

I would like to add the scalability problems withyakind of optimistic
synchronization method: The more objects or ressuace involved
within one atomic operation and the longer the apen will take the
higher the likelihood of a conflict and a forcedllvack. In this case the
effects on throughput and performance will clebidynegative. The fact
that STM is up to four times slower than traditiblegking on the other
hand may not really be a problem for most appliceiif they gain in
consistency and ease-of-programming by using STM.

Generational Techniques

We have seen the use of locks to prevent clienta 8eeing inconsistent
data. The other solution for the shared state aoacay problem was to
compare the read-set of an operation against othir sets and detect
changes. This prevents inconsistencies at the moofi@m attempted
synchronization (i.e. when a client tries to make iead-set the valid
one).

To g;et this to work an idea of history of processeadready required: We
need to remember what the client had seen (reagihalty to be able to
compare it to the current situation. We can extéminotion of history
and discover that versioning is an alternativehi@rsed state concurrency:
we get rid of the shared state by never updatirygvatue. Instead we
always create a new version after a change. Nownkeneed to keep
track of who has been working with which versiohisTseems to be the
idea behind Multi-version concurrency control (MVICChe following
uses the explanation of MVCC by Roman RokytskypRakytskyy].

The goal of MVCC is to allow most transactions totigrough without
locking, assuming that real conflicts will be raréen other words it is an
optimistic concept as well. Every transactions gstigned a unique,
increasing ID when it starts. On every write teeeard that ID is written
into the latest version of this record which becsrtiee current one. The
previous version is stored as a diff to the curoerd (as is done in source

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 302 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 303

code control systems as well). Doing so allowsstystem to reconstruct
older values if necessary (even though the hoffeisthis won't be
necessary in most cases).

On a read to a record the IDs of the transactiahthe currently saved 1D
are compared and the system checks whether thi&dswith the record
belongs to a transaction that was completed béf@eeading transaction
started. In this case there is no conflict at atl the current value is the

valid one.
If the transaction ID stored with the value is yganthan the reading

transaction there are several choices: If the dtyemsaction ID is still
running we cannot assume that the stored valualig: the transaction
might abort and we get a dirty read failure if vee the value nevertheless.
If the writing transaction committed during theetiilne of our transaction
it depends on the serialization level we want toi@ce: In strict mode we
cannot use the current value and need to reconstreivalue at the time
our transaction was started. This guarantees thatever our transaction
sees comes from one consistent moment in timeit Boes not mean the
value read is really the most current one if thetimg transaction
committed in the mean time.

We might be able to accept a lower level of isolathough by accepting
something like “read committed”: rows added lateattable e.g. might
not affect our business logic. Re-reading a valightrgive a different
albeit committed result.

The following diagram shows exactly this problenmgghe example of
oversold airline seats:

Transaction A Database Transaction B
Read the first . Read the first
H eat No:ld A
available Reserv.:Avilable available
seat number seat number

Seat No:18;
Reserv..Availa.

Seat No:18;
ReserAvai.

deserve Seat Reserve Seat!

No 18 for J’Nuwwr |

Zustomer A Customer i
Seat No:18; Seat No: 18;

Reserv.:Cus. B;

Reserv.:Customer Availab.
Mrite result
vack into Seat No:18;

Seat No:18;
reserv.:Cust. B;

Write result
back into |
database 0

From [Rokytskyy]

For an even better explanation on MVCC see [Hantiso

03/12/2010

Finally a short note on the consequences to apiawritten against
systems with different locking rules: As large-gcsites use major
refactorings and changes in technology quite fratiyéhis might be
helpful. Rokytskyy cites an IBM/Oracle dispute twe possibility of

deadlocks when porting applications written for €ego DB2:
“As a result of different concurrency controls ima@le and DB2 UDB, an

application ported directly from Oracle to DB2 UDBay experience
deadlocks that it did not have previously. As DE2BLAcquires a share
lock for readers, updaters may be blocked wherewle not the case
using Oracle. A deadlock occurs when two or mongiegtions are

waiting for each other but neither can proceed hesgaeach has locks that
are required by others. The only way to resolveadiock is to roll back
one of the applications.”Rokytskyy]

If have chosen this quote because it nicely comtsthe claim in [Cantrill] that
lock-based systems like OSs and DBs can be madpasale. Here at least
source code changes are actually necessary toitna&e.

There are also more traditional uses of generabongrsions, e.g. as
generation counters during re-acquisition of locks.

“When reacquiring locks, consider using generatemunts to detect state
change. When lock ordering becomes complicatetiimat one will need
to drop one lock, acquire another, and then reawg|the first. This can be
tricky, as state protected by the first lock mayéhahanged during the
time that the lock was dropped—and reverifying sttéde may be
exhausting, inefficient, or even impossible. Irstheases, consider
associating a generation count with the data stitstwhen a change is
made to the data structure, a generation counuimped. The logic that
drops and reacquires the lock must cache the g¢ioeraefore dropping
the lock, and then check the generation upon reiagmn: if the counts
are the same, the data structure is as it was wherock was dropped
and the logic may proceed; if the count is difféyéime state has changed
and the logic may react accordingly (for exampherdattempting the
larger operation)”.[Cantrill] et.al.

Task vs. Data Parallelism
<<about decomposition techniques and the real lphdastributed
monsters, infiniband and 10Gb influence on archite®>>
Introduction to parallelism
Introduce the problem

Traditionally, Computer system consists of Proceddemory system,
and the other subsystem. The processor takesdtrections sequential
one after one. Also the traditionally software ha&en written for serial

computation.
Of course, we still get fast computer, and fronetbmtime the processor

frequency and the transistors count into the mionepssor get doubled.
But suddenly the scientists discovered that wenaes to reach processor
frequency limitation. Then they try to discover maethods to improve the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 304 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 305

processor performance, such as: put many low frequeand power
consuming cores together, specialized cores, 3Bsistor, etc.

Now Multi-Core processors become the fashion ofiedustry. Now you
can found in the market Dual-Core, Quad-Core, O€ale, and more
will comes. Actually the scientist discover thadliad more cores into the
processor will provide more performance withoufesthg tries increases

the processor frequency.
By nurture the Multi-Core processors have the &pild process the tasks

in parallel and provide more performance. But thare two problems:

* Most of current software did not designedtpport parallelism i.e.
to scale with the count of the processors.
* The Parallelism is not east for most develspe

Introduce the parallelism

parallelism is form of computation in which manyccgations are carried
out simultaneously, operating on the principle tlzge problems can
often be divided into smaller ones, which are tbelwed concurrently ("in
parallel”).

Simply, the Parallel is all about decomposing caektto enable
concurrent execution.

Parallelism vs. Multi-Threading, you can have nthlgeading on a single
core machine, but you can only have parallelisnraonulti processor
machine. Create threads will not change your agtian architecture and
make it a parallel enabled application. The goodmataieam developers
are comfortable with multi-threading and they usm ithree scenarios:

1- Background work for better Ul response.

2- Asynchronization I/O operation.

3- Event-Based asynchronization pattern.

Parallelism vs. Concurrent, you can refer to muéipunning threads by
concurrency but parallelism no. concurrent ofteedign servers that
operate multiple threads to processing the requ&ais parallelism like |
said it's about decomposing one task to enable wwant execution.

Parallelism vs. Distributed, Distributed is form mdirallel computing but
in distributed computing a program is split up imgarts that run
simultaneously on multiple computers communicadvey a network, by
nurture the distributed programs must deal withehegeneous
environments, network links of varying latenciex] anpredictable

failures in the network and the computers.
Parallelism in depth:

Parallelism Types:
There are two primary types of the parallelism:

* Task Parallelism
* Data Parallelism (A.K.A. Loop-Level parallsin)

Task Parallelism:

03/12/2010

A group of tasks that can be executed simultangdaysiultiple
processors. Task parallelism is achieved when @agbessor executes
different threads on the same or different datae fireads may execute
the same or different code. For example: Imagira ylou have four tasks
you don’t care which one will finish first. Thesesks could be: Open an

image file and process it and then save it.
Data Parallelism:

Data Parallelism usually manipulates a shared ddu@t can be accessed
by multi-threads in safety way. Data paralleliss@aknows as loop-level
parallelism and it's seems like SIMD, MIMD. For exale: Imagine that
you have a huge array of data (such as: bitmap kmaext file) and you
want process this array/huge data in parallel.

There are two kind of data parallel, fist: ExpllgiData Parallel, and
Implicitly Data Parallel. In explicitly data paradl you just write a loop
that executed in parallel as | mentioned. But Iplioitly data parallel you
just call some method that manipulates the datathadnfrastructure is
the responsible to parallelize this work. .NET faai provide LINQ
(Language Integrated Query) that allow you to usedxtension methods,
and lambda expressions to manipulate the datathikedynamic
languages. See the next figure to know the imiglidata manipulation
and the parallelism in the implicitly data maniptitan (implicitly data
parallelism):

Task Parallelism vs. Data Parallelism

Bingo, if you really understand the previous seawico you may ask who
Is better task parallelism or data parallelism? Bufortunately there is
no standard answer for this question, usually theveer depend on the
situation.

For example: if you want process many large files {older content
many large files). This question is: Do | shouldgess the file contents in
parallel (Data Parallel) or the independent filesparallels (Task
Parallel)? Even this question don’t have standandwer, to get the right
answer for this question you should ask yourselfithiowing questions:

* |s the files content large data, or just avfenegabytes.

* |s the file data processing will be forwardlg (such as: Fixing,
Counting), or the data processing depends on thimesésuch as:
Sorting).

* If you will choice data parallel (process thike contents in parallel),

so how do you will manage the reading and the @sicg operation, and
the required synchronization.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 306 03/12/2010

Before | answer this question, | would like to sélge parallel
programming is hard, because in parallel world tteele behavior tend to
be nondeterministic.

In our situation, | think processing the file comt®in parallel will be
better, because the HDD usually is slow and dorot/gle better support
to concurrent reading or writing, so make many agnent reading
request to such slow device will be help. But ifmake the loaded data
processing in parallel this will be better, See tiext table. Beside this we
can perform per-fetch in our data parallel algomnthto load the next
chunk of data while the loaded data process to kieefpiDD busy and
this will improve the performance.

Parallelism in real-world

Before | start speak about the parallelism in maigasm, | should speak
about the mainly current parallelism applications.

Servers have long been the main commercially sefiddgpe of parallel
and concurrent system. Their main workload consiktaostly
independent requests that require little or no coation and share little
data. As such, it is relatively easy to build agbal Web server
application, since the programming model treatshe@muest as a
sequential computation. Building a Web site thales well is an art;
scale comes from replicating machines, which breélagsequential
abstraction, exposes parallelism, and requires dowating and

communicating across machine boundaries.
High-Performance Computing followed a differentiptitat used parallel

hardware, and optimized parallel software becailszd was no
alternative with comparable performance, not beeasgentific and
technical computations are especially well suitegarallel solution.
Parallel hardware is a tool for solving problems.

Today the popular programming models-MPI and Openrhdire
performance focused, error-prone abstractions thast of developers
find it difficult to use. In game programming, tthevelopers emerged as
another realm of high-performance computing, with same attributes of
talented, highly motivated programmers spendinggedfort and time to

squeeze the last bit of performance from complestvere.
So what about the mainstream applications and dgess?

In spite of the fact that said the parallel compgtis hard, today there are
big trend to make the parallel computing more dweiarstic, and easy.
Today you can found many easy parallelism framesyaikd debugging
tools, such as:

* Intel Parallel Studio
* Microsoft CCR and DSS

* MS PPL - Microsoft Parallel Pattern LibraryWll released in 2009
Q4)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 307 03/12/2010

* MS .NET 4 - Microsoft .NET Framework 4 (wédleased in 2009 Q4)
* Java 7 (will release in 2009)
* PRL - Parallel Runtime Library (Beta releasedJune 2009)

In next table you can see a comparison betweealibee frameworks.

The previous offered features could changes ipthduce final release.
Your choice for the parallel framework should degpen your platform,
and your application. For example Parallel Runtifribrary designed to
work will with high performance computing in figgace. But Microsoft
.NET Framework 4.0 parallelism API designed to suppxtensibility,

and wide applications.
http://www.hfadeel.com/Bloqg/?p=136

#

If you want to be serious about parallelism, perhgpu should also talk
about the kind of parallelism used by the larggstems in the world -
Blue Gene, Roadrunner, Jaguar, et al. - and ndttjus parallelism within
a single relatively weak system. These big maclaresdistributed
systems in the sense that they do not have shaetbry, but they are
not generally characterized by heterogeneity,dampredictable
latency etc. as you claim distributed systems gredture. The most
common programming model/library is MPI, though shmand UPC also
have their fans and new alternatives appear allttime.

These “esoteric” systems and approaches are beaymiore common, as
just about anyone can afford a rack full of PCs andnfiniband or
10GbE switch. They also bear some significant résemee to the large
systems put together by folks like Google, Amaaoficreasingly) MS.

By Jeff Darcy on Jun 1, 2009

Java Concurrency
http://ww. infoq.com presentations/brian-goetz-concurrent-
par al | el

Active Objects
The following is based on a talk by Andy Weil3 oa #ttive object pattern
[Weil3]. This pattern is e.g. used by Symbian sert@iprovide fast
services without the need for explicit locking antérprocess or intertask
synchronization methods. While Symbian serverscglpi use only one
real thread other runtimes can use multi-core gachires efficiently as

well.
The secret of active objects is the guaranteeathany time there will be

only one thread active inside an active objectthatlcalling a method of
an active object is done asynchronously. If yousader calling methods
as sending messages (like Smalltalk does) thereryslittle difference
between active objects and the actor concept ahgrwhich is explained
in the next chapter. The biggest difference existhe use of “future”

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 308 03/12/2010

objects in active objects which allows the callpagty to synchronously
wait for a return value if it wants to do so. Inrely asynchronous
processing there won'’t be a return value of theatall: answers will also
be delivered via an asynchronous callback to tHercdo programmers
active objects present the typical “method callfgaaggm of OO languages
with a pseudo synchronous return option..

The diagram below shows a Java like implementaifan active object
system. Different languages which e.g. control anipulate method
dispatch are of course able to implement it in @mmore elegant way
(they don’t need the proxy classes etc.).

Activation
List

enqueue()

dequeue()

Proxy

Future ml()
Future m2()

Scheduler

dispatch()

enqueue()

) ©

dispatch()

engqueue

(new MI)

enqueue

(M)

Servant Method |__M| :
ml () ml() - Request

m2()

can_run()
run()

Here a client wants to call method m1() of a cartaject. Instead of
calling m1() directly the method call is intercegtey a proxy of the object
and delegated to the internal — application lewaheduler. The method
call is put into a so called activation list whigtts much like a regular
run-queue only with methods or functions insteathofads. After
registering its wish to call m1() and the registnatin the activation list
the client who tried to call m1() returns immedigtend continues

processing. The method call to m1() is thereforasymchronous call.
As we have seen in the I/0O section all asynchrowalls need some way

to get back to the caller later. This can be viaseallback function or as
in this case via the use of a correlation ID olechjHere “futures” play
the role of correlation objects (in the languageéthey are called
“promises”. A future or promise is a handle to tasults of an
asynchronous call. The handle can be used in devaya. One way is to
use it as a parameter in other calls (remembeprbeessing which is
represented by the handle is for from being donpe Yée handles can be
stores in collections, handed over etc. But ifllecéries to get to the
result of the asynchronous processing two thingshegpen: The result is
not there yet and the caller will be suspendede(hreturns to the
scheduler so that a different function or methad loa processed). Or the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 309 03/12/2010

result is already there and will be returned todaker immediately which
continues processing.

The use of futures or promises is an extremelyagiegay to avoid
dealing with threads and asynchronous processiplicagly. Complexity
of concurrent processing is reduced significarlyen remote objects can
be treated as futures as is done e.g. in “E” whitdws some really
surprising optimizations by avoiding unnecessanndirips.

Remote Pipes with Promises
Yy

xo

tle—
VatlL
307

©

b AN

©

B represents a promise to a future result andéady forwarded tg
X —this saves a roundtrip from VatL to get the refom Y and
formward it to X

To make this work in the remote case a promise doesontain a value
once it is calculated. It functions as a functiooqy only. <<check>>

What is happening behind the scene in an activecobystem? At one
time the scheduler will pick the registrated calhtl1() in the activation
list, wrap it into a method call object and exedtie call. The call itself
will end in the so called servant which contains itbal m1() call. Here the
call will be executed, the the result filled inteetfuture object. If the client
now tries to get the value from its future it vélicceed in doing so. After
the asynchronous execution the call will returthi scheduler and the
next method will be selected for execution. Theeslctter will make sure
that there are never two concurrent calls to methathin one object
executed.

The diagram below shows the sequence of callsrferasynchronous
execution of a method m1():

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 310 03/12/2010

| : Client | | : Proxy | | : Scheduler | :Activation | :Servant |
|

createn List

—
: Method

e T Request

insert()

ml()

Bl - aspaich | an_rng]

insert() :|

The active object pattern allows many specializetj@.g. ways do
determine when it makes sense to execute an agyrats call (it might
depend on some condition) and whether only onathi®used or several.
The use of only one thread is highly efficient hesmit never blocks as
long as executable method calls are registeredrendontext switching is
really only exchanging user level functions. If ménreads are used, e.g.
on a multi-core platform, we have to make sure Wweavoid thread
numbers higher than the number of cores. And &wsef registered
methods than available threads which would theg balput to sleep by

the kernel (context switches). _ _
How is pre-emption handled in the active objectgya? From a user level

all method calls are non-preemptive: At the end ofethod or function
call is the return to the user level scheduler.rig\®ng else is non-
blocking and asynchronous. From the kernel poiri@iv the thread
executing a method (or the threads) is pre-em@etdue to the fact that
the user level scheduler will not allow anothee#t to enter an object
while one method of this object is executed theeen® shared data and

therefore no consistency problems and no lockseteed _
An active object implementation which uses only tmead — as in the

Symbian servers e.g. — will have some impact ofiggipn architecture:
method calls need to be rather short to avoid aesponsive system. The
clients can use yield() methods to return backéoscheduler and allow
other methods to be executed.

<<how would we implement something like transaciona multi-core
environment?>>

The Erlang Way

Lately Erlang has become a very popular langudbeitan special areas
as it seems. Distributed key-value stores (ScaJarniessaging systems
(ejabberd, RabbitMQ), databases (CloudDB) and &egriracers have
been built <<Ref. to Bader/Stiegler>>. In his talk Functions +

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 311 03/12/2010

Messages + Concurrency = Erlang Joe Armstong nrenéa) scalability
and error recovery as well as reliability as ca@pprties of the language.
Interstingly he insists that availability, stabylitoncurrency and recovery
are all intertwined and mutually dependent things.

What makes Erlang well suited for large scale,ear#ly reliable systems
with up to 9 nines of availability? And why e.gtlsead switching in
Erlang so much faster? (Stack small due to contimig and short tasks?)
Certainly a core feature of Erlang is its actor elaaf processing and
concurrency.

Miller lists the key principles of the actor modelErlang: [Miller]

- no shared state

- lightweight processes , not tied directly to kertheeads, not OS
processes but fast to create, cheap and in langbens available.
Scheduled in user space controls pause and resume.

- Asynchronous message passing (with delayed regeive?

- Mailboxes to buffer incoming messages

- Message retrieval with pattern matching

And the list from UIf Wiger’s blog looks quite sikar. His key properties
for Erlang style concurrency are:

. Fast process creation/destruction

. Ability to support >> 10 000 concurrent processés Vargely
unchanged characteristics.

. Fast asynchronous message passing.

. Copying message-passing semantics (share-nothimgigency).
. Process monitoring.

. Selective message reception.

If there is any single defining characteristic afdhg-style Concurrency,
it is that you should be able to model your apglma after the natural
concurrency patterns present in your problem.(Wigkg entry, 6 Feb.
2008)

Wiger claims that Erlang can theoretically supd@® million processes
and that he saw consistent performance up to 20 Rfmcesses with
creation times around 4 micro seconds. Those nwsmhake me think
again about the three concurrency models used l®g®ay for the unreal
engine. He wants to use Software Transactional Mgmooupdate 10000+
objects containing the game logic. Could he usartgrprocesses instead?

Unlike Wiger to me Erlang is ideally suited for comrency because
functions are stateless and side-effect free @#ed “referentially
transparent”) and variables can be assigned a walyeonce a read does
not need protection from concurrent access. Messagecopies of data

and immutable as well.
Wiger claims that the asynchronous message passilegof Erlang does

not fit well to massive data parallelism but manyrent application
architectures seem to be covered quite well by it.
Lets take a look at some code:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 312 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 313

temperatureConverter() ->
receive {From, {toF, C}} ->
From ! {self(), 32+C*9/5}, temperatureConverter(); . ..etc

start() -> spawn(fun() -> temperatureConverter() en d).
convert(Pid, Request) ->
Pid ! {self(), Request},

receive {Pid, Response} -> Response end.

The start() function spawns the converter process and ret urns its

process identifier. The convert function uses the process identifier
to call the converter process, sending the current identi fier as the
source, then blocks in a receive waiting for a response o n the
current's process mailbox, which is subsequently returne d.

Actor/Process use in Erlang,
From [Miller]

And how does scheduling work in Erlang? Accordim\tiger in multi-
core Erlang scheduling of threads is preemptivenftioe user perspective.
The following slides from Wiger show implementataof multi-core

support and a very interesting benchmark.
The first slide shows several scheduler instanaa&ing on one run

gueue. How can this be? What about share-nothireg@ sthedulers
compete for access to the queue and locking/ matohanisms (no
matter how “soft”) will have to used to preventmgation. The slides
shows nicely that — while for applications the gganothing approach is
certainly kept up — the Erlang runtime system madly needs to deal with
shared state in various forms.

Erlang VM

run queue

Scheduler #1

Scheduler #2

[scheduLer #M]

PriTest - Fropety-Sased Testrg 15 UF Wi, Evicssan AB maa15 EREcsson

From: U. Wiger

03/12/2010

And of course the typical shared state problemi wgihcurrency also
show up: bad performance e.g. due to locking oluskee access. The
next slide shows a better approach where each glgnexbntrols a subset
of tasks. Access to the individual run queues 8 no longer shared and
needs no synchronization. On top of that the lesémm queuing theory
are applied as well: multiple wait-queues are otatic because if one is
empty a busy one cannot offload easily. Here taigkaton is used to
avoid the poroblem.

Erlang VM

Scheduler #1 /ru.u\. quene :{I
fchedmer #2 / run gquene /

PraTest - Propety-Based Testrg 13 Urwiger, Eczzon AB o5 EAKCSsON B

From: U. Wiger

Internal shared state problems do not only showitiprun-queue
handling. Memory allocation is another typical desb zone. While on
the application level all Erlang processes have then, separate heap,
this is not the case within the runtime memoryadtmn management as
the next slide explains:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 314 03/12/2010

- Memory block carriers
locking

schequer_ @000 L 1) J[|-

o [

| D:l T e

PraTest - Property-Sased Tesling =] UFWiges, Ericssan AB 00=01-15 Engcssan B

And this is not an Erlang problem only: If you aigng Java with
concurrency, make sure you measure the allocatimestnecessary for
large pieces of heap memory. You might be in feuorise!

The following benchmark where Erlang performs badigws a very
interesting aspect of dealing with threads: We hakeady seen that too
many threads in a runnable state lead to much xbsiwétching and long
response time. Here we see the opposite effectet@ohreads (in other
words: things to do within the Erlang applicatitedd to threads/cores
being permanently put to sleep and woken up agaimecessary context

switches causing bad performance.
There are other benchmarks that are less flattetmmgrlang. One of the

worst known to-date is the "chameneos_redux” in@wnputer
Language

Shootout. It is basically centered around rendegyand a very poor
match for message-passing concurrency (esp ofrdreutarity that
Erlang supports). One may note that the Scala enasing much the
same approach as Erlang, timed out...

We note that the best entries use some form oédhaemory mutex
(spinlocks, MVars, etc.) The difference in perfonoeis staggering.
To add insult to injury, the OTP team has obsenyad this benchmark
runs slower the more cores you throw at it.

On the next slide, we will try to see what is gaong [Wiger] Multi-Core
Erlang pg. 22ff.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 315 03/12/2010

. Chameneous_redux on a dual-core

= Black areas are mainly
the scheduler working

= Fewer than (cores)
runnable processes
means the idle
schedulers go to sleep.

= | etting the schedulers
"busy-pall” for a while,
doubles performance in

5is 5= this benchmark

= Percept is part of OTP
— - — Relies on tracing,
—_— which can be costly

Runnable processes

PruTest - Preperty-Based Testig 3 UFWiger, Sricsan A5 EL=LIEES Engcssan B

According to Wiger the differences when other comioation

mechanism like shared memory spinlocks were usetstaiggering”. But
this is only a sign that one concurrency paradigmscot fit all bills.

With tightly coupled, number chrunching applicasdhe message passing
and process creation overhead in Erlang mightfrelslem. But again,

the typical social network site does not have seduirements.

In the chapter on autonomous, selfmanaged systemsgili\see how
agents in Erlang can create hierarchical feedbamd. For a more
systematic look at concurrency concepts like datila concurrency,
message passing and shared state | recommend fanRo

<<also: Actors on the JVM, Kilim, Scalaris>>

Multicore and large-scale sites
What does the trend towards multicore really meamu$ developers of
large scale sites? At first glance it looks likermoores simply means
more requests per second are possible without elsangur software.
This is what Joe Armstrong meant when he saidrthdti-core is good for
legacy software: more things can run in paralléhéy are independent.
That’s a big IFF, but still... But is there nothingweed to worry about?
More cores means slower cores! And this meanstlratequests
suddenly may run longer than before. If we canfforéto do so we need
to either make our requests shorter (doing les&wmrstart splitting them
up into parallel parts. And this means severalatisevorking on one
requests. While this is certainly possible we neechake sure that these
threads really are available at the same time.@ike our request
processing might take much longer. And we haveotealwith a
minimum of context switches per thread too! Thisas$ easy to do!
ISR A S R ayg patern wateral asyn hreads

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 316 03/12/2010

<<sharing is good, but only on the social levelwdbpies!!>>

Scale agnostic algorithms and data structures
Principles:
Decentralize, denormalize, don’t share, be evelyteahsistent, parallelize, be
asynchronous, specialize, cache
- Long-tail optimization (watch parallel processimg éxtreme delays)
- beyond transactions, large scale media processing
- combine requests into one — split large tasksnmaay smaller ones. Both
can reduce execution time, but when and how?
- partitioned iteration (map/reduce)
- hadoop, hbase, big-table paper, google applicatgine, gfs,
- mostly consistent/correct approaches: win be losorge things?
Performance through imperfection? Code for the tifast” case and live with
the failures? (relaxing of constraints etc.)
- eventually consistent (epidemic) protocols
- algorithms dealing with heterogeneous hardwarerenments
(faster/slower server combinations e.g.) as exptebyg Werner Vogels in “a
word on scalability”
- consistent hashing.
- Central meta-data/decentral data combinationsnikdia grids or Napster
(but watch for downsides like loss of indirectiardavirtualization)
- MVCC [Rokytskyy]
- Sharding logic (vertical sharding avoids downtinygust adding new
columns and tables)
- Snapshots and Syncronization points

Graph data structures and processing:
http://comlounge.tv/databases/cltv45
http://highscalability.com/blog/2010/3/30/runnirayde-graph-algorithms-
evaluation-of-current-state-o.html

[DeCandia et.al.] Giuseppe DeCandia, Deniz Hastdvladan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, AlexticSwami
Sivasubramanian, Peter Vosshall and Werner Vog@igjamo: Amazon's
Highly Available Key-Value Store”, in throceedings of the 21st ACM

Symposium on Operating Systems Princigisvenson, WA, October 2007.
http://www.allthingsdistributed.com/files/amazonadyno-sosp2007.pdf

[Vogels] Werner Vogels, Eventually Consistent — Rieed,
http://www.allthingsdistributed.com/2008/12/evenlyaconsistent.html

[Vogels] Werner Vogels, Eventually Consistent, Bing reliable distributed
systems at a worldwide scale demands trade-offswdmgt consistency and
availability. ACM queue,
http://portal.acm.org/ft_gateway.cfm?id=14664488&typdf

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 317 03/12/2010

Scalability is a core requirement for todays meutzcessing systems.What if
your system hosts millions of media content ofatiéht kind and you would like
to sift through those data asking specific questfon

A good architecture splits its code into two paatscale and distribution agnostic
level and a scale and distribution aware lowerlleMais looks much like the way
P2P networks use distributed hash tables. [Holll 8j,

For such an architecture the selection of the prapstractions for the higher
levels is of paramount importance. Holland dessrifestems that are so large
that the set of records of a certain type anddeatslated records cannot be kept
on one system under the control of one resourceageanBut instead of asking
for distributed transactions to assure consistaecyrding to Holland truly large
scale applications use the abstraction of an eofitthe upper, scale agnostic
layer. And these entities are explicitly definechas spanning machines and
unable to support distributed transactions. So sointilee scalability problems are
reified and represented on the higher levels asadt®ns and others can
successfully be hidden in lower levels. The spditween explicit representation
and transparent function is one of the most clitiezisions in distributed
systems and it gets more critical with the siza dfstributed application (where
size means either users, content, timing requirésramall of this).

Partitioned Iteration: Map/Reduce
One of those splits has gotten very famous: the/madpce algorithm used
by google to sift through its huge docuemten bapeasents a clever split
of a processing algorithm into two different pddelOnSoftware
describes the steps toward this clever separafioad® in an excellent
article on functional programming ideas. [SpolsKife core idea really
comes from functional programming and its concéptigher order
functions. If we look at a typical iteration ovemse data we might notice
something peculiar:

For (i=0;i<AllIDocuments;i++)
Document=nextDocument();
Result=Process(Document)
Write(Result)

This code mixes the iteration and the processiegssand also forces the
whole processing into a sequential mode: one dontafeer the other is
processed. Using the functional concept of highdeiofunctions we can
split the iteration from the processing:

Map(Documents, ProcessingFunction)
For (i=0;i<AllIDocuments;i++)
New Thread(Document=nextDocument();
ProcessingFunction)

This new “map” function can accept any processurgfion we give it.
The processing function can be created by appdicgirogrammers while
the map function can do very fancy distribution gadallelization of the
documents and the processing function, e.g. seniiqas of the

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 318 03/12/2010

document base together with the processing funttiatfferent servers
and handle all the distributed system logic anldifaihandling transparent
to the application programmerl

Google engineers have invented the map functiorttagcombined it
with a second step, the so called “reduce” wheeadisults can be
aggregated according to some user defined reduncéida that is also a
higher order function like the process functiondeshover to map.

This architecture leads not only to usability imggments but also allows
google to sift through its complete database huiglod times a day and
with many different hypothesis embedded in procesiinctions.

The diagram below shows some of the architectueahents used in this
system. Of course one constraint must be fulfillechust be possible to
apply the processing function to individual docutsemithout side-
effects. In other words the processing of one damirdoes not influence
the processing of other documents.

/ User \I
Program /
\“x____ - _,-/
(1) fork (1) fork i1} fork
i - '
{ Master) '
\-__ L 2
23 "assign
;assig_n reduce
o iy map _
=/ worker
LS o '
splhit O o S - —_—
= > . ©vwrite | onmut
split - _ (5)mmote rczl_g_____---'k\ ftw e_f/ file 0
Splll 2 —E]f‘id__f’_l K _“\ {4} local write __./"'__ i
split 3 i e) output
- E— ™4 file 1
sphit 4
TN
k\worker /
e ___,/ L1
Input Map Intermediate files Reduce Output

files phase (on local disks) phase files

MapReduce: Simplifieded Data Processing on Largest€ts
Jeffrey Dean and Sanjay Ghemawat of Google Inc.

A short example can show how much optimizationsihié into a
distribution agnostic and a distribution aware @éduthe application
allows: When millions of documents are sent to sexfor processing
strange effects can show up. When thousands ofiseave used, some of
those servers will fail. But they won't fail immedely in most cases.
Instead, they start getting slower, e.g. becauseligk develops more and
more bad blocks which must be re-allocated etcs Téads to a very long
tail for a map/reduce run: Almost all servers a&&dy except for a few
which are still calculating. A clever map algorithwill account for those
servers, monitor the processing and add duplicateegsing requests
when servers show malfunction. This reduces ovpraltessing time by

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 319 03/12/2010

as much as 30% - but you sure don’'t want your apptin programmers
having to deal with reliability and distributiongirlems.

(Hadoop)

We basically see the same effect as with the Chiédalxps
implementation at Google: there is a huge gap battiee theoretical
algorithm and the realities of its distributed aalilable implementation.

Incremental algorithms
Some algorithms require all elements of a companat be re-
processed in case a new element is added. A gaodpe is the
calculation of a mean. If this is done be againrgldll the known
elements and dividing them by their number the ragm will not
really scale with larger numbers. An alternativatstgy is to
calculate the new result from the last result d&edrtewly added
element. It is easily seen that this will requie fewer memory

accesses and scale much better. _ _
The pattern can be generalized to all kinds ofemantal

calculations.
Fragment algorithms

We have just seen that sometimes the additiomefxaelement
requires the re-processing of many old elementswiBuneed to
take a close look: is it really the case that theQWE algorithm
applied to each element needs to be repeated?itQuoissible that
some intermediate result of the algorithm stilldsdl In that case
we have a fragment of the algorithms result thatarecache and
re-use in the calculation of the new result. Thighhincrease
throughput by orders of magnitude as | have jusih $e an image
comparison web application.

Long-tail optimization
When a large number of processing units is usedtbhace for some of
them developing problems during the execution @f & map-reduce job is
rather high. An effective work distribution algdmih checks for slow
machines and reschedules the respective tasks.

consistent hashing
(memcached etc.)
[Kleinpeter] Tom Kleinpeter, Understanding Congistidashing,
http://www.spiteful.com/2008/03/17/programmers-tai-part-3-
consistent-hashing/

[White] Tom White, Consistent Hashing,
http://weblogs.java.net/blog/tomwhite/archive/2A07/tonsistent hash.ht
mil

[Karger] David Karger, Consistent Hashing and Randoees:
Distributed Caching Protocols for Relieving Hot &pon the World Wide
Web http://citeseer.ist.psu.edu/karger97consistent.html

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 320 03/12/2010

[Karger et.al.] David Karger, Alex Sherman, Web kiag with Consistent
Hashing

(i) Both URLs and caches are mapped to points on a circl e using
a standard hash function. A URL is assigned to the close st
cache going clockwise around the circle. Items 1, 2, and 3 are
mapped to cache A. Iltems 4, and 5 are mapped to cache B. (i)
When a new cache is added the only URLSs that are reassigned

are those closest to the new cache going clockwise around th e
circle. In this case when we add the new cache only items 1 a nd
2 move to the new cache C. ltems do not move between
previously existing caches. [Karger et.al.]

Servers:AB,C
Ttems: 1,2,34.5

A A
4

4 4

3~ Y I '

c
5
s
2 2]
1 i B
6] (i)

The term “consistent hashing” stands for a famflglgorithms which
intend to stop the “thundering herds of data” as1TKleinpeter calls the
phenomenon of wild data re-arrangements causetdryges in the
configuration of storage locations. A consistergthfunction is a function
that changes minimally as the range of the funatimenges [Alldrin].
Functions that associate a certain data item wabrain storage location
in an automatic way are used in many areas. DiggtbHash Tables
[DHT] rely on this technique as well as horizordata partitioning
schemes where e.g. certain user types are digtdlagross replica
machines. No matter whether a real hash functioisesl to map data to
locations or whether certain data qualities arel igenap to a range of
machines: the number of machines or locationg@rameter of the
mapping function and if this number changes thepimgs change as
well.

It is a classical second order scalability problérmst order scalability
partitions data across storage locations and nadisaccess and storage
scalable. Second order scalability — here repreddn consistent hashing
- needs to make the partitioning scalable in tioe faf machine changes
and additions. Some important criteria for whatwaant to achieve:

“First, there is a “smoothness’ property. When a machine is added

to or removed from the set of caches, the expdicietion of objects

that must be moved to a new cache is the minimechedle

to maintain a balanced load across the caches. i@kawer all the

client views, the total number of different cacteewhich a object

is assigned is small. We call this propergpr'ead”. Similarly, over

all the client views, the number of distinct obgegssigned to a

particular cache is small. We call this propertipad”. [Karger]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 321 03/12/2010

To give a simple example from [karger] et.al: A plenhash function like
X->ax+b (modP)

With P being the number of machines available winatde a “thundering

herd” characteristics if e.g. used to partitionadatross a distributed cache

and the number of machines in this cache chandeschiange could be

caused by crashes or increasing load. Suddenlysalevery cached item

is on the wrong machine and therefore unreachahle caches would

have to be flushed anyway because invalidationtswgauld also no

longer reach the right machines.

The following diagram shows one way to achieve test hashing in a
DHT ring. The example is taken from [Kleinpeter].

Here the whole hash range forms a ring with tret &ind the last hash
value being next to each other. Two resources haea mapped into the
ring via their hash values. And three nodes hase laéen mapped into the
ring at random positions using hashes of theird@®asses. Node #2 is
bigger and has two IP addresses (or locations@nirily) therefore. The
following rule applies: A node is responsible ftirrasources which are
mapped between his own position and the positiats gfredecessor
(when walking the ring clockwise).

There are some obvious advantages to this schevaean deal with
heterogeneous hardware easily by handing out nkRoreiinbers. You can
slowly bootstrap new servers by adding IPs in agneeal fashion and in
case of a server crash the load should be distdatther equally to the
other machines. [Kleinpeter]

Let’s take a look at what happens when a servehesa If #2 crashes the
resources A and B are re-assigned to new noddsr So good but in
practice a number of problems will have to be dedlt:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 322 03/12/2010

- How do we know that #2 is down? We don’t want tadghan
network stacks for a long time.

- What happens to the stored resources? The new dodest have
replicas. We can either design a read-through catiheh makes the
newly responsible nodes turn around and fetch #ét@ flom some store
(difficult because the simple key/value interfacesl not transport
parameters needed to re-create the data e.g. trora backend service).
Or we let the cache-read request fail at the chet the client goes to the

storage to get the original value.
- And what happens if unfortunately Michael Jacksoewly found

very last video clip shows up and is mapped to rtddeThen we learn
that our load partitioning using random hashes ctdeal with a very
uneven distribution of requests for specific ddtae “load” property
mentioned by [Karger] only assures that a small lmemof objects is

mapped to a node. It does not take the numbergokts into account.
- The random distribution of resources and nodeseag to uneven

load distribution.

- There are no provisions yet for availability ofalathis may not be
necessary for a cache but is certainly neededtf@r @pplications. Also:
more and more caches are of vital importance fgelaites which are no
longer able to re-generate all content needed &anaitch and in a

reasonable time.
- The last point has also consequences for the nesndhey

cannot just copy the data from another node bedaese is none with the
same data.

- IP numbers are not the ideal type to use for no8esie form of
virtual tokens would be better.

- Membership information about nodes and tokens teéé kept
and maintained (e.g. via gossip protocols) by esnte.

The amazon dynamo implementation as describedecfndia] also uses
consistent hashing in a similar way but shows sonpgovements with
respect to the deficiencies just mentioned:

“The fundamental issue with this strategy is tteg schemes for
data partitioning and data placement are intertwdn€&or instance,
in some cases, it is preferred to add more nodéisgsystem in
order to handle an increase in request load. Howewethis
scenario, it is not possible to add nodes withdtdcting data
partitioning. Ideally, it is desirable to use indaplent schemes for
partitioning and placement” [DeCandia]

The dynamo architecture finally ended up dividihg ting into equally
sized partitions which were assigned to virtuaktokand nodes and
replicating the data across several nodes. Thisghitoseveral advantages
and disadvantages like

- having partitions in one place/node which madeigitcg and
snapshots easier

- needing a coordination process to decide on pantitiode
associations

- gossiping of compact membership information betwemtes

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 323 03/12/2010

- being able to move replicas to a new node increatignt
- avoiding costly data scans at local nodes in caserdiguration
changes

The diagram below shows the chosen solution. Ftatailed description
of the Dynamo store — especially its eventuallysistent features see
[DeCandial.

From: DeCandia et.al, Dynamo, Amazons higly
available Key/Value Store

The necessary helper services like coordinatioentnal consistency and
membership/failure detection are discussed belawazon puts a lot of
emphasis on SLAs which determine the runtime ofises rather strictly,
e.g. at the 99.99 percentile. Consistent lookupatanhic merges are
further requirements on DHTs and we will take aseldook at the
Scalaris DHT which is implementing those requiretaém the secion on
leading edge architectures below.

For a connection with replication see: Honicky, Istij [HM], Replication
Under Scalable Hashing: A Family of Algorithms facalable
Decentralized Data Distribution, UCSC.

<<scalaris: consistent lookup, atomic merge>>

beyond transactions, large scale media processing

when to give up the idea of (distributed) transenxst and how to
cope with the fallout.

mostly consistent/correct approaches:

win be losing some things? Performance throughrenfieption? Code for
the “good/fast” case and live with the failures®gking of constraints
etc.)

Failure Detection

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 324

Ping based network approach

03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 325

Membership protocols
algorithms dealing with heterogeneous hardware

environments
(faster/slower server combinations e.g.) as exptebg Werner Vogels in
“a word on scalability”
Striping works best when disks have equal size and
performance. A non-uniform disk configuration
requires a trade-off between throughput and space
utilization: maximizing space utilization meansqiey
more data on larger disks, but this reduces total
throughput, because larger disks will then receive
proportionally larger fraction of 1/O requests, ieag
the smaller disks under-utilized. GPFS allows the
administrator to make this trade-off by specifying
whether to balance data placement for throughput or
space utilization. [Schmuck] pg. 4.
Shortlived Information
- group communication based service for socialrmfation (presence,
same page etc.)
(Schlossnagle)

Sharding Logic

Scheduling and Messaging
(Gearman), ejabberd,

Task and processing Granularity with same block siz e,
task time etc.

Collaborative Filtering and Classification

* * Taste Collaborative Filtering - Based on fhaste project which
was incorporated into Mahout, including exampled damo applications
* Naive Bayes Implementations - Implementatiohboth traditional
Bayesian and Complementary Bayesian classificaferincluded

* Distributed Watchmaker Implementation - Atdisuted fitness
function implementation using the Watchmaker ligralong with usage
examples
http://www.infoq.com/news/2009/04/mahout
Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Clustering Algorithms

* Distributed Clustering Implementations - Selelustering
algorithms such as k-Means, Fuzzy k-Means, Dir¢ciMetan-Shift and
Canopy are provided, along with examples of hows® each
http://www.infoq.com/news/2009/04/mahout

03/12/2010

Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Number Crunching

* Basic Matrix and Vector Tools - Sparse andsieimplementations

of both matrices and vectors are provided

*Hier ist der Link zur Ubersicht auf InfoQ:
http://www.infoq.com/news/2009/04/mahout
Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Consensus: Group Communication for Availability and

Consistency

- spread, virtual synchrony [Schlossnagle], Spreatkitof Amir

et.al.]

- Fault-tolerant PAXOS implementation as an example o

synchronous (quorum) group communication. [Google]

- Bryan Turner, The Paxos Family of Consensus PrégpfFburner].

Good explanation of the Paxos protocol.

- CAP theorem/eventually consistent paper by Werrmgels

- Backhand, wackamole (Schlossnagle)

Most distributed systems have a need for some @ragreement or
consensus with respect to certain values or stabeging is a typical
example, replication of critical values or commaadsther. Just to solve
basic questions like who is currently responsiblewhat a reliable
mechanism is needed. Reliable meaning that it shoatk even in the

presence of machine or network failures and desipgdamous

impossibility theorems of FLP and CAP.

We are going to look at two different consensusdtigms with different
performance and reliability guarantees. The fs®2AXOS, a well know
and frequently used distributed consensus algoritbm Lampert. The
other one is based on group membership and vsyuedhrony. The
implementation section in between discusses sosmanie learned by
Google engineers when they implemented Paxos é€tiubby lock

service.

Paxos: Quorum based totally ordered agreement

In the presence of failures consensus is reached &imajority
within a static group of nodes agrees on a cevalue. This is
called a quorum.Some rules apply to guarantee st@msi

decisions:

With N being the number of nodes, a client muse¢ast write to
WQ nodes and read from RQ nodes with WQ + RQ >nhbur
example we have 5 machines, WQ = 3 and RQ = 3andase
every write or read will have a majority. Individwerites will have
a timestamp or counter associated which lets atalietect the

latest version of a value.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 326

03/12/2010

The following is based on [Turner]. The basic Papagocol
knows several roles in addition to the client. Tioele receiving a
client request is called proposer. It needs to iveca leader to
process the request. Acceptors are basically thes/n the
protocol and learners store and retrieve valueprdntice these
roles are rolled together at each node, sometivas the client.
But for the purpose of demonstration we will keleprh mostly
apart.

Let's again assume we have five nodes who toggindorm the
Paxos algorithm. Such groups are a frequent pattetistributed
systems to e.g. provide locking, reliable storaglew but
important values, coordination of tasks etc. (4se gresin])

A client sends a request to one of the particigatiodes. If the
node is up it will

a) propose himself as a leader for this requesitdmthers

b) Collect acceptance messages from the others

c) once accepted as a leader send the requestrpaher node
d) wait for confirmation from acceptors and valfresn learners

<<basic paxos diag>>

[Message Flow : Basic Paxos (one instance, one successful round)]

Client Proposer Al A2 A3 L1 L2
-------- > Request
--------------------- >Prepare(N)
----------------------- >Prepare(N)
>Prepare(N)
Commmmmmmm e Promise(N,{Va,Vb,Vc})
oo - Promise(N,{Va,Vb,Vc})
oo Promise(N,{Va,Vb,Vc})
Client (now) Leader Al A2 A3 L1 L2

--------------------- > Accept!(N,Vn)
----------------------- > Accept!(N,Vn)
> Accept!(N,Vn)

Sommmmmmmmm e Accepted(N,Vn)

e e Accepted(N,Vn)

oo Accepted(N,Vn)
< Response
< Response
(modified after [Turner], A= Acceptor, L=Learner, N=I nstance, V=Value)

This process flow naturally splits into two phas@sinitiator
phase where leadership is decided and a data gioggshase
where values are read or written. The leadershiipte ensures a
total order of values and the protocol makes prEgjes long as
there is a quorum of nodes available. Please hatdhle Promise
response from acceptors can contain a value frpre\aous
instance run by a different leader which crashathduhe accept

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 327 03/12/2010

phase. In this case just one of the acceptors rhigye seen the
accept command with this value and it is now esakfior the new
leader to take this value as the value for hi¢ foend so all other
acceptors learn the previously committed value.

“As long as quorum is available” is a critical poin the
architecture of Paxos. The minimum number of aativdes to
achieve a consensus is 2F + 1 assuming F conclyrfeited
machines. With only 2F nodes we could experiencetaork
partion problem and we would not know which haltieé nodes is
correct. Why is this important? Because with thebar of
assumed concurrent machine failures the write qudWwQ) and
the read gorum (RQ) grows as well.

This means we have to to more writes and readshwahoovs
request handling down. But it gets worse. The Paxotocol is
based on synchronous achnowledgements — nodessahasg to
reply for the protocol to make progress. And themeeat least two
rounds of this reg/ack pattern needed per requesll talk
about optimizations shortly). [Birman] concludesrtfore that
Paxos is a very reliable albeit slow protocol thiage consensus.
He talks about tens of requests per second, Goeptets
fivehundred but we need to realize that a tightlypded high-
speed distributed processing would probably uséferent
algorithm for replication. This is not a problenr foany cases
where Paxos is used today: locking of system ressysome
critical replication of small values etc. are nolgem at all.

There are many optimizations possible in Paxos.pracol
obviously benefits from a stable leader who coutatpss more
requests within one instance without having tofgough the
leadership agreement first. A sub-instance numtéeato the
Accept command will take care of that extensionohs called
Multi-Paxos.

Accept!(N, I, Vn)

Accepted(N, I,Vn)

Accept!(N, I+1, Vn)

Accepted(N, I+1,Vn)

Another optimization (Generalized Paxos) concehnesvalues and
their mutual dependencies. If a leader can detettcertain
concurrent requests from clients are commutativegn bundle
those requests within a single round and furthéunece the number
of rounds needed. Don’t forget: in a quorum sysésen reads
need to go to several nodes before a value retuwaethe
considered consistent!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 328 03/12/2010

Proposed Series of operations by two clients received at a node
(global order). A state machiene protocol maintains two
values A and B:

1:Read(A)
2:Read(B)
3:Write(B)
4:Read(B)
5:Read(A)
6:Write(A)
7:Read(A)

1, 2 and 5 are commutative operations. So are 3 and 6 and
finally 4 and 7. The node batches the operations into three
rounds:

1. Read(A), Read(B), Read(A)

2. Write(B), Write(A)

3. Read(B), Read(A)

(after [Turner])

The final optimizations turn the leader-based Paxotocol into
something that resembles more membership protbesisd on
multi-cast virtual synchrony and is called Fasté®aXere Clients
send messages directly to acceptor/learner nothesnddes send
accepted messages to each other and the leadenligrid case of
conflict the leader sends out the canonical (hesgpt message to
resolve conflict. This is very similar to lettingees communicate
freely via multicast with one node sending outdleéined order of
those messages every once in a while. This protmrobe further
improved with respect to message delays when there
mechanism in place which lets acceptor/leader nodesnly
detect conflicts (this is ensured by messages tsgngto all

participants) but also to resolve conflicting resgseautomatically.
Paxos Implementation Aspects

One of the best papers on distributed systems eagny available
is “Paxos Made Live — An Engineering Perspectivg'Ghandra,
Griesemer and Redstone of Google [Chandra] et.dédcribes the
considerable engineering effort needed to crefdelatolerant log
running on a cell of five machines. On top of tlog other
functions like a fault-tolerant store and lockingehanism have
been built which were described already in theisean
components needed in ultra large systems.

<<chubby arch>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 329 03/12/2010

Clients

Locking and DBI API

Chubby Network (5
machines per cell) Local FS
Chubby
<> Fault tolerant DB i
Snapshot L
exchange Fault tolerant Log o9

ﬁ Paxos

Protocol

After: [Chandra] et.al

In my eyes the paper is also a clear calling fdi-tested open
source implementations for all kinds of group comination
needs (membership, consensus, failure detectioch &
component is clearly needed in large systems leuéffort to turn
an algorithm into a robust service implementat®huge.

The paper is divided into sections on Paxos, Atgoric
challenges, Software engineering and finally unetgukfailures.
In the Paxos part [Chandra] et.al describe a ratwgrlar use of
Multi Paxos with propose phases prevented by stickd one
leader called master. The whole API for the logadly routes
client requests to arbitrary replicas to the onstaranode. This is
essential for good performance with Paxos.

The algorithmic challenges consisted of signifiga@tformance
improvements using leases for master and replicd$atter
robustness in case of disk errors. Even an extentgithe protocol

had to be made due to unexpected failures at nodes.
A look at the Paxos protocol in the context of agssary quorum

for guarantee consistency makes it clear that ev@mple read
against the log would involve a full Paxos roundesfuests against
a read quorum. But in case of a fixed master, shouit be able to
return a read value from its own store? The probiemin the fact
that other replicas can at any time decide to atagw round of
leader election, perhaps without notifying the raasthis could
have led to a new read value and the old masteldwban return

stale date from its store. _
To prevent unnecessary churn of masters a masjeansed a

lease. As long as the lease is valid the mastew&nboat it will be

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 330 03/12/2010

the only one to answer requests and can theredeeread values
right from its own store and return them to clients

Leases are certainly going to improve the perfocaaf Paxos
due to lesser rounds needed. But they are nevesthdhngerous:
What happens in case of a master having problemgei@g
disconnected? To make progress a new master mestdied and
then the question arises: what happens to the &dke old
master? What if it only experienced temporary penfince
problems and wants to continue now? How could v about a
potential network partition without doing a Paxosmd and asking
for a quorum? The Google engineers do not tell thxaow they

distinﬁuish those cases and what happens to tee.lea
And there are more problems with the implementatibthe

protocol:

In the presence of temporary network outages @odisects the
Paxos protocol might cause two master nodes to figgh
controlwith each increasing their instance numberyetime they
come back. The problem was solved with forcingrtiaster to
regularly run full Paxos rounds and to increasé thetance

numbers at a certain frequency.
Something else might lead to a fast churn ratetviltae nodes

participating in consensus run some other processesl|? If the
load caused by those processes becomes too mgght affect the
ability of a master to respond quickly enough tuests from his
peers — who might conclude that the master is deddstart a new
election. This means there must be a scheduleicseavailable

which can guarantee a certain response time to poncesses.
<< add this to scheduling >>

According to the google engineers the higher lévekt-service
protocol requires a request to be aborted whemtster changes
during the request — even if it becomes mastemnataiing the
request. This forced the designers to implement@aled epoch
number for a master. It is a global counter of mrashurn at a
specific master. Losing mastership and later aogyit again will
lead to a new epoch number. As all requests areitimmal of their
epoch number it is now easy to decide when a reduassto be
aborted.

Disc corruption was another interesting challengliwthe
implementation of Paxos. As every Paxos node mpl@gises
during rounds, it cannot be allowed that the raesoitthose rounds
are changed behind the back of the protocol. Eiteuption is
prevented using checksums and a way to distingaunstmptry
disk (new) from a disk with inaccessible files (gjrwas needed.
To this purpose a node writes another marker irGibegle File
System and when it reboots it checks for the matkérfinds one
it knows that the disk is corrupt and starts rebnog it by
contacting the other replicas and getting the tateapshot of the
system state.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 331 03/12/2010

Snapshots are needed to condense an ever growig &ctions
and commands into a static state. Snapshots hawmber of
requirements that are hard to fulfil:

- sometimes a snapshot spans several resources avkich
independently updated

- in most cases it is impossible to stop the systetake a
snapshot

- snapshots must be taken quickly to keep inconsisen
small

- a catch-up algorithm is needed to get the chanftesaa
snapshot has been taken.

| will leave it to the reader to learn about otbptimizations like
database transactions using complex Paxos valdesoatentrate
on a few but critical experiences in software eaging.

[Chandra] pg. 9
The Google engineers used four essential techniguashieve

fault-tolerance and reliability:

1. An explicit model of the Paxos algorithm.
2. Runtime consistency checking

3. Testing

4, Concurrency restrictions

A consensus protocol like Paxos is used to implénenstate
machine approach of distributed processing andslé@sdlf to an
implementation using a state machine specificdaoguage. From
own experience | can say that having such a granwhieh can be
turned into code via a compiler construction t@chmn incredible
advantage over having complex events and statestlgir
implemented in software. Protocol problems are neagier to
find this way.

Implementors of large scale systems fear one tbapgcially:
runtime corruption of data structures. This is d Weown problem
in storage technologies (ZFS was once thoughtstraedisks
only because it contained test and validation adieh detected
silent data corruption). The same goes for memorguption in
unsafe languages like C or C++ and so on. The goanygineers
reported that they used extra databases to hottksts of other
database information.

Testing needs to be repeatable to have any vahoe Geeds
extensibe instrumentation to generate test inpditoariput. A
rather unnerving fact is the tendency of fault e systems to
hide errors. A node that is wrongly configured wij forever to
join some group just to be rejected again and agagasual
observer will only notice that this node has prdpabashed and is
now catching up without realizing the systematioebehind. In
our chapter on modelling ultra large systems weetsinown how
hardware engineers use markov chains to put a pilgpan

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 332 03/12/2010

certain state changes which could be used to deyste#matic
errors.

Within the Chubby/Paxos implementation a delibeedtert was
made to avoid multi-threading. While partially sassful the
engineers had to admit that many components hbad tnade
concurrent later on for performance reasons [Cladrmy. 12

Agreement based on virtual synchrony
http://www.jgroups.org/
spread

Optimistic Replication

“Thou shalst not copy” is usually a good advicéTinEvery copy
automatically raises the question of up-to-datenBss more copies the
more trouble to keep them synchronized. But in mzaases either
performance/throughput arguments or availabilityesfources force us to
create copies. And sometimes scalability force®een give up on a
central consistency requirement: that all copieeha have the same state
as the master before a client gets access to ahe abpies. Long distance
and poor latency exclude a pessimistic replicastoategy as well. Using
synchronous requests over several rounds to achensensus is just too
expensive.

Lately the concept of “eventual consistency” hasonee popular, e.qg.
with Amazon’s key/value store called dynamo. WeMegels has written
extensively about their use of eventual consigttiniques like handoff-
hints etc. [Vogels] and [DeCandia].

Let us go back to the problem of multiple copied aee what it takes to

bring them into eventual consistence and whatrti@ans for clients.
To do so we need to answer the following questions:

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 333 03/12/2010

What is updated? State transfer or operation trans fer?
How are updates ordered?

How are conflicts handled/detected?

How are updates propagated to replica nodes?

ourwhPE

Roughly after [Saito]

who does the update? Single Master or multiple ma sters

What does the system guarantee with respectto di vergence?

The following is a discussion of selected topi@sir [Saito et.al.]. They
describe asynchronous replication algorithms amgribblems in great
detail. Before we start the discussion let's mansome systems and
applications which use optimistic replication amdept eventual
consistency. DNS and usenet news are very popxdenges and their
excellent scalability has been proven many timégyTlood updates
through their network successfully. CVS is anotbyaimistic replication
schema. It accepts concurrent updates by allowfitigeooperation but
flags potential conflicts. P2P file sharing comesnind as well as PDA —
PC replication of personal user data. | do mernttmse successful
applications of optimistic replication to overcothe uneasy feeling in the
tummy once transactional guarantees are no longéahle. But fact is:
many applications can live perfectly and some avitia optimistic

replication.

The question of single-master vs. multiple masteather critical for
replication systems. A single master excludes sdiregiand conflict
detection problems and — surprisingly — may scalelmbetter than a
multi-master replication system. The reason mighthe increase in
conflicts and conflict resolution overhead oncetiplé masters accept
concurrent updates. While at the same time a smgkger can serialize
access easily and with little — especially no nekivig — costs. [Saito]

et.al. pg. 10.

Do we transfer the state of complete objects owvddransfer individual
operations that — executed at the target site Howabduce perfect copies
according to the distributed state-machine prim&pIThis depends very
much on the application. State transfer seem ideamall objects,
expensive calculation costs and low latency conoest Operation
transfer allows semantically rich treatment atréeeiver side, saves

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 334

03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 335

potentially network bandwidth and transmit timestiBuse different
technigues to detect and handle conflicts (e.qpgushunks for
incremental updates).

There are numerous ways to detect conflict. Froasigang about object
state between machines and comparing their timgstaoncomparing

causal histories of updates with vector clocks madn. Vector clocks are
the swiss army knife of creating order in distrdmisystems.

Vector Clocks

Event
counter for \

Node i=2
(1141614111411]4]1]14]1141114] 2] |

Event
counter for \
Node j=4

(1141614]7]411]411]4]1]411]4] 2] |

Vector clocks are transmitted with messages and compared at the
receiving end. If for all positions in two vector clocks A and B the
values in A are larger than or the same as the values from B we say
that Vector Clock A dominates B. Thiis can be interpreted a S
potential causality to detect conflicts, as missed mes sages to order
propagation etc.

To solve conflict we can use Thomas’ write rule evhieads to older
objects slowly to disappear from the replicas. @¢Shes the question of
conflict handling in certain cases to the usethefapplication. Fully
automatic ways to deal with conflicts will frequisnihave a price to be
paid in consistency.

How updates are propagated depends on the topofdbg network and
how users of our replication system will interacthwt. Here session
behaviour is a very important point because mogliegtions need to
guarantee at least consistent sessions.

03/12/2010

Session Guaranties with optimistic replication

“Read your writes ” (RYW) guarantees that the contents read from a
replica incorporate previous writes by the same user.

“Monotonic reads " (MR) guarantees that successive reads by the
same user return increasingly up-to-date contents.

“Writes follow reads " (WFR) guarantees that a write operation is
accepted only after writes observed by previous reads by the same
user are incorporated in the same replica. No jumping back in tome
with a replica that missed some writes.

“Monotonic writes " (MW) guarantees that a write operation is
accepted only after all write operations made by the same user are
incorporated in the same replica. (read set of client received from
replica will show those write events)

After [Saito]. Remember that it is transparent
to the client which replica answers a request

Werner Vogels of Amazon correctly points out thaplecations which
violate the first two conditions are very hard sewand understand.

Finally the question of divergence of replicas reedbe answered. And
here the solutions are rather limited. Epsilon @iaacy with its famout
example of an international bank account comesibtaln bank which
wants to restrict the damage fom overdraft in fiegions will set a limit
of x/5 per region.. [Birman] gives some interestmgnbers on the
behaviour of epidemic distribution protocols whs#em to show a high

degree of reliability.

- session consistency
- epidemic propagation
- vector clocks

Failure Models
Time in virtually hosted distributed systems

[Williamson]

[root@domU-12-31-xx-xxX-xx-xx mf]# ping 10.222.111.1
PING 10.222.111.11 (10.222.111.11) 56(84) bytedabé.

64 bytes from 10.215.222.16:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:

icmp_seq=2 ttI=61 t##¥3 ms
icmp_seq=4 ttI=61 B84} ms
icmp_seq=>5 ttI=61 #Md88 ms
icmp_seq=6 ttI=61 t#A&5 ms
icmp_seq=7 ttI=61 #MB77 ms
icmp_seq=8 ttI=61 #ih616 ms
icmp_seq=9 ttl=61 #M&94 ms
icmp_seq=10 ttI=6% 404 ms

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 336

03/12/2010

64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:
64 bytes from 10.222.111.11:

icmp_seq=11 ttI=6%tM 762 ms
icmp_seq=14 ttI=64#20.2 ms
icmp_seq=16 ttI=6tM563 ms
icmp_seq=17 ttI=6tM 508 ms
icmp_seq=19 ttI=6 ms
icmp_seq=20 ttI=6kt#AB81 ms
icmp_seq=22 ttI=6tM868 ms
icmp_seq=24 ttI=6t#4850 ms
icmp_seq=25 ttI=6tA183 ms
icmp_seq=27 ttI=6t@203 ms
icmp_seq=31 ttI=6ktM 554 ms
icmp_seq=32 ttI=6t678 ms
icmp_seq=34 ttI=6tM543 ms
icmp_seq=35 ttI=6kH#2b6.6 ms
icmp_seq=36 ttI=6t#4055 ms
icmp_seq=41 ttI=6#809 ms
icmp_seq=43 ttI=6t@564 ms
icmp_seq=44 ttI=6ktif241 ms

As you can appreciate, this has some consideralolekkon effects to the
rest of our system. Everything grinds to a haltwNalo not believe for a
moment, this is the real network delay, but mdkeli the virtual
operating system under extreme load and not alpgeottess the network
queue. This is evident from the fact that manyhefpings never came
back at all.

[VMWare] Time in VMWare ...

The problem is that distributed algorithms for camsus, locking or failure
detection all rely on rather short and predictddencies to predict a
failure reliably (meaning long timeouts) and at sane time achieve a
high throughput (meaning short timeouts). VMs wii to catch up by
delivering timer interrupts faster but this meclsamican clash with higher
level time setting protocols badly when run atshee time.
Overcompensation is one possible result.

Problem: how to monitor cloud app performance ey (Gomez?)
Williamson:

Following on, | noticed that cloudkick, the cloudrformance monitoring
people, published their own findings on the netwlatkncy, and digging
into their graphs, we find a complete correlatiathvour own data.

Part VI: New Architectures

0

O O O O O O

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 337

media grid

Peer-to-Peer Distribution of Content (bbc)

Virtual Worlds

Cloud Computing??

Web app APIs from Google and Yahoo

Scalaris with transactions

Selfman self-management and feedback loops withtage

03/12/2010

Cassandra and Co.
(Todd Hoff, MySQL and Memcached, the end of an era?
http://highscalability.com/blog/2010/2/26/mysql-am&mcached-end-of-an-
era.html?printerFriendly=trjie
Design Patterns for Distributed Non-Relational bates (Cloudera, Todd
Lipcon). Very good schematics on row/column andedistorage and log
structured merge trees. (perhaps better in algostand bigtable discussion).
The points are: automatic scalability. Huge growdbn intelligent reads
dominate. Mostly no transactions. Cassandra, MonozBlemort, Scalaris...

With a little perspective, it's clear the MySQL+n@ached era is passing. It will
stick around for a while. Old technologies seldahef away completely. Some
still ride horses. Some still use CDs. And therlewill not completely replace
that archaic electro-magnetic broadcast technologlfed TV, but the majority
will move on into a new era.

LinkedIn has moved on with their Project Voldemarhazon went there a while
ago.

Digg declared their entrance into a new era in &fpon their blog titled Looking
to the future with Cassandra, saying:

The fundamental problem is endemic to the imat database mindset, which
places the burden of computation on reads rathanthrites. This is completely
wrong for large-scale web applications, where resgmtime is critical. It's made
much worse by the serial nature of most applicatidach component of the
page blocks on reads from the data store, as veetha completion of the
operations that come before it. Non-relational dstares reverse this model
completely, because they don’t have the complekoparations of SQL.

Twitter has also declared their move in the artiClassandra @ Twitter: An
Interview with Ryan King. Their reason for changisg

We have a lot of data, the growth factor inttthata is huge and the rate of
growth is accelerating. We have a system in plase8 on shared mysql +
memcache but its quickly becoming prohibitivehtlggs terms of manpower) to
operate. We need a system that can grow in a mdmreated fashion and be
highly available.

It's clear that many of the ideas behind MySQL+nashed were on the mark,
we see them preserved in the new systems, itthaighe implementation was a
bit clunky. Developers have moved in, filled thpgyaanded the corners, and
made a new sturdy platform which will itself forime tbasis for a new ecosystem

and a new era.
Building Large AJAX Applications with GWT 1.4 ando@gle Gears

In this presentation from QCon San Francisco 28ajeev Dayal discusses
building applications with GWT and Google Gearspits discussed include an
overview of GWT, integrating GWT with other framesks, GWT 1.4 features,
developing large GWT applications, integrating GWAAd Google Gears, the
architecture of a Google Gears application, Go@Ggars features and the Google
Gears API.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 338 03/12/2010

Adaptive, Self-Managed ULS Platforms

www.selfman.orgEuropean Research on self-managed systems

[Andrzejak] Artur Andrzejak, Alexander Reinefelprian Schintke, Thorsten

Schitt, On Adaptability in Grid Systems, Zuse UitgtBerlin

[vanRoy] Peter van Roy, Self Management and tharEuif Software Design,

http://www.ist-selfman.org/wiki/images/0/01/BcsO&vay.pdf

[vanRoy] Peter van Roy, The Challenges and Oppitigsrof Multiple

Processors: Why Multi-Core Processors are Easyrdarhet is Hard (short piece
on conflicting goals in p2p and emergent behaviikerthe intelligence of google

search)

[vanRoy] Peter van Roy, Overcoming Software Fragwith Interacting
Feedback Loops and Reversible Phase Transitiogain(éhe concept of feedback

loops for control)

[Northrop] Linda Northrop, Scale changes everything
[Gabriel] Richard Gabriel, Design beyond humanitéd
[SEI

[UK]
“Human-in-the-loop”

The approach in this book has been a rather pehctine: take a look at

real ULS sites and investigate the architecturesmaethods used to build
them. The assumption behind is that while the prestand technologies
used certainly are different in ULS, it is stillre@ntional engineering that
Is used to build them. Even though it is a more glemkind of
engineering that is needed and which includesdhmkenvironment
explicitly. And even though it is a kind of engimig that stumbles from
roadblock to roadblock only to re-engineer what wait before to make
it adapt to new challenges.

But this approach is not undisputed. There areastltwo groups of
researchers who go way beyond and challenge theesmg approach to
ULS in general:

ULS design will have to move beyond computer seiand electrical and
electronics

engineering-based methodologies to include buildhlogks from seven
major research areas:human interaction; computadicemergence;
design

computational engineering; adaptive system infnadiure; adaptable and
predictable system quality; and policy, acquisitiand management.
[Goth]

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 339 03/12/2010

Both groups of researchers share the above statenoga or less but
differ in the engineering approach and especiallthe scope of their
vision. But take a look first at the approach trdizized by both groups
an which | call “human in the loop”:

9

system

component

N
=5

=l |

]

Currently there is always a human involved in theib feedback loops
which keep systems in a stable state while end@xternal inputs and
forces. And of course humans were needed to budavhole system in
the first place. Adaptation, the change of a systeprocesses, structures
etc. is done manually. <<def adaptation, statioatyic, evolution>>

Self-management with interacting, hierarchical feed back
loops

The selfman.org project, headed by Peter van Rey to replace manual
management with the concept of self-regulationileyanchically
organized feedback loops.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 340 03/12/2010

Goals/
policies

;l controller
[
v
Actions controller .
monitor

monitor
system
&> subsystem ﬁ

<<feedback, stygmergy, management, open close >math
The following diagram shows a real example of imtéing feedback loops
in the TCP protocol:

Send Send
stream ackoowledgement
| 4
Ouster loop {congestion contol)|

X
Caleulate policy modification
(modify throughput) = N
Ioner loop (reliable wansfer) | _—
= Li 3 h
Calculate bytes to sand :'|
.f'./— ' (shding window protocol) E ™ :||
¥ 1 - : l
Actuator Menitor Monitor
isend packet) (receive ack) | thoughput
| I’II .fll
\'-\ Subsystern i __/II . r
T {network that sends packer to) e e e
destination and receives ack)

TCP feedback loops, after [vanRoy]

The research group uses structured overlay netvesrks example of
self-regulating/healing architecture and built seinagement algorithms
on top of the SON platforms. Consistent lookup 8nreliable merging of
partitioned rings with eventual consistency, raggeries and finally even
distributed transactions on top of SONs have beseldped.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 341 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 342

<<description of selfman.org sub-projects>>.

The engineering view behind is based on good so&waechitecture
principles: separation of interfaces from implenagioh and making
architectural elements explicit. <<[Haridi] on Koiog.>>

The concept of complex systems as “systems of gsiigims connected via
hierarchical feedback loops” is already a rathenaeding view on ULS
architectures given that there is no general systéeory yet and the
complexity of intertwinded feedback loops soon gétallenging and .

<<diagram of feedback components: planner, analytiecisions, policies
etc.>>

architecture of the managed system, its Event triggered condition-action rules for
state, the allowed management actions, management of networks and distributed
desired target system states and the systems
optimization goals.
o ARIMA/Kalman
models, pO{!cres, goals Classification

" Sequence Mining

— analyzer » predictor

monitor ' planner '—‘

controller:
~~{Actuator |-
¥

Game theory, genetic

alg., sim. Annealing,

expert systems etc.
planning-graphs,

After [Andrzejak] propositional satisfiability techniques, and
constraint satisfaction techniques

The programming problem certainly generalizes thi®oaomic computing
problem, since in all by few exceptions the mearattin the self-
managing

functionality is software. Does it mean that thierfof formalization for
self-management is similarly high as in the progmang problem? This is
not necessarily the case, since in the domainlbhsmmagement the
required

solutions are simpler (and more similar to eachepjlthan in the field of
programming,

and so the benefits of domain-specific solutiomslzaexploited.

A further step to reduce the effort of formalisatiwould be the usage of
machine learning to automatically extract commoleswand action
chains from

such descriptions [3]. Other tools are also possjlhcluding graphical
development

environments (e.g. for workflow development), datikze specification

of management actions used in conjunction withraata planning, or
domain-specific languages, which speed-up theisolyrogramming.

03/12/2010

Complete fault-tolerance is neither possible nandfecial. One goal of
autonomic computing is to hide faults from the ws®dt to first try to
handle

such situations inside the system. Some faultsatdrendetected, like
whether

an acknowledgement or calculation just takes a \@mg time, or was lost
during data transmission. This is also known agihglproblem [30]
which

states that no program can decide whether anothegnam contains an
endless

loop or not. [Zuse..]

The paper raises some very interesting theorejioasgtions like the
observation of one program through another (haftiradplem) and how it
is applied at runtimes instead at code. But thénoust mentioned for
decision making, planning and even analytics aediption are far from
being engineering technologies. They are pure seiand it will take a
while until we will be able to use some in realtsyss.

Emergent Systems Engineering

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 343

But the group that met for OOPSLAO6 to discuss WYe8ms even more
radical. Linda Northrop gave a presentation withtitle “sale changes
everything” and she and her group of researchefading Richard
Gabriel and Doug Schmidt went out to investigatenelarger systems.
They rejected a core assumption made about thaesgng of ULS: that
they could be built consisting of billions of linesreliably working code
with incremental improvements to todays softwaoht®logy: “Scale
changes everything”.

Some core observations from this group:

<<[ist of features of ULS>>

03/12/2010

What Is an Ultra-Large-Scale (ULS) System?@

A ULS System has unprecedented scale in some of these dimensions:
Lines of code
Amount of data stored, accessed, manipulated, and refined
Number of connections and interdependencies
Number of hardware elements
Number of computational elements
Number of system purposes and user perception of these purposes
Number of routine processes, interactions, and "emergent behaviors”
Number of (overlapping) policy domains and enforceable mechanisms

Number of people involved in some way

p
| ULS systems will be interdependent webs of software-intensive systems,
people, policies, cultures, and economics.

,\ULS systems are systems of systems at internet scale.

Scale Changes E ing

&= Software Engineering Institute | CarnegieMellon Lo Noriwos, coPsiA s

© 200C Carmags Medon University

<<why scale changes everything>>

Scale Changes Everything @

Characteristics of ULS systems arise because of their scale. | N:(é’| éHT
Decentralization S

Inherently conflicting, unknowable, and diverse requirements

Continuous evolution and deployment

Heterogeneous, inconsistent, and changing elements

Erosion of the people/system boundary

Normal failures

New paradigms for acquisition and policy

These characteristics may appear in today's systems and systems of systems,
but in ULS systems they dominate.

These characteristics undermine the assumptions that underlie today’s
software engineering approaches.

Scale Changes Everything

&= Software Engineering Institute | CarnegieMellon i novo,corsinzmos

Carnegée Malon Unberatty

The group also states a paradigm shift in the ambréo build those
systems. According to them neither classic enginger

. largely top-down and plan-driven development

. requirements/design/build cycle with standard wiellined
processes

. centrally controlled implementation and deployment

. inherent validation and verification

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 344 03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 345

nor the agile approach

. fast cycle/frequent delivery/test driven

simple designs embracing future change and rafagto
small teams and retrospective to enable teamitearn
tacit knowledge

will work on the scale of ULS. [Northrop]

A quote from Greg Goth shows the scope of thisareseapproach
clearly:

Where a traditionally engineered software systeghiribe like the
detailed blueprints for a building, with everythitegd out in advance, the
creation of a ULS architecture is more like thelation of the city itself:
The form of a city is not defined in advance bycdpieg requirements;
rather, a city emerges and changes over time thndbg loosely
coordinated and regulated actions of many individu@he factors that
enable cities to be successful, then, include brténsive infrastructures
not present in individual buildings as well as mawisms that regulate
local actions to maintain coherence without centahtrol. (from page 5
of the ULS report) [Goth]

In the context of this thinking fundamental quessi@re raised:

- are requirements really useful to build systemsdpan 25 and
more years?

- Can we even use traditional “design” thinking taldbthings of
such complexity and size?

- How do you bootstrap such systems (Kelly’s questioriow to
build a biotope)

- Do these systems emerge or are they built accotdiag
engineering plan?

- Are the control loops hierarchical or network-like?

- How do we tie heterogeneous components into orteraysls
there ONE system?

- Collusion is normal in those systems

- Traditional science thinking is towards small atejant
algorithms. Those systems are big and sometimegscogiglomerates of
smaller pieces.

- Second order cybernetics: the builder are patt@system

Both research approaches are certainly fascinatihdyseriously doubt
that they are in any way representative of the pfgddLS we have been
discussing in this book. Sites like Facebook ockfliYoutube or Google
do go to great length to avoid some of the charaties mentioned in the
ULS of Northrop. The desing rules are actuallyrtgyto put the problem
space into a shape that allows the applicatiomgireering techniques to
achieve reliable systems: create requests of sstargjardized runtime
behaviour. Control requests tightly with respedréguency and side-
effects. Partition data as much as possible. Agergtices which create
unduly disruptions to your infrastructure and soAnd yes, despite a
carefule use of monitoring and logging there anmas in the feedback
loop that makes the existing systems scalable @rabtle.

03/12/2010

Scalability by Assumption Management

Perhaps this is anyway the right way to approaeltptbblem: if it does
not fit to our engineering abilities — bring itanad shape that will fit.
Gregor Hohpe of Google, author of the famous baokmplication
integration patterns, collected a number of degigdelines for highly
scalable systems. The following is taken from ik &t Qcon London
with the title “Hooking stuff together - progranmgithe cloud”. [Hohpe]

<<|ess is more>>

Event driven, non-
sequential

NSS is More?

@ NO Call Stack

service is up O Certainty

@ NO Ordering Constraints

@ NO Assumptions

After Gregor Hohpe, Qcon Talk

Distrib. TAs too
expensive

o NO Transact;u Forget SLAS
Don‘t know if g:o Promise

Can't control
ordering of service
execution

Can‘t assume Scary? Yes!
much about Cool? Yes!
oliieis Way to go? Yes!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 346

03/12/2010

Conversations

@ Series of related messages between parties

@ Not handled at lower layer

@ Endpoints keep some conversation state

@ Protocol design

Internal State:
Processing
Payment

-

Conversation State

Intemnal State:
Ordet 7 Waiting for
NI st P Payment
Invoice g
Payme
pament s Internal State:
A\ Drinks/ Making Drinks

Hohpe uses the example of Starbucks to demonsirateghput
optimizations: accept some loss to achieve maxirtiuoughput. This
sounds a bit like “eventual consistency” and weld¢aall it “eventual
profitability” perhaps. In ULS design it clearly @masizes the need to re-
think request types and functions in the overadtemy context. Who cares
about a tossed coffee every once in a while if ttegysave on a very
expensive transactional protocol? Overlapping gses are necessary to

achieve hiah throuahput.

Starbucks Does not Use 2-Phase Commit Either

@ Start making coffee before customer pays

@ Reduces latency
@ What happens if...

Customer rejects drink ##) Remake drink

Coffee maker breaks

<<what now>>

Customer

Retry

Refund money
Compensation

Discard beverage
Wirite-off '

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 347

03/12/2010

Now What?

@ Live with uncertainty

@ Simplicity is King

@ Interaction

@ Asynchrony

@ New programming models
Behbld the Run-time

49 Patterns Renaissance

Q

CH

To be able to live with very few assumptions wedheere-design our
services and functions to e.g. make them ordespaddent. Like in our
discussion of Paxos we see again that commutabvitgquests allows
extreme optimizations, ideally full parallelization

Living With Uncertainty

Order of
execution
ACID (before) ACID (today) does not
matter!
@ Atomic @ Associative /
@ Consistent @ Commutative Service is either
o Isolated @ Idempotent a natural or our
protool needs to
@ Durable o Distributed achieve it!
T
Predictive Flexible
Accurate Redundant

Almost every architect of a ULS mentions simplicdtya core design
feature. We should probably attempt to definelitdetter: what do they
really mean with simplicity? Here the statementudtzoclear failure mode
being better than some complex failsafe architeatuimteresting.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 348 03/12/2010

Simplicity is King

@ Even simple things become complicated in a
distributed environment

o If it looks complicated on paper it's likely to be
impossible in practice

@ If you can’t understand it, other developers likely

]

o A well understood failure scenario can be better
than an incomprehensible and unproven “failsafe”
system

Interaction has always been the magic behind Higed systems
[Wegner]. Interaction is what makes those systamsesy different from
sequential algorithms. | believe that we need woda living systems over
code analysis in the future: a service is onlyraise if it is available.
Code is very different to a running instance whi@can interact with!
(halting problem?)

Focus on Interaction

@ In the OO world interaction is essentially free

@ Powerful structural mechanisms: inheritance,
composition, aggregation

@ In the cloud, more focus shifts to interaction.
Structural composition mechanisms are limited.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 349 03/12/2010

Hohpes emphasize on asynchronous interaction dgeme as a
surprise anymore: we have already seen that synchsowait times are
just too expensive to achieve high throughput.

Asynchrony

@ Exchange through messages, not RPC

@ Waiting for the results of an HTTP request is not a
smart use of a 3 GHz processor

@ Request and response message typically handled
by different parts of your program, even if the
same TCP connection

@ Reduced assumptions about timing and state

New programming models like map-reduce are neeulpdocess data in
ULS. Hohpe'’s final point here is to emphasize tlieecence between
some logical model and its execution within a distted and parallel
environment. This requires extensive monitoring &adking.

<<map reduce>>
<<runtime>>

Behold the Run-time

@ Call Stack @ MapReduce

void a() { map(in_key, data)
b(Q; 2> Tist(key, value)
¥

¥ reduce(key, list(values))
void I_]O L 2 list(out_data)

c0;
dO;

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 350 03/12/2010

Accordiing to Hohpe Cloud-Computing dodges thedislbf the research
groups mentioned earlier by restricting features @rtting down on
assumptions and guarantees provided to clients.Halge explicitly says
that some application scenarios are probably tmfitunning in the cloud.
Giving up on transactions e.g. is certainly a tandg to do for many
applications. Here the work of the selfman.org gronight come in handy
by providing a transactional DHT and standard comgmds which realize
broadcast and other functions within an active coment (actor) concept.
Let’s take a closer look at Cloud Computing consemw.

Cloud Computing: The Web as a platform and API
How do we use those new platform APIs with theeaal storage technology?
Pricing and API use?

[zUlch] paper

[Williamson] Alan Williamson, has the EC2 cloud bete over subscribed?
http://alan.blog-city.com/has_amazon_ec2_ become_subscribed.htm#

(cloud computing is not the most cost effective wayunning an enterprise if the
majority of them are running all the time). Accordito our monitoring, the
newly spun up machines in the server farm, wereupdrforming compared to
the original ones. At first we thought these freaksature, just happened to
beside a "noisy neighbor". A quick termination aew spin up would usually,
through the laws of randomness, have us in a geighborhood where we could

do what we needed. (noisy neighbours)
Amazon is forcing us to go to a higher priced instjust because they can't

seem to cope with the volume of Small instances.

we discovered a new problem that has crept into Zama world: Internal
Network Latency.

ping between two internal nodes within Amazon @uad the 0.3ms level,
App architecture: shut off instance and hope thattew one will be better.

On Polling being bad in clouds: Polling is bad hessaAppEngine applications
have a fixed free daily quota for consumed res@jneden the number of feeds
the service processed increased - the daily quasaewhausted before the end of
the day because FF polls the service for eachdeed; 45 minutes. [Zuzak] Ivan
Zuzak Realtime filtering and feed processing
http://izuzak.wordpress.com/2010/01/11/real-timedf@rocessing-and-filtering/

[google] Entity Groups and Transactions
http://code.google.com/appengine/docs/python/datansactions.html

[Hohpe]

Amazon S3 architecture:
htt p://bl ogs. zdnet . coni st or age/ ?p=416

<<check pricing at 15 cent/gig/month>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 351 03/12/2010

the Guide to O oud Conputing from Sun

htt p://ww. sun. com of f ers/ docs/ cl oud_conputing pri nmer. pdf
(mentions capital expenditure advantages as wafiheks saas, paas, iaas, open
storage concepts in new sun fire 4500,

http://ww. i bm com devel operwor ks/ web/ | i brary/ wa-
cl oudfl avor/index. htm ?

ca=dgr-j w22CC- Labyri nt h&S TACT=105AGX59&S CMP=grsi t ej w22

provi sioni ng, deploynent, architecture
http://ww.theserversi de. com news/t hread. t ss?thread i d=54238

htt p: // ww. devwebspher e. conf devwebspher e/ websphere _extrene_scal e/

* St orage nade easy with S3
<http://ww.ibmconm vrm newsl etter 10731 5146 110766 _enmil DYN 2I N
/ wgxgc

83948394> (Java technol ogy)
* Cl oud conputing on Al X and System p
<http://ww.ibmconfvrm newsl etter 10731 5146 110766 enmi | DYN 3I N

/ wgxgc

83948394> (Al X and UNI X)

* Is there value in cloud conputing?
<http://ww.ibmconfvrm newsl etter 10731 5146 110766 enmi |l DYN 4I N
/ wgxgc

83948394> (Architecture)

* Cultured Perl: Perl and the Amazon cloud, Part 2
<http://ww.ibmconfvrm newsl etter 10731 5146 110766 enmi | DYN 5I N
/ wgxgc

83948394> (Li nux)

* Realities of open source cloud conputing: Not all clouds are
equal
<http://ww.ibmconfvrm newsl etter 10731 5146 110766 enmi |l DYN 61 N
/ wgxgc

83948394> (Open source)

* The role of Software as a Service in cloud conputing
<http://ww.ibmconm vrm newsl etter 10731 5146 110766 _enmil DYN 7I N
/ wgxgc

83948394> (Web devel opnent)

Mark Andreesen, Internet Platforms on his blog.

[Shalom] Nati Shalom, Latency is everywhere.
http://natishalom.typepad.com/nati_shaloms_blog@20®its-time-for-auto-
scaling-avoid-peak-load-provisioning.html

- middleware virtualization

- cloud APIs and datastores

- best practices for cloud apps

Dr. Striker also from the University of Freiburg¢ked about communicating
things, calculating clouds and virtual companies.atso used the famous
Animoto example.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 352 03/12/2010

Animoto scalability on EC2, from Brandon Watsons blog

== =2 8B
¥ 2 8 5 838 B B
o A A i

888888

{
1000 SA5T
o

04113 02.00 SAST

04N7 1800
0418 1000 SAST

0413 1800 SAST
04714 1000 SAST
4

0412 10.00 SAST

Animoto faced extreme scalability problems and edlthem by using EC2. Brian
Watson questioned the rationale behind adding 3@&¢hines practically over
night:

Ar%azon loves to hold out Animoto as an exampleeofteatness of their
platform. They love to show the chart on theHefe. In a couple of days, usage
of the Animoto service exploded. There’s an acttogrof the event in a blog
post by the AWS teantf you do the quick math, they were supporting
approximately 74 users per machine instance, aet ttser/machine image
density was on the decline with increased user@tso The story they like to
tell from this chart is “wow, we were able to spip 3000 machines over night.
It's amazing!” What | see is more along the liregsholy crap, what is your

code doing that you need that many instances &irrttany users?” | don’t mean
to impugn Animoto here, but | don’t want the poembe lost: the profitability of
your project could disappear overnight on accouint@de behaving badly.

Watson] o . . . :
found especially interesting what Striiker saidwlcloud computing. He gave

some interesting numbers on the size and numbeltstatenters built by Google,
Amazon and now also Microsoft. According to him kisoft is adding 35000
machines per month. Google uses 2 Mio. machin8§ atacenters worldwide.
But the way this compute power is used surprise@we® more. The first
example was the converson of 11 Mio. New Your Timegles to pdf. Instead of
building up an internal infrastructure of hundredsnachines somebody decided
to rent compute power from the Amazon Elastic Camitloud EC2 and ended

up with the documents converted in less than aaagnly 240 dollar.
Then he mentioned the case of animato, a compa&ayicg movies from

pictures. Interesting about this case is that atdmaed the EC2 cloud to prepare
for incredible growht. | don't remember the exaatibers but the growth of
requests was so big that without an existing, stalafrastructure, the users of
animato would have experienced major breakdownereltvould have been no

way to increase compute power quickly enough toptgmwith this growth rate.
But the last cases were even more astonishing. Wieey about businesses using

the cloud to do all kinds of processing. This imigs highly confidential stuff like

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 353 03/12/2010

customer relationship handling which touches treohlte core of businesses. |
was surprised hat companies would really do thisailge corporations this type
of processing is done internally on IBM Mainfram&ke whole development
could spell trouble for the traditional IBM Mainfree strategy as a new
presentation at infog.com already spells out: Abebm asksAre IBMs Cloud
Computing Consulting Services Generating a Confiidhterests?

Qcon: HostGregor Hohpe
The Web has become the application delivery platfof choice. After an initial
focus on the presentation layer, business seraicésniddleware components are
moving to the web as well. Supported by core sesvlike Amazon's EC2
compute cloud and S3 storage services, and uspigaton services like
Google's GData APIs these applications don't ustaver the web, they run on
the web.
What does this mean for application developers? Howou deploy an
application to the Web? Will applications be comgabby dragging web-based
components together? Do we still have to fiddleuacbwith JavaScript and brittle
APIs? This track invites experts who have beemgj\the cloud to share their
experiences and give hand-on advice.
Moving to the Grid will affect your application dnitecture considerably,
according to Joseph Ottinger. He explains core J2ERitectural features like the
assumption of request/response patterns and whaeged to move toward a
dynamic grid infrastructure. [Ottinger]
Canonical Cloud Architecture
The canonical cloud architecture that has evolvexdbives around
dynamically scalable CPUs consuming asynchronoeisigtently
gueued events. We talked about this idea alrea@igikr - Do the
Essential Work Up-front and Queue the R&sie cloud is just
another way of implementing the same idea. [H&@#§nonical

Cloud Architecture
What is this about asynchronous, persistently quiewents and

scalability via CPUs? Sounds similar to Darkstah#ecture for
MMOGs.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 354 03/12/2010

Amarzon 505

Billing
Queuve

Shutdown
Controller

[l;u? L:: Billing

Service

Monitor
Controller

Launch
Controller

Billing
Controller

Controller | Laund]

InsertioblD, Insert Arpation

(D)
——
ams GerFile “

Amazon Hadoop Cluster on
SimpleDB Amazon EC2 Amazon S3

(from [Hoff], canonical cloud arc.)

Cloud-based Storage
[Glover]
-REST based API to S3, 15 cent/gig/month plus feareosts,
flexible access token generation (e.g. time-limaedess to storage
parts), global name space for spaces. Twitter Staser images on
S3.
<<REST API example for store and update >>

Latest from Architecture
http://www.infoq.com/architecture/:
Presentation: Google Data API (G-Data)
Frank Mantek discusses the Google Data API (GDati)ding
decisions to use REST rather than SOAP technology,the API
is used, numerous examples of how GData has beehhys
clients, and future plans for evolving the API. kalission of how
GData facilitates Cloud Computing concludes thesg@néation.
(Presentations)

Cloud-based Memory (In-Memory-Data-Grid)
We are on the edge of two potent technological gaanClouds
and Memory Based Architectures. This evolution nglopen a
chasm where new players can enter and prosper. Baosthe
master of disk. You can't beat them at a gamepbegcted. Disk
based databases like SimpleDB &@idTableare complicated
beasts, typical last gasp products of any agingnetogy before a
change. The next era is the age of Memory and Gldudh will
allow for new players to succeed. The tipping p@rgoon. [Hoff],

Cloud-based Memorz
Will ram become disk and disk become tape? Dosg#ailly

scale? What is the role of MVCC?
Time in Virtualized Environments

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 355 03/12/2010

[DynaTrace] SLA monitoring

[VMWare] Time Keeping in VMWare Virtual Machines
[Harzog]

[Dynatrace] Cloud Service Monitoring for Gigaspaces

The Media Grid

Make abstract:

“The Media Grid is aligital medianetwork infrastructure and software-
development platform based on new and emerginglilistd computational grid
technology. The Media Grid (http://www.MediaGridydris designed as an on-
demand public computing utility that software pramgis and web sites can access
for digital content delivery (graphics, video, aaitions, movies, music, games,
and so forth), storage, and media processing ssryguch as data visualization
and simulation, medical image sharpening and erdmeant, motion picture scene
rendering, special effects, media transformatiors@mpositing, and other
digital media manipulation capabilities). As an ogatform that provides digital
media delivery, storage, and processing servibesMiedia Grid's foundation
rests on Internet, web, and grid standards. By coimiprelevant standards from
these fields with new and unique capabilities,Nteglia Grid provides a novel
software-development platform designed specificiaiynetworked applications

that produce and consume large quantities of dligitalia.)
As an open and extensible platform, the Media @&ndbles a wide range of

applications not possible with the traditional hmet alone, including: on-demand
digital cinema and interactive movies; distributed filnd anovie rendering; truly
immersive multiplayer games and virtual realityalreme visualization of
complex data (weather, medical, engineering, arfdrso); telepresence and
telemedicine (remote surgery, medical imaging, dtegjgn, and the like);
telecommunications (such as video conferencing;evoalls, video phones, and
shared collaborative environments); vehicle ancraft design and simulation;
computational science applications (computationably, chemistry, physics,
astronomy, mathematics, and so forth); biometrozigty such as real-time face,

voice, and body recognition; and similar high-perfance media applications”
Dr. Dobb's Journal, November 2005

The Media Grid
A public utility for digital media
By Aaron E. Walsh

- interaction

- ad-hoc

- mobile

- swarming

- combination of p2p and GRID technology
<<swarming effect diagram>>

Peer-to-Peer Distribution of Content (bbc)

Video on Demand use case, problems with bandwidth.
Solution: p2p streaming
www.selfman.org!!

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 356 03/12/2010

Meanwhile, a portion of the BBC's vast archive afli@ and video material may
also be accessed via MyBBCPlayer. The software atsylet viewers to buy
items via the BBC Web site, which would be a bigplérom the current public
service features of the BBC’s online sites.

The announcement was made in August at the U.Koadzasting headliner
event, the Edinburgh Television Festival, by theergly appointed head of the
BBC, Mark Thompson (“director-general” in BBC-spgakNVe believe that on-
demand changes the terms of the debate, indeei #iliichange what we mean
by the word 'broadcasting'," he said. "Every createader in the BBC is
wrestling with the question of what the new teclogas and audience behaviors
mean for them and their service," he went on. "[B¢Blayer] should make it
easier for users to find the content they want velienand wherever they want
it.”

It seems straightforward enough: a major conteowiger has made a smart move
with technology anticipating the growing surgemkrest in on-demand TV. But
that interpretation misses some of both the palitimiances of the BBC’s
intentions and its possibly explosive impact onghegramming market in not

just the U.K., but globally as well.

The trial he’s referring to is some 5,000 carefgiyected consumers who will be
offered a version of IMP (Interactive Media Playerprelude to MyBBCPlayer
delivered to the PC that is set to evolve intoftllecommercial release if plans
come to fruition.

The underlying technology platform on which MyBB@#ér and IMP are built is
provided by U.S.-based firm Kontiki. The compangé&er-to-peer solution is
increasingly being used as weapon of choice favelehg large media files over
IP, according to Kontiki CEO Todd Johnson. “We angjue in using a legal way
to use peer-to-peer—buttressed by rights proteettomake mass consumption of
these kinds of properties a reality,” he claims.

The advantage of P2P for this application is thavoids the need to pump out
huge files centrally; instead, a network of colletitng computers team up to
share the workload with the content neatly sphtiimo many component pieces,
all reassembled at the user’s PC after locatingndaest and easiest nodes from
which to retrieve the next needed element. This euality of service isn’t
constrained at any point during the delivery chait.peak periods this means
successful delivery even with relatively modest ants of backup
infrastructure,” Johnson says—acknowledging thiatihexactly how “pirate”
services like Gnutella and Grokster have been ngoeamtent for quite some
time.

IS bittorrent deployed by a huge broadcaster*”

<<diagram with myBBCPlayer, swarming infrastructarel BBC archive plus
website for billing>>

<<diagram from kontiki architecture>>

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 357 03/12/2010

Virtual Worlds (Secondlife, DarkstartWonderland) —
Architecture for Scalability

(wikipedia article on new architecture of secorgllif

udp
/ http
secondlife.com tep
lee databases
r 1 sevices

- mysql
- logs.mysql
-Imf-I_'mysql

-mv--r:.rnvsqi

asset

publicly addressable internally addressable

Jim Waldo of Sun - famous for his critque of traaagmcy in distributed systems
wrote a paper on the new game platform Darkstaut.ifBthis paper he turns
around and claims that for his new project it wasassary to build transparent
distributed features because of the special enwieot of 3D games. He claims
that game programmers are unable to deal e.g.c@ithurrency explicitly.
Darkstar splits requests into short and limitetgashich can be transparently

distributed to different cores or machines. _
To achieve consistency all data store accessrisacéed with an attached event

system. We will see how this scales in the lonmter

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 358 03/12/2010

Everquest Foothall Superstars

_ o B | Weies MNORPG | Hybride Virtuele Wel
B MUD-4 . LPMUD _ Ultima Online " bz, Virtuelle Spele Welt
R LA *‘
el pel | erthasirten,persistenten Bejmdrerom | —— "
. ‘ Viruelln Wel \ ‘ ‘ econd Lire
sechziger Jahren — Stletaren Sozidle Vituele Weltmit
i Virtuellen Wefen "
nd Reaisrung 969 _ / mehrals 13 Milonen Nuzem
\ | .
v v v L
Y e Y Y Y Y »
+ ‘oo ' ' >
----------------- > A
190 190 W e M0 00
_ ‘ \E/irrs[tueeﬁ;exlenﬁensmna\e ‘ \ \ | World of Warcraft
Forschungsnetze — = | Befaniestes MVORPG
| Univrsiten nuzen Erste Form des Intemnets ‘ \ | mitmefr ls 10 Milongn
a5 ARPANET 2 | Zusammenschiuss von (p— e > Nuzem
Kollaboration Forschungsnetzen und | L Generathn Itenet \
= verglechbaren Netzverken w‘ ‘{Lurde. u B:g"”" Google Earth
— iberviegend als g
Experimentireldund | el Gote T
From: weniger kommerzel | Weh2
Till Issler genutzt | Die nete Generaton des

Internets von 2001 bis heute
ls Motor der Virtuellen Welten

Immersive multi-media based collaboration (croquet)

- The effects of interaction

- replication instead of proxies
- separating requests from local processing time
- specialization through hierarchies of servers

Replicated, independent objects:

New
outside
event

hierarchies of servers

el
\

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 359

Broadcast Reply with Broadcast
event to success or commit to
replicas failure future or

undo
Compute future
based on event
03/12/2010

AN

<<vat concept with router diagram>>

¢

/)

AR

03/12/2010

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 360

Part VII: Practice

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 361 03/12/2010

A scalable bootstrap kernel

<<build a small kernel for a scalable site that\a growth. Put the scalability
mechanisms in place early on. See how this worenfially. How many
collocated servers? Compare with cloud computirggs;@pen source cloud?

Core services needed?>>
Exercises and Ideas

Data Storage

- take a look at a social graph model and speculadatats scalability

- build some storage grid components based on opedastds:

|ldeas with Grid Storage for HDTV

 Build micro-grid with Lustre (standard FS)
» Calculate capacity curve (Gunther)

» Build Grid-Gateway to support posix apps and
measure throughput

 Investigate existing Video apps for interfaces to
other storage types

 Build scheduler (based on hadoop) for
transcoding and indexing

 Build administration tools for soft backup and
restore, disaster recovery etc.

» Use of ZFS for NAS/SAN combo.

Modeling and Simulation

- program a simulation of one-queue servers witharte/o service
stations. The Palladio simulation environment frighh Karlsruhe seems

to be a good candidate for this.
Performance Measurements and Profiling

Distributed Algoritms

- use a group communication software to synchronmeevariable
across servers. Grow the number of servers andw@atperformance
problems. How far does multicast go? What is tifiecef REAL high

speed networks on reliability and liveness?

Measurements
- use of a mediawiki installation for
. load-tests
. performance tests

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 362

03/12/2010

. profiling (cache, DB, PHP)

. monitoring and alarming

Compare the results with those from “modelling aimdulation”. This is
currently done in my course on “system engineegimg management”.

According to GOMEZ we will get a restricted testant for their global
test environment which would let us test the agpion externally.

Going Social
- Take a web-application and extend it with sociattdiees. How
should a social data model look like? (Open sobiakarchical etc.)
- Use Semsix as a testbed (currently a thesis whach inentoring)

Failure Statistics
Collect real-world failure statistics on e.g. netlwpartitionings, disk

failures. Consider dependencies between distribaltgatithms and
specific hardware architectures (time in V

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 363 03/12/2010

Part Vlll: Resources

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 364 03/12/2010

Literature:

[Narayanan] Arvind Narayanan und Vitaly ShmatikdRobust De-
anonymization of Large Sparse Datasets”,
http://www.cs.utexas.edu/~shmat/shmat_oakO08ngitlix.

- http://blog.stackoverflow.com/category/podcaghziv:
http://itc.conversationsnetwork.org/series/stackiboe.html)

Der Stack Overflow Podcast ist eine wochentlicheeSa der Joel Spolsky und
Jeff Atwood Uber Software-Architektur und Themendwm Software-
Technologie reden.

Interessant im Zusammenhang mit der Ultra-LargdeSsaes Veranstaltung sind
insbesondere die Berichte tber die Architektursdeckoverflow.com

Communlty
Web Services Architecture book

- Ed Felten..
- Globus.org
- Tecmath AG
- Stefan werner thesis
- Bbc article

Bernard Traversat et.al., Project JXTA 2.0 Supmrl%rtual network.
Descrlbes the changes to JXTA 2.0 which introdUseger-peers” for
performance reasons — though they are dynamic\arg peer can become one.
Good overview on JXTA.
- Ken Birman et.al, Kelips: Building an Efficient asdable P2P DHT
Through increased Memory and Background Overheggid it simply because
of Birman. Shows the cost if one wants to make p2glictable.
- Petar Maymounkov et.al. Kademlia: A peer-to-peéorimation System
based on the XOR metric. http://kademlia.scs.csadu/ An improvement on
DHT technology through better organization of tloel@ space. Interestingly,
edonkey nets want to use it in the future.
- Atul Adya et.al (Micr.Res.), Farsite: Federatedafable and Reliable
Storage for an Incompletely Trusted Environmenty\good article with security
etc. in a distributed p2p storage system. How &bkncaching of encrypted
content etc.
- Emit Sit, Robert Morris, Security Considerations Reer-to-Peer
Distributed Hash Tables. A must read. Goes thralighossible attack scenarios
against p2p systems. Good classification of attéakging, storage, general).
Suggests using verifyable system invariants to rensecurity.
- M.Frans Kaashoek, Distributed Hash Tables: simipighbuilding robust
Internet-scale applications (http://www.projectinet) . Very good slide-set on
DHT design. You need to understand DHT if you waninderstand p2p.
- A Modest Proposal: Gnutella and the Tragedy ofGbhenmons, lan
Kaplan. Good article on several p2p topics, inaigdhe problem of the common
goods (abuse) http://www.bearcave.com/misl/mish/grautella.html
- Clay Shirky, File-sharing goes social. Bad newstler RIAA because
Shirky shows that prosecution will only result nymtographically secured
darknets. There are many more people then songhwikes sure that you will
mostly get the songs you want in your darknet. Atkpyour friends share your

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 365 03/12/2010

music taste? quite likely. http://www.shirky.comitvrgs/file-sharing_social.html
Don‘t forget to subscribe to his newsletter — yaanit find better stuff on
networks, social things and the latest in p2p.

- Project JXTA: Java Programmer‘s Guide. First 20esa@ye also a good
technical overview on p2p issues.

- www.cachelogic.com. Note the rising ,serious” usittorrent by
software and media companies.

- Olaf Zimmermann et.al., Elements of Service-oridr@alysis and
Design, 6/2004, www.ibm.com/developerworks

- Ali Arsanjani, Service-oriented modeling and arebitire, 11/2004
www.ibm.com/developerworks

- Guido Laures et.al., SOA auf dem Prifstand, Objeit8um 01/2005.
Covers the new benchmark by The Middleware CompangOA
implementations

- http://www.akamai.com/en/html/services/edgesuiteltior a description
of the edge caching architecture and service

- Gamestar Magazine 08/2005

- Dr. Dobb's Journal, November 2005. The Media Gkigublic utility for
digital media By Aaron E. Walsh

- BBC turns to P2P for VOD,
http://www.streamingmedia.com/article.asp?id=9205

. Peer-to-Peer, Harnessing the Power of Disruptivahiielogies, Edited by
Andy Oram, 2001, O'Reilly. Contains good articlesdifferent p2p applications
(freenet, Mixmaster Remailers, Gnutella, PubliugeRHaven etc). And also from

Clay Shirkey: Listening to Napster. Recommended.

. Peer-to-Peer, Building Secure, Scalable and Mardgésetworks, Dana
Moore and John Hebeler. Definitely lighter stuféthAndy Oram's collection.
Missing depth. Covers a lot of p2p applicationsfeut base technology.

. www.openp2p.org , the portal to p2p technology. ¥aun find excellent
articles e.g. by Nelson Minar on Distributed Systefopologies there.

. Project JXTA: Java Programmer‘s Guide. First 20gsagye also a good
technical overview on p2p issues.

. Upcoming: 2001 P2P Networking Overview, The emergep platform
of presence, identity and edge resources. Clak&het.al. I've only read the
preview chapter but Shirkey is definitely worthdeway.

. It's not what you know, it's who you know: work the information age,
B.A.Nardi et.al., http://www.firstmonday.org/issdissue5_5/nardi/index.html
. Freeriding on gnutella, E.Adar et.al.,

http://www.firstmonday.org/issues/issue5_10/addemnhtml, claims that over
70% of all gnutella users do not share at all &adl lnost shared resources come

from only 1% of peers.
. Why gnutella can‘t possibly scale, no really, bydam Ritter.

http://mwww.monkey.org/~dugsong/mirror/gnutella.htdh empirical study on
scalability in gnutelly.

. A Modest Proposal: Gnutella and the Tragedy ofGbhenmons, lan
Kaplan. Good article on several p2p topics, inaigdhe problem of the common
goods (abuse) http://www.bearcave.com/misl/mish/grautella.html

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 366 03/12/2010

. Clay Shirky, File-sharing goes social. Bad newstler RIAA because
Shirky shows that prosecution will only result nymtographically secured
darknets. There are many more people then songhwiakes sure that you will
mostly get the songs you want in your darknet. Atkpyour friends share your
music taste? quite likely. http://www.shirky.comitvgs/file-sharing_social.html
Don‘t forget to subscribe to his newsletter — yaanit find better stuff on

networks, social things and the latest in p2p.
. Bram Cohen, Incentives Build Robustness in Bit &@otr Explains why

the bit torrent protocol is what it is. Bit torretnies to achieve ,pareto efficiency”
between partners. Again a beautiful example howataad economic ideas mix
with technical possibilites in p2p protocol designy is it good to download the
rarest fragments first? etc.

. Bob Loblaw et.al, Building Content-Based Publisli&eribe Systems
with Distributed Hash Tables. Nice paper on DHTigiesvith a content based
focus (not topic based as usually done). Experiaiegbod resource section.

. M.Frans Kaashoek, Distributed Hash Tables: simipighbuilding robust
Internet-scale applications (http://www.projectinet) . Very good slide-set on
DHT design. You need to understand DHT if you waninderstand p2p.

. lon Stoica (CD 268), Peer-to-Peer Networks andrDisted Hash Tables.
Another very detailed and good slide set on DHTighess
(CAN/Choord/freenet/gnutella etc.). Very good.

. Emit Sit, Robert Morris, Security Considerations Reer-to-Peer
Distributed Hash Tables. A must read. Goes thralighossible attack scenarios
against p2p systems. Good classification of attéakging, storage, general).

Suggests using verifyable system invariants to rensecurity.
. Moni Naor, Udi Wieder, A simple fault tolerant Distuted Hash Table.

Several models of faulty node behavior are invastig.

. Distributed Hash Tables: Architecture and Impleragah. A usenix paper
which discusses transactional capabilities of a Mid3ed DDS.
. www.emule-project.net/fag/ports.htm shows the piorisse by emule-

related protocols. Shows that several emule-usghit) a NAT/router/firewall
need individual redirects established at the fileteaallow incoming connections
to be redirected to a specific client.

. OCB Maurice, Some thoughts about the edonkey né&twioe author
explains how lookup is done in edonkey nets and Wwhes the network.
Interesting details on message formats and sizes.

. John R. Douceur et.al (Microsoft Research), A se@irectory Service
based on Exclusive Encryption. One of many artifries Microsoft research
which try to use P2p technologies as a substitutéhke typical server

infrastructure in companies.

. John Douceur, The Sybil Attack, Can you detect seatebody is using
multiple identities in a p2p network. John clainmaiycan’t without a logicall
central authority.

. Atul Adya et.al (Micr.Res.), Farsite: Federatedafable and Reliable
Storage for an Incompletely Trusted Environmenty\good article with security
etc. in a distributed p2p storage system. How &bkncaching of encrypted
content etc.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 367 03/12/2010

. W.J. Bolosky et.al, Feasibility of a Serverlesstiisited Filesystem
deployed on an Existing Set of PCs. Belongs tddp&s above. Interesting
crypto tech (convergent encryption) which allowsedaon of identical but
encrypted files.

. Ashwin R.Bharambe et.al, Mercury: A scalable Pubsibscribe System
for Internet Games. Very interesting approach lmatschot scale yet. Good
resource list at end.

. Matthew Harren et.al, Complex Queries in DHT-baBedr-to-Peer
Networks. How do you create a complex query if igmeans “exact match”?
E.g. by splitting the meta-data in many separash values. Interesting ideas for
search in p2p.

. Josh Cates, Robust and Efficient Data managememnDistributed hash
table, MIT master thesis.
. Peter Druschel at.al, PAST: a large-scale, perdigteer-to-peer storage

utility.Excellent discussion of system design issurep2p.

. Bernard Traversat et.al, Project JXTA: A looselywsistent DHT
Rendezvous walker. Read this to get the idea of Han unreliable
environment. Very good.

. John Noll, Walt Scacchi, Repository Support for Yheual Software
Enterprise. Use of DHT for software engineeringprpin distributed
teams/projects.

. Petar Maymounkov et.al. Kademlia: A peer-to-peéorimation System
based on the XOR metric. http://kademlia.scs.csadu/ An improvement on
DHT technology through better organization of tloel& space. Interestingly,

edonkey nets want to use it in the future.
. Zhiyong Xu et.al. HIERAS: A DHT based hierarchi®P routing

algorithm. Shows that one can win through a layeoeting approach which e.g.
allows optimization through proximity.

. Todd Sundsted, The practice of peer-to-peer comgu#i series of entry
level articles from www.ibm.com/developerworks (drgst and security in p2p)
. http://konspire.sourceforge.net A comparison wittobrent technology.

Interesting. What limits the download in a p2pdharing app? Also get the
overview paper on konspire from that site.

. NS2 — the network simulator. A discrete event satarl targeted at
network research. Use it to simulate your p2p nekaiafrom
http://www.isi.edu/nsnam

. Zhiyong Xu et.al, Reducing Maintenance OverheddHT based peer-to-
peer algorithms.
. Bernard Traversat et.al., Project JXTA 2.0 SuperrRértual network.

Describes the changes to JXTA 2.0 which introdudseg@er-peers” for
performance reasons — though they are dynamic\arg peer can become one.
Good overview on JXTA.

. Ken Birman et.al, Kelips: Building an Efficient asdable P2P DHT
Through increased Memory and Background Overhegaid it simply because
of Birman. Shows the cost if one wants to make 2glictable.

. Krishna Gummadi et.al, The impact of DHT Routingp@etry on
Resilience and Proximity. Compares several DHTgiesiQuite good. Findings
are that neighbour flexibility is more importanathroute selection flexibility.
Proximity selection techniques perform well.

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 368 03/12/2010

. Mark Spencer, Distributed Universal Number DiscgM@UNDI) and the
General Peering Agreement, www.dundi.com/dundi.pdf

. http://www.theregister.com/2004/12/18/bittorrent aserements_analysis/
print.html An analysis of the bittorrent sharinggsm.

. lan G.Gosling, eDonkey/ed2k: Study of a young sit@ring protocol.
Covers security aspects.

i Heckmann, Schmitt, Steinmetz, Peer-to-Peer Taussbbpeine
Protokollibersicht. www.kom.e-technik.tu-darmstdelt.

. A Distributed Architecture for Massively Multiplay©nline Games,
Chris GauthierDickey Daniel Zappala Virginia Lo

Larry Lessig, How creativity is strangled by thev]a
http://www.ted.com/index.php/talks/larry lessig_saye law_is_strangling_cre

ativity.html

[Issl] T.Issler, Potentiale und Einsatz von Virleal Welten entlang der
Wertschopfungskette der Automobilindustrie, Diplobet 2008, HDM/IBM

[Rodr]

Alex Rodriguez RESTful Web services: The basics

IBM , 06 Nov 200&http://www.ibm.com/developerworks/webservices/|iyfas-
restful/index.html?S TACT=105AGX54&S CMP=B1113&cawa945

[Holl] P.Holland, Life beyond Distributed Transamts: an Apostates Opinion

[Rodr] A. Rodriguez, RESTful Web Services: The Basi
http://www.ibm.com/developerworks/webservices/|fyravs-restful/index.html

[Seeg] M.Seeger, Anonymity in P2P Networks, thekisvi 2008,
[Pink] D.H.Pink, A Whole New Mind,

[Mahl], Gero Mhl et.al., Distributed Event-Basegsg&ms
[Luck] D.Luckham, Complex Event Processing

[Dean] J. Dean and S. Ghemawat of Google Inc,

MapReduce: Simplified Data Processing on Large t€tas
http://labs.google.com/papers/mapreduce.html

[Ghemawat] Sanjay Ghemawat, Howard Gobioff, Shuk{leung, The Google
File System, Googlbttp://labs.google.com/papers/gfs-sosp2003.pdf

"Map-Reduce-Merge: Simplified Relational Data Pssieg on Large Clusters”
— Paper von Hung-Chih Yang, Ali Dasdan, Ruey-Lurgidd und D. Stott
Parker,YahooundUCLA, veréffentlicht in Proc. of ACM SIGMOD, pp. 1029--
1040, 2007. (Dieses Paper zeigt, wie man MapRedufceelationale
Datenverarbeitung ausweitet)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 369 03/12/2010

[Saito] Yasushi Saito, Marc Shapiro, Optimistic Regtion,
http://www.ysaito.com/survey.pdf

[Chandra] Tushar Chandra, Robert Griesemer, JoRkdatone, Paxos Made
Live - An Engineering Perspectivétp://www.chandrakin.com/paper2.pdf

[Tomp] C.Tompson, Build it. Share it. Profit. Capé& Source Hardware Work?
Wired Magazine, 16.11

[Bung] S.Bungart, IBM. Talk at HDM on the future @f.

[Edge] Edge Architecture Specificatidmttp://www.w3.org/TR/edge-arch

[Mulz] M.Mulzer, Increasing Web Site Performancelvanced Infrastructure and
Caching Concepts
http://www.dell.com/content/topics/global.aspx/poiea/ps1g02 mulzer?c=us&
cs=555&Il=ené&s=biz

[Heisel119014] Heise news, Zurcher Forscher erstdlledell fir Erfolg von
Internet-Videos

[Crane] Riley Crane and Didier Sornette, Robustagiyit classes revealed by
studying the response function of a social systmc¢eedings of the National
Academy of Sciences, Vol. 105, No. 41. (October@0pp. 15649-15653.
[Game] You have gained a level, Geschichte der MMQO&amestar Sonderheft
08/2005

[enisa] European Network and Information Secudiggency, Virtual Worlds,
Real Money — Security and Privacy in Massively-Nplétyer Online Games and
Social and Corporate Virtual Worlds
http://www.enisa.europa.eu/doc/pdf/deliverablesanpp security privacy virtu

alworlds.pdf
[Kriha02] Enterprise Portal Architecture, Scaldlyittnd Performance Analysis of

a large scale portal project <<url>>

[Borthwick] John Borthwick, the CEO of Fotolog
http://www.borthwick.com/weblog/2008/01/09/fotoltessons-learnt/

[Little] M. Little, The Generic SOA Failure Letter
http://www.infog.com/news/2008/11/soa-failure

[HeiseNews119307] Blackberry Storm Kauferansturgt Weebsite lahm,
- http://www.heise.de/newsticker/Blackberry-Storm-Kfssansturm-leqgt-
Website-lahm--/meldung/119307

[Kopparapu] Chandra Kopparapu, Load Balancing Ssnrrewalls, and Caches

[Haberl] Karl Haberl, Seth Proctor, Tim Blackman,
Jon Kaplan, Jennifer Kotzen, PROJECT DARKSTAR

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 370 03/12/2010

Sun Microsystems Laboratories

[Pirazzi] Chris Pirazzi, Video I/O on Linux: Lessohearned from SGil,
http://lurkertech.com/linuxvideoio/

[Fowler] Martin Fowler distributed document-oriented databases,
http://martinfowler.com/bliki/DatabaseThaw.html

[InfoQ] distributed document-oriented databases
http://www.infog.com/news/2008/11/Database-Martowker

distributed document-oriented databases
http://gconsf.com/sf2008/tracks/show track.jspk€d©=170

[Purdy] Cameron Purdy, The Top 10 Ways to BotclreBmtse Java Technology-
Based Application Scalability and Reliability
http://developers.sun.com/learning/javaoneonlin@720df/TS-4249.pdf

[P2ZPNEXT]http://www.p2p-next.org/

[Gabriel] Richard P. Gabriel, Design beyond humbihtaes ,
http://dreamsongs.com/Files/DesignBeyondHumanAd&dfimp.pdf

[Scalaris]http://www.zib.de/CSR/Projects/scalaris/
http://www.ist-selfman.org/wiki/images/1/17/ScatarPaper.pdf
http://www.ist-selfman.org/wiki/images/9/95/ScatrowRes.pdf

http://www.ist-selfman.org/wiki/images/d/d5/PeerTMkRes.pdf
http://www.ist-selfman.org/wiki/index.php/SELFMAN réject

http://p2pcomputing.blogspot.corimks to p2p dist-sys.

[vanRoy] Peter van Roy, Self Management and tharEuif Software Design,
http://www.ist-selfman.org/wiki/images/0/01/BcsO08vay.pdf

[vanRoy] Peter van Roy, The Challenges and Oppitigsrof Multiple
Processors: Why Multi-Core Processors are Easyrdarhet is Hard (short piece
on conflicting goals in p2p and emergent behaviikerthe intelligence of google
search)

[vanRoy] Peter van Roy, Overcoming Software Fragwith Interacting
Feedback Loops and Reversible Phase Transitiogain(éhe concept of feedback
loops for control)

[Bray] Tim Bray, Presentation: "Application Designthe context of the shifting
storage spectrum"”, Qcon 2008-12-01

[Fowler] Martin Fowler, DatabaseThaw,

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 371 03/12/2010

http://www.theregister.co.uk/2008/11/22/braykeyhate Bray Keynote, notes
that memcached was a result of a large web2.@LsiteJournal.com)

[Hoff] Todd Hoff, google video, Youtube Architectr
http://highscalability.com/youtube-architecture

[Hoff] Todd Hoff , A Bunch of Great Strategies fdsing Memcached and
MySQL Better Togethenttp://highscalability.com/bunch-great-strategiefig-
memcached-and-mysql-better-together

[Hoff] Todd Hoff, Facebook Tweaks — how to handlgrmees as many
memcached requests,
http://highscalability.com/links/goto/545/396/linkseblink

[Hoff] Todd Hoff, Myspace Architecturénttp://highscalability.com/myspace-
architecture

[Hoff] Todd Hoff, Scaling Twitter: making TwitterdD00 Percent Faster,
http://highscalability.com/scaling-twitter-makingitter-10000-percent-faster

[Blaine] Blaine, Big Bird, Scaling Twitter slides,
http://www.slideshare.net/Blaine/scaling-twitter

[Mituzas] Domas Mituzas, Wikipedia: Site internals, configuration, code examples and
management issues, MySQL Users Conference 2007,
http://dammit.It/uc/workbook2007.pdf

[Bergsma] Mark Bergsma, Wikimedia Architecture
http://www.nedworks.org/~mark/presentations/saniiiédia%20architecture.pd
f

http://highscalability.com

[AboutDrizzle] about Drizzlehttp://drizzle.org/wiki/About_Drizzle

[Dunkel et.al.] Jirgen Dunkel, Andreas Reinharef&t Fischer, Carsten Kleiner,
Arne Koschel, System-Architekturen Fir Verteiltewdendungen, Hanser 2008

[ProgrammableWeb] Overview of mashup#p://www.programmableweb.org

[CouchDB] CouchDB Technical Overview,
http://incubator.apache.org/couchdb/docs/overvigwl.h

[Chang et.al.] Chang, Dean, Gemawat, Hsieh, WallBanrows, Chandra, Fikes,
Gruber, Bigtable: A Distributed Storeage SystemStructured Data
http://labs.google.com/papers/bigtable.html

[DeCandia et.al.] Giuseppe DeCandia, Deniz Hastdvladan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, AlexHpilcSwami
Sivasubramanian, Peter Vosshall and Werner Vog@igjamo: Amazon's

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 372 03/12/2010

Highly Available Key-Value Store”, in theroceedings of the 21st ACM
Symposium on Operating Systems Princigisvenson, WA, October 2007.
http://www.allthingsdistributed.com/files/amazonrdgyno-sosp2007.pdf

[Vogels] Werner Vogels, Eventually Consistent — Reed,
http://www.allthingsdistributed.com/2008/12/evenlyaconsistent.html

[Vogels] Werner Vogels, Eventually Consistent, Binl reliable distributed
systems at a worldwide scale demands trade-offswemgt consistency and
availability. ACM queue,
http://portal.acm.org/ft_gateway.cfm?id=1466448&ypdf

[Henderson] Cal HendersoBuilding Scalable Web Sites

[Henderson] Cal Henderson, Scalable Web Architestst Common Patterns and
Approaches, presentatiamtip://www.slideshare.net/techdude/scalable-web-
architectures-common-patterns-and-approaches/138

[SocialText] Story of Caching,
http://www.socialtext.net/memcached/index.cqgi?tiisa_story of caching

[Turner] Bryan Turner, The Paxos Family of ConsenBrotocols
http://brturn.googlepages.com/PaxosFamily.pdf

[Turner08] Bryan Turner, The state machine approach
http://brturn.googlepages.com/StateMachines08.pdf

[IBM] IBM System Journal on Continuously Availalfystems
http://www.research.ibm.com/journal/sj47-4.html

[Golle] Philippe Golle, N. Ducheneaut, Keeping Botg of Online Games.
In proc. 0f2005 Advances in Computer Entertainment Technology
http://crypto.stanford.edu/~pgolle/publications.htm

[Kleinpeter] Tom Kleinpeter, Understanding Congistidashing,
http://www.spiteful.com/2008/03/17/programmers-tm-part-3-consistent-

hashing/

[White] Tom White, Consistent Hashing,
http://weblogs.java.net/blog/tomwhite/archive/2d07tonsistent hash.html

[Karger] David Karger, Consistent Hashing and Randaees: Distributed
Caching Protocols for Relieving Hot Spots on therM/@Vide Web
http://citeseer.ist.psu.edu/karger97consistent.htmi

[MySql] MySql, Memcached hash types, MySql HA/Stdity Guide
http://dev.mysqgl.com/doc/mysgl-ha-scalability/enthamcached-using-
hashtypes.html

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 373 03/12/2010

[MemCachedFAQ] Memcached faq,
http://www.socialtext.net/memcached/index.cgi?faq

[ViennaOnline] Offizielle Erklarung zum Bildausfaih Euro Halbfinale 2008
http://www.vienna.at/magazin/sport/specials/eurd@@fikel/offizielle-
erklaerung-zum-bild-ausfall-im-euro-halbfinale/cevws-20080626-
02235595/?0origin=rssfeed

[Telegraph] Euro 2008: Power cut leaves footbalkfan the dark 27 June 2008
http://www.telegraph.co.uk/news/uknews/2195423/E2068-Power-cut-leaves-
television-fans-in-the-dark.html

[Kelly] Kevin Kelly, Predicting the next 5000 Days$ the Web
http://www.ted.com/index.php/talks/kevin kelly ohetnext 5 000 days of th
e web.html

[Hoff] Todd Hoff, Scribe- Facebooks scalable loggsystem
http://highscalability.com/product-scribe-faceboakslable-logging-system

[Hoff] Todd Hoff, How I learned to Stop Worrying dr.ove Using a Lot of Disk
Space to Scaldttp://highscalability.com/how-i-learned-stop-wang-and-love-
using-lot-disk-space-scale

[Henderson] Cal Henderson, Scalable Web Architestu€ommon Patterns and
Approacheshttp://www.slideshare.net/techdude/scalable-webitectures-
common-patterns-and-approaches/138

[Jordan] Kris Jordan Tips on REST for PHP http:/im¥risjordan.com/

[Duxbury] Bryan Duxbury, Rent or Own: Amazon EC2 Colocation
Comparison for Hadoop Clusters http://blog.rapteah/dev/

[Schlossnagel] Theo Schlossnagel, Scalable Intéwrodtitectures
IO related:

[Santos] Nuno Santos, Building Highly Scalable $eswvith Java
NIO09/01/2004ttp://www.onjava.com/Ipt/a/5127

[Naccaratp Giuseppe Naccaraiatroducing Nonblocking Sockets 09/04/2002
http://www.onjava.com/Ipt/a/2672

[Hitchens] Ron Hitchens, How to build a scalabldtiplexed server with NIO,
Javaone Conference 2006,
http://developers.sun.com/learning/javaoneonlin@®2@replatform/TS-1315.pdf

[Roth] Gregor Roth, Architecture of a Highly Scd@abllO-based Server,
02/13/2007,
Dan Kegel's The C10K problemhttp://www.kegel.com/c10k.html

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 374 03/12/2010

[Darcy] Jeff Darcy, Notes on High Performance Sefdesign
http://pl.atyp.us/content/tech/servers.html

[Liboop] Event library for asynchronous event fioétion,
http://liboop.ofb.net/why

[JargonFile] Thundering Herd Problem,
http://catb.org/~esr/jargon/html/T/thundering-h@mblem.html

[Simard] Dan Simard, AJAX, Javascript and thredks:final truth
http://www.javascriptkata.com/2007/06/12/ajax-jarg®-and-threads-the-final-
truth/

[vonBehren] Rob von Behren, Jeremy Condit, Ericvgne UCB, Why Events
Are A Bad Idea (for high-concurrency servers)
http://citeseer.ist.psu.edu/681845.html

[Welsh] Welsh, Culler, et al. — 2001, SEDA: an atetture for well-conditioned,
scalable Internet services —
http://citeseerx.ist.psu.edu/showciting;jsessioBiBie29AE01E363095959876C6
2C88CC85?cid=7065

[DeShong] Brian DeShong, Designing for Scalabilfypyil 5, 2007
http://media.atlantaphp.org/slides/2007-04-bdestputigexcellent examples on
de-normalization etc.)

[Graf] Markus Graf, Workflow und Produktionsaspektaer CG-Animation im
studentischen Umfeld, Bachelor-Thesis, HDM 2009t32-

[NY Web Expo 2.0-Panel Discussion] Building in tB®uds: Scaling Web2.0
Writeup by Kris Jordarttp://www.krisjordan.com/2008/09/18/panel-discossi
building-in-the-clouds-scaling-web-20About metrics, CDNs, user behavior,
quotas and the danger developers create for seriauads.

[Boer] Benjamin Boer, The Obama Campaign — A progreers perspective,
ACM Queue, Jan. 200¢tp://queue.acm.org/detail.cfm?id=1508221

[Meyer] B. Meyer, Software Architecture: Object @rted Versus Functional, in:
Domidis Spinellis, Georgios Gousios, (Ed.), Beautirchitecture — Leading
Thinkers Reveal the Hidden Beauty in Software Desig

[Sletten] Brian Sletten, Resource-Oriented Archites: being “in the Web”, in:
Domidis Spinellis, Georgios Gousios, (Ed.), Beautirchitecture — Leading
Thinkers Reveal the Hidden Beauty in Software Desig

[Turatti] Maurizio Turatti, camelcase, The CAP Them,

http://camelcase.blogspot.com/2007/08/cap-theorenthl

[Kyne] Frank Kyne, Alan Murphy, Kristoffer Stav

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 375 03/12/2010

Clustering Solutions Overview: Parallel Sysplex &tter Platforms, Clustering
concepts, Understanding Parallel Sysplex, clusiedamparing the terminology,
IBM Redbook 2007

http://www.redbooks.ibm.com/redpapers/pdfs/redp40d2

[Morrill] H. Morrill, M. Beard, D. Clitherow, Achi@ing continuous availability
of IBM systems

infrastructures, IBM SYSTEMS JOURNAL, VOL 47, NO2008 MORRILL,
BEARD, AND CLITHEROW pg. 493
http://www.research.ibm.com/journal/sj/474/morpdf

[Clarke] W.J. Clarke et.al., IBM System Z10 DesfgnRAS
http://www.research.ibm.com/journal/rd/531/clark#.p

[ITIL3] OGC Common Glossary, ITIL Version 3 (May @QD),
http://www.best-management-
practice.com/officialsite.asp?F0O=1230366&action=ftamtion&tdi=575004

[LSHMLBP], Th. Lumpp, J. Schneider, J. Holtz, M.Miee, N.Lenz, A.Biazetti,
D.Petersen, From high availability and disasteovecy to business continuity
solutions, HA approaches, in: IBM SYSTEMS JOURNAOL 47, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/lumpgd.fgbod explanation of HA
concepts, clustering etc.)

[STTA] W.E.Smith, K.S.Trivedi, L.A.Tomek, J.AckareAvailability analysis of
blade servers systems, in: IBM SYSTEMS JOURNAL, V&1, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/smitH.fghows state-space models
like Markov Models, Semi Markov Processes etcafailability calculation.

Nice failure tree of blade system architecture)

[CDK] R.Cocchiara, H.Davis, D.Kinnaird, Data Cenf@pologies for mission-
critical business systems, in: IBM SYSTEMS JOURNMOL 47, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/cocchipdfDisaster recovery
concepts, two and three site architectures

Jboss Tree Cache — clustered, replicated, transatiinttp://www.jboss.org/file-
access/default/members/jbosscache/freezone/doelireleCache/en/html_singl
e/index.html#d0e2066

[Miller] Alex Miller, Understanding Actor Concurrery, Part 1: Actors in Erlang
http://www.javaworld.com/javaworld/jw-02-2009/jw-sttor-
concurrencyl.html?nhtje=rn_031009&nladname=0310@8yarld%27senterpris

ejavaal

Statistics, Modeling etc.

PDQ Pretty Damn Quick. Open-source queueing modeler.
Supporting textbook with examples (Gunther 2005a)
www.perfdynamics.com/Tools/PDQ.html

R Open source statistical analysis package.
Uses the S command-processing language.
Capabilities far exceed Excel (Holtman 2004).

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 376 03/12/2010

Www.r-project.org

SimPy Open-source discrete-event simulator
Uses Python as the simulation programming language.
simpy.sourceforge.net

[Burrows] Mike Burrows, The chubby lock service foosely-coupled
distributed systems, Google paper,

[Pattishall] Dathan Vance Pattishall, FederatioRrletkr — doing Billions of
Queries per Day,

[Indelicato] Max Indelicato, Scalability Strategieesmer: Database Sharding,
http://blog.maxindelicato.com/2008/12/scalabilityasegies-primer-database-

sharding.html

[Hoff] Todd Hoff, “latency is everywhere and itsts you sales - how to crush
it”

[Pritchett] Dan Pritchett, Lessons for loweringelaty

[ALV] Al-Fares, Loukissas, Vahdat, A Scalable, Cootity Date Center
Network Architecture

[Google] Google's Paxos Made Live — An EngineeRegspective

[Laird] Cameron Laird, Lightweight Web Servers -e8jal purpose HTTP
applications complement Apache and other markelelsa (Evaluation criteria
and lists of special purpose web servers)

[Sennhauser] Oli Sennhauser, MySQL Scale-Out bliGgtn partitioning.
(Various partitioning methods for data, e.g rard@racteristics. Load,
hash/modulo. Application aware partitioning)

[Ottinger] Joseph Ottinger, What is an App Sern{&8od comparison of J2EE
architecture properties like request/response avillgnamic Grid environment).

[Lucian] Mihai Lucian, Building a Scalable EntergeiApplications using
Asynchronous 10 and SEDA Model, 2008 (with perfono@numbers)

[Jones] Tim Jones, Boost application performanaegussynchronous 1/0O, posix
AIO API. (on Linux 10 models)

[Pyarali et.al] Pyarali, Harrison, Schmidt, JordBmpactor — An Object
Behavioral Pattern for Demultiplexing and DispatghHandlers for
Asynchronous Events

[Lavender et.al.] Lavender, Schmidt, Active Objedin Object Behavioral
Pattern for Concurrent Programming

[Gilbert et.al.] Seht Gilbert, Nancy Lynch, BrewgConjecture and the
Feasibility of Consistent, Available, Partition-€chnt Web Services (on the CAP
Theorem), see also Vogels

[Indelicato] Max Indelicato, Distributed SystemsdaWeb Scalability Resources,
(excellent list from his blog)

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 377 03/12/2010

[Smith] Richard Smith, Scalability by Design — Coglifor Systems with Large
CPU Counts, SUN.

[Trencseni] Morton Trencseni, Readings in DistrdzlSystems,
http://bytepawn.confexcellent resource for papers)

[HAProxy] Reliable, High Performance TCP/HTTP Ldaadlancer,
www.haproxy.lwt.eu

[Hoff] Todd Hoff, canonical cloud architecture, (phasizes queuing).

[Karger et.al.] David Karger, Alex Sherman, Web kiag with Consistent
Hashinghttp://www8.org/w8-papers/2a-webserver/caching/p2unémli#chash?2

[Watson] Brandon Watson, Business Model Influen&odtware Architecture
(questions Animoto scaling lesions on EC2)
http://www.manyniches.com/cloudcomputing/businesseat-influencing-
software-architecture/

[geekr] Guerilla Capacity Planning and the Law ofivérsal Scalability,
http://highscalability.com/guerrilla-capacity-plang-and-law-universal-
scalability

[Optivo] Hscale, MySQL proxy LUA moduleMww.hscale.oryywith some
interesting numbers on DB limits discussed

[Amir et.al.] Amir, Danilov, Miskin-Amir, SchultzStanton, The Spread toolkit,
Architecture and Performance

[Allamaraju] Subbu Allamaraju, Describing RESTfub@lications, Nice article
talking about locating resources when servers obtfteir namespace. Bank API
example.

[Schulzrinne] Henning Schulzrinne, Engineering peepeer systems,
Presentation. 2008. Excellent overview of p2p tedbyy.

[Loeser et.al.] Loeser, Altenbernd, Ditze, MuelBrstributed Video on Demand
Services on Peer to Peer Basis.

[Scadden et.al.] Scadden, Bogdany, Cliffort, PeaghLocke, Resilition hosting
in a continuously available virtualized environmeant IBM Systems Journal
Vol. 47 Nr. 4 2008 (on serial and parallel availdp)

[Miller] Alex Miller, Understanding Actor Concurrery, Part 1: Actors in Erlang

www.javaworld.com02/24/09
<http://ww.javawor ! d. contjavawor | d/ j w 02- 2009/ j w- 02- act or -

concurrencyl. ht m ?nhtj e=rn_030509&nl adnane=030509>

[ThinkVitamin.com] ThinkVitamin.com, Serving Javagt fast

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 378 03/12/2010

[Yu] Wang Yu, Uncover the hood of J2EE clustering,
http://www.theserverside.com/tt/articles/articlesJ2EEClustering

[Yu[Wang Yu, Scvaling your Java EE Applicationsyl and 2
http://ww.theserverside.comtt/articles/article.tss?l =ScalingYour
JavaEE

Appli cations
http://ww.theserverside.comtt/articles/article.tss?l =ScalingYour
JavaEE

Appli cationsPart 2

Terracotta scalabilityhttp://www.infog.com/infog/url.action?i=595&t=p
http://www.infog.com/infog/url.action?i=614&t=p
http://www.infog.com/infog/url.action?i=749&t=p
http://www.infogq.com/infog/url.action?i=602&t=p
http://www.infog.com/infog/url.action?i=440&t=p

http://www.infog.com/bycategory/contentbycategocyi@n ?idx=2&ct=5&alia
s=performance-scalability

what is an appserver?
http://www.theserverside.com/tt/articles/articlss=WhatlsAnAppServer
Java EE APIs list too, cloud computing changesssguper

http://www.theserverside.com/tt/articles/articles-AreJavaWebApplica
tionsSecure

[Resin] Scaling Web Applications in a Cloud Envinoent using Resin 4.0,
Technical White Paper, coucho 2009

[Perros] Harry Perros, Computer Simulation Techegyd'he Definitive
Introduction,http://www.csc.ncsu.edu/faculty/perros//simulatpmf.

[Saab] Paul Saab, Scaling memcached at Facebook,
http://www.facebook.com/note.php?note _id=393913889d=9445547199&ind
ex=0

[Viklund] Andreas Viklund, Empyrean, Performanc®en do | start worrying?
http://pravanjan.wordpress.com/2009/03/24/perforweanhen-do-i-start-

worrying/

[Bray] Tim Bray, Sun Cloud API Restful API
http://kenai.com/projects/suncloudapis/pages/Home

Websphere eXtreme Scdidgp://www-
01l1.ibm.com/software/webservers/appserv/extremescale

[Levison] Ladar Levison, Lavabit-Architecture — @timg a Scalable Email
Servicehttp://highscalability.com/LavabitArchitecture.html

[Xue] Jack Chongjie Xue, Building a Scalable Highailability E-Mail System
with Active Directory and Morehttp://www.linuxjournal.com/article/9804

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 379 03/12/2010

[Pravanjan] Pravanjan, Performance — when do 1 stairying?

[Hoff] Are Cloud Based Memory Architectures the Ni&g Thing? 03/17/2009,
www.highscalability.com

[Persyn] Jurriaan Persyn, Database Sharding abd\eé@resentation held at
Fosdem 2009ttp://www.jurriaanpersyn.com/archives/2009/02/ b2adbase-
sharding-at-netlog-with-mysql-and-php/

MVCC:

[Rokytskyy] Roman Rokytskyy, A not-so-very techridacussion of Multi
Version Concurrency Control,
http://www.firebirdsqgl.org/doc/whitepapers/tb_vsmbvs_oracle.htm

[Webster] John Webster, DataDirect S2A: RAID fdPetabyte World, Aug.
2008, http://www.illuminata.com

[Coughlin] Tom Coughlin, The Need for (Reliable)egp, Coughlin Associates,
Aug. 2008

[Stedman] Geoff Stedman, Aktive Speichertechnikd&peicher, in FKT 3/2008

[Bacher] Bacher Systems EDV GmbH, Storage einmaéemnbetrachtet,
Newsletter 2/200&ttp://www.bacher.at

[Venners] Bill Venners, Twitter on Scala — a corsation with Steve Johnson,
Alex Payne and Robey Pointer, April 2009
http://www.artima.com/scalazine/articles/twitter _soala.html

(talks about Ruby problems with stability, builditygpe systems in dynamic
languages, just like the developers with statiglemges build dynamic features
over time. Scala advantages and disadvantages.

[Glover] Andrew Glover, Storage made easy with S3,
http://www.ibm.com/developerworks

[Maged et.al.] Maged Michael, José E. Moreira, Do&hiloach, Robert W.
Wisniewski

IBM Thomas J. Watson Research Center

Scale-up x Scale-out: A Case Study using Nutchéhec
http://www.cecs.uci.edu/~papers/ipdps07/pdfs/SMPRS-paper-1.pdf

[Chu et.al.] Cheng-Tao Chu, Sang Kyun Kim, Yi-AmL¥XuanYuan Yu, Gary
Bradski, Andrew Y. Ng, Kunle Olukotun, Map-Reduce Machine Learning on
Multicore,
http://www.cs.stanford.edu/people/ang//papers/réps@preducemulticore.pdf

[Bartel] Jan Bartel, Proposed Asynchronous SeAdt
http://www.theserverside.com/news/thread.tss?thiead 0560

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 380 03/12/2010

[Schroeder] B.Schroeder, M.Harchol-Balter, Web $eswnder overload: How
scheduling can help, in Charzinski, Lehnert, ITC EBevier Science

[Wilkins] Greg Wilkins, Asynchronous I/O is hard,
http://blogs.webtide.com/gregw/entry/asynchronoasisi_hard
(on partial reads/writes and other problems)

[Sun] Thread Pools Using Solaris 8 Asynchronous I/0
http://developers.sun.com/solaris/articles/threadlgphtmi

[Palaniappan] Sathish K. Palaniappan, Pramod BaNga, Efficient data
transfer through zero copy: Zero Copy — Zero Ovadhe
http://www.ibm.com/developerworks/linux/library/procopy/

David Patterson, Why Latency Lags Bandwidth,

and What it Means to Computing
http://www.ll.mit.edu/HPEC/agendas/proc04/powerpeiBanquet%20and%20K
eynote/patterson_keynote.ppt

[Maryka] Steve Maryka, What is the Asynchronous Vded How is it
Revolutionaryttp://www.theserverside.com/tt/articles/articleagack=NL-
461&ad=700978&I=WhatistheAsynchronousWeb&asrc=EM NNBE729006&ui
d=5812009

[Shalom] Nati Shalom, Auto-Scaling your existing b\&pplications,
http://library.theserverside.com/detail/RES/12422W®% 306.html?asrc=vcatssc_s
itepost 05 15 09 c&li=191208

[Sweeney] Tim Sweeney, The Next mainstream Progragiranguage: a Game
Developers Perspectiviettp://www.cs.princeton.edu/~dpw/popl/06/Tim-

POPL.ppt

[Jager] Kai Jager, Finding parallelism - How towswe in a multi-core world
Bachelor thesis at HDM Stuttgart 2008

[Schneier] Bruce Schneier, Interview on cloud-cotimu
http://www.vnunet.com/vnunet/video/2240924/bruckreser-cloud-security

[Fountain] Stefan Fountain, What happens when Dewsgiselhof meets the
cloud, experiences with AW&ttp://www.infogq.com/presentations/stefan-
fountain-hasselhoff-cloud

[EIman] Josh Elman, glueing together the web ve@afdtebook platform,
http://www.infoq.com/presentations/josh-elman-gfaeebook-web

[Armstrong] Joe Armstrong, Functions + Messageofidrrency = Erlang

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 381 03/12/2010

http://www.infog.com/presentations/joe-armstronkpeg-qcon08

[Wardley] Simon Wardley, cloud, commoditisation.etc
http://www.slideshare.net/cpurrington/cloudcampelon-3-canonical-simon-

wardley

[Oracle] Oracle® Database Concepts, 10g Relea%8.2)(Part Number B14220-
02, Chapter 13 Data Concurrency and Consistentgt@ement or transaction
read level consistency, MVCC use and isolatioireleypossible. Essential reading
for the web site architect).

[Harrison] Ann W. Harrison, Firebird for the DatalesExpert: Episode 4 - OAT,
OIT, & Sweep,
http://www.ibphoenix.com/main.nfs?a=ibphoenix&paim= expert4

[Wilson] Jim R. Wilson, Understanding Hbase andTgigle,
http://jimbojw.com/wiki/index.php?title=Understamdi Hbase and_BigTable
[Wilson] Jim R. Wilson, Understanding Hbase Colufamily performance
optionshttp://jimbojw.com/wiki/index.php?title=Understamgi HBase column-
family performance_options

[Goetz] Brian Goetz, Java theory and practice: Qarat collections classes -
ConcurrentHashMap and CopyOnWriteArrayList offeretid safety and
improved scalability
http://www.ibm.com/developerworks/java/library/pfd7233.html#authorl

[Ellis] Jonathan Ellis Why you won't be buildingwkiller app on a distributed
hash table
http://spyced.blogspot.com/2009/05/why-you-wontbodding-your-killer.html#

[Bain] Tony Bain, The Problems with the Relatiobaitabase (Part 1) —The
Deployment Modehttp://weny.ws/1Xx

[EMC] Storage Systems Fundamentals to Performande\sailability
http://germany.emc.com/collateral/hardware/whitegra/h1049-emc-clariion-
fibre-chnl-wp-ldv.pdf

[Schmuck] Frank Schmuck, Roger Haskin, GPFS: A &h&risk File System for
Large Computing Clusters, Proceedings of the FAGI2ZConference on File
and Storage Technologies Monterey, California, W&Auary 28-30, 2002
http://db.usenix.org/events/fast02/full_papers/sebkischmuck.pdf

[Avid] Avid Unity Isis,
http://www.avid.com/resources/whitepapers/Avid YniSIS WP.pdf

[Northrop] Linda Northrop, Scale changes everyth@@®PSLA06
http://www.sei.cmu.edu/uls/files/OOPSLAQG6.pdf

Goth, GregUltralarge Systems: Redefining Software Engineérikd-E
Software 2008

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 382 03/12/2010

Gabiriel, Richard PDesign Beyond Human Abilities

[Heer] Jeffrey Heer, Large-Scale Online Social NetwWisualization,
http://www.cs.berkeley.edu/~jheer/socialnet/

[Hohpe] Gregor Hohpe, Hooking Stuff Together — Paogming the Cloud
http://www.infogq.com/presentations/programming-degregor-hohpe

[Goth] Greg Goth, Ultralarge Systems: Redefinindgt\Bare Engineering, IEEE
Software March/April 2008

[Jacobs] Adam Jacobs, The pathologies of Big D&tV Queue
http://queue.acm.org/detail.cfm?id=1563874

[Henney] Kevlin Henney, Comment on Twitter Archiiee
http://www.infog.com/news/2009/06/Twitter-Architece

[Saab] Paul Saab (notes) facebook developer blidgy; December 12, 2008 at
12:43pm
http://www.facebook.com/people/Paul-Saab/500025857

[Weaver] Evan Weaver, Architectural changes to fewjt
http://blog.evanweaver.com/about/

[google] Entity Groups and Transactions
http://code.google.com/appengine/docs/python/dariabtansactions.htmi

[Scheurer] Isolde Scheurer, Single-Shard MMOG EVikhe, HDM 2009,
http://www.kriha.de/krihaorg/dload/uni/..<<

[Stiegler] Andreas Stiegler, MMO Server Structuhdy the damn thing always
lags! HDM 200%http://www.hdm-stuttgart.de/~as147/mmo.stitles:
http://www.hdm-stuttgart.de/~as147/mmo.pptx

[Seeger] Marc Seeger, Key-Value Stores — a shamvoew... << >>

[Spolsky] Joel Spolsky, Can your Programming Lamgudo that? Article on
functional programming and map reducéitp://www.joelonsoftware.com

[Adzic] Gojko Adzic, Space Based Programming,
http://gojko.net/2009/09/07/space-based-programsmmuet-video/

[Krishnan et.al.] Rupa Krishnan Harsha V. Madhyas$hidhar Srinivasan
Sushant Jain§

Arvind Krishnamurthy Thomas Anderson£ Jie Gao, MgvBeyond End-to-End
Path Information to Optimize CDN Performance

[DynaTrace] The problem with SLA monitoring in iialized environments
http://blog.dynatrace.com/2009/09/23/the-problertivgia-monitoring-in-
virtualized-environments/

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 383 03/12/2010

[VMWare] Time Keeping in VMWare Virtual Machines
http://www.vmware.com/pdf/vmware _timekeeping.pdf

[Harzog] Bernd Harzog Managing Virtualized SystenafRinpointing
performance problems in the virtual infrastructApgil 2008
http://www.vmworld.com/servlet/JiveServlet/previewadd//3420-102-1-
4432/Managing%20Virtualized%20Systems%20-
%20APM%20experts%20Apr08.pdf

[Dynatrace] Cloud Service Monitoring for Gigaspaces
http://blog.dynatrace.com/2009/05/07/proof-of-castedynatrace-provides-
cloud-service-monitoring-and-root-cause-analysisefigaspaces/

[Chiew] Chiew, Thiam Kian (2009) Web page performaanalysis. PhD thesis,
University of Glasgowhttp://theses.gla.ac.uk/658/01/2009chiewphd.pdf

[Schroeder] Bianca Schroeder, Eduardo PinheirofAV@trich Weber, DRAM
Errors in the Wild: A Large-Scale Field Study
http://www.cs.toronto.edu/~bianca/papers/sigmedfgsdf

[Cooper] Brian F. Cooper, Raghu Ramakrishnan, Wtk&rivastava, Adam
Silberstein,

Philip Bohannon, HansArno Jacobsen, Nick Puz, D&Neaver and Ramana
Yerneni, PNUTS: Yahoo!'s Hosted Data Serving Platfo
http://highscalability.com/yahoo-s-pnuts-database+iot-too-cold-or-just-right

[Cantrill] Brian Cantrill, Dtrace Review, Google d&o
http://video.google.com/videoplay?docid=-800280128R)07228#

[Shoup] Randy Shoup, eBay’s Challenges and LedsomsGrowing an
eCommerce Platform to Planet Scale HPTS 2009 Oc®he2009

[Click] CIiff Click, Brian Goetz, A crash-course modern hardware, Video,
JavaOne 2008ttp://www.infog.com/presentations/click-crash-ceerimodern-
hardware

[Ristenpart] Thomas Ristenpartran Tromert Hovav Shachanttefan
Savage!, Hey, You, Get Off of My Cloud: Exploring Informah Leakage in
Third-Party Compute Clouds
http://people.csail.mit.edu/tromer/papers/cloudsdic.

[Heiliger] Jonathan Heiliger Real-World Web Applima Benchmarking
http://www.facebook.com/notes/facebook-engineergaifworld-web-
application-benchmarking/203367363MBcusses the effects of memory access
times in a highly optimized infrastructure

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 384 03/12/2010

Index

—M—
Media 5
—p—

People 5
—S—

Social Media 5

Walter Kriha, Scalability and Availability Aspects.V.1.9.1 page 385 03/12/2010

