
Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 1 03/12/2010

Ultra-large-scale Sites
<working title>

– Scalability, Availability and Performance
in Social Media Sites

(picture from social network visualization?)

Walter Kriha
With a forword by << >>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 2 03/12/2010

Copyright
<<ISBN Number, Copyright, open access>>
©2010 Walter Kriha
This selection and arrangement of content is licensed under the Creative Commons Attribution
License:
http://creativecommons.org/licenses/by/3.0/
online: www.kriha.de/krihaorg/...

<img
alt="Creative Commons License" style="border-width:0"
src="http://i.creativecommons.org/l/by/3.0/de/88x31.png" />
<span
xmlns:dc="http://purl.org/dc/elements/1.1/"
href="http://purl.org/dc/dcmitype/Text" property="dc:title" rel="dc:type">
Building Scalable Social Media Sites by <a
xmlns:cc="http://creativecommons.org/ns#"
href="wwww.kriha.de/krihaorg/books/ultra.pdf" property="cc:attributionName"
rel="cc:attributionURL">Walter Kriha is licensed under a <a rel="license"
href="http://creativecommons.org/licenses/by/3.0/de/">Creative Commons
Attribution 3.0 Germany License.
Permissions beyond the scope of this
license may be available at <a xmlns:cc="http://creativecommons.org/ns#"
href="www.kriha.org" rel="cc:morePermissions">www.kriha.org.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 3 03/12/2010

Acknowledgements
<<master course, Todd Hoff/highscalability.com..>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 4 03/12/2010

ToDo’s

- The role of ultra fast networks (Infiniband) on distributed algorithms and
behaviour with respect to failure models
- more on group behaviour from Clay Shirky etc. into the first part (also
modelling of social groups and data)
- OpenSocial as a modelling example. Does it scale?
- finish chapter of popular sites and their architecture
- alternative architectures better explained (spaces, queues)
- cloud APIs (coming)
- consensus algs for the lowest parts explained
- failure models (empirical and theoretical, in connection with consensus
algs)
- practical part: ideas for monitoring, experiments, extending a site into a
community site as an example, darkstar/wonderland scalability
- feature management as a core technique (example: MMOGs)
- ..and so on…
- Time in virtual machines
- The effect of virtual machines on distributed algorithms, e.g. consensus
- Modelling performance with palladio
- Space based architecture alternative
- eventbasierte Frameworks (node.js / eventmachine) in I/O
- client side optimization hints
- queuing with data bases (http://www.slideshare.net/postwait/postgresql-
meet-your-queue)
- spanner: googles next infrastructure, http://www.royans.net/arch/spanner-
googles-next-massive-storage-and-computation-infrastructure
- CAP explanation:
http://www.instapaper.com/text?u=http%3A%2F%2Fwww.julianbrowne.com%2
Farticle%2Fviewer%2Fbrewers-cap-theorem
- Puppet config management:
- http://bitfieldconsulting.com/puppet-vs-chef
- Agile but extremely large systems configuration problems!

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 5 03/12/2010

Foreword
<<by ?>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 6 03/12/2010

Copyright 2
Acknowledgements 3
ToDo’s 4

Foreword 5
Introduction 13
Part I: Media, People and Distributed Systems 17

Media 18
Meaning across Space and Time 18
Partitioning 18

Social Media 19
Being digital, distributed and social 19
Short Digression: The fragile concept of ownership in digital times 20
Superstructures 24
Social Media and their Price 24

People – communicating, participating, collaborating
 25
Coordination 26
Where is the Money? 29
Findability 30
Epidemics 31
Group Behavior 31
Social Graphs 32
Superstructures 32
The API Web – the Sensor Web – the Open Web? 33
Supersize Me – on network effects and endless growth 33
Security 34
Federated Access Control to Private Data 36
De-Anonymization of Private Data 37
Identity Spoofing in Social Networks 38
Scams 39
Bootstrapping a large community 40

Part II: Distributed Systems 41

Basics of Distributed Computing Systems 42
Remoteness, Concurrency and Interactions 42
Functions of distributed systems 43
Manifestation: Middleware and Programming Models 45
Theoretical Underpinnings 47

Topologies and Communication Styles 49
Classic Client/Server Computing 49
The Web Success Model 49
REST Architecture of the Web 50
Web2.0 and beyond 53
Web-Services and SOA 56

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 7 03/12/2010

Peer networks 59
Distributed Hashtable Approaches 60
Bittorrent Example 63
Special Hierarchies 64
Compute Grids 65
Event-Driven Application Architectures and Systems 66

Reliability, Availability, Scalability, Performance
(RASP) 71
Resilience and Dependability 71
Scalability 72
Availability 75
Concepts and Replication Topologies 79
Failure Modes and Detection 85
J2EE Clustering for Scalability and Availability 89
Reliability 97
Deployment 97
Reliability and Scalability Tradeoff in Replication Groups 98
Performance 98
Monitoring and Logging 99

Distribution in Media Applications 99
Storage Subsystems for HDTV media 99
Audio Server for Interactive Rooms 103
Distributed Rendering in 3DSMAX 105
Understanding the Rendering Network Components of 3dsMax 105
Using partitioning to speed things up 107

Part III: Ultra Large Scale Distributed Media
Architectures 109
Analysis Framework 110
Examples of Large Scale Social Sites 113
Wikipedia 113
Myspace 113
Flickr 115
Facebook 118
PlentyOfFish 118
Twitter – “A short messaging layer for the internet (A.Payne)” 118
Digg 119
Google 119
YouTube 119
Amazon 120
LiveJournal Architecture 120
LavaBit E-mail Provider 120
Stack Overflow 120

Massively Multiplayer Online Games (MMOGs) 122
On Shards, Shattering and Parallel Worlds 124
Shard Architecture and visible partitioning 125
Shardless Architecture and Dynamic Reconfiguration 127
Feature and Social Management 129

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 8 03/12/2010

Security in MMOGs 131

Methodologies in Building Large-Scale Sites 131
Limits in Hardware and Software – on prices, performance etc. 131
A History of Large Scale Site Technology 133
Growing Pains – How to start small and grow big 133
Feature Management 134
Patterns and Anti-Patterns of Scalability 134
Test and Deployment Methodology 135
Client-Side Optimizations 136

A Model for RASP in Large Scale Distribution 138
Canonical or Classic Site Architecture 138
Classic Document-Oriented Large Site Architecture (Wikipedia) 140
Message Queuing System (Twitter) 140
Social Data Distributor (Facebook) 140
Space-Based Programming 141
Queuing theory, OR 141
Basic Concepts 141
Applications of QT concepts in multi-tier Systems 151
Service Demand Reduction: Batching and Caching 151
Service Demand Reduction: Data-in-Index 153
Service Demand Measurements 153
The n-tier funnel architecture 154
Cost of slow machines in mid- or end-tier 154
Queue length and Residence Time 156
Output traffic shaping 156
The realism of Queuing Theory based Models for distributed systems 157
Request Processing: Asynchronous and/or fixed service time 157
Heterogeneous hardware and self-balancing algorithms 158
Dispatch in Multi-Queue Servers 158
Unfair Dispatch: Shortest Remaining Processing Time First 158
Request Design Alternatives 159
Heijunka 160
Tools for QT-Analysis 161
Applicability of QT in large-scale multi-tier architectures 162
Combinatorial Reliability and Availability Analysis 162
Stochastic Availability Analysis 168
Guerilla Capacity Planning 168
Concurreny and Coherence 169
Calculation of contention and coherence parameters 172
Client Distribution over Day/Week/Year 175
Simulation 175
Tools for statistical analysis, queuing models and simulation 176
Architectural Principles and Metrics 177
Architectural Principles 178
Metrics 178
Changes in Perspective 178

Part IV: System Components 179

System Components for Distributed Media 179

Component Interaction and Hierarchy 179

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 9 03/12/2010

Latency, Responsiveness and Distribution Architecture 179
Adaptations to media 184
Content Delivery Networks (CDN) 186
HA-Service Distributor 188
Distributed Load Balancers 189
Distributed Caching – not an Optimization 191
Caching and Application Architecture 191
Caching Strategies 192
When not to cache 192
Invalidation Events vs. Timeout 193
Operational Criticality 193
Pre-Loading of Caches 193
Local or distributed caches 193
Partitioning Schemes 194
Memory or Disk 194
Distribution of values 194
Granularity 194
Statistics 194
Size and Replacement Algorithms 195
Cache Hierarchies 195
Memcached 195
Fragment Architecture and Processor 197
Compression 201
Local or predictive processing 202
Search Engine Architecture and Integration 202
Special Web Servers (light-weight) 203
A pull based Web Server Design? 203
Scheduler and parallel Processor 204
High-availability failure detector 204
and lock service 204
Buffering and compensation for networked audio 204

Data Center Architecture 205
Geographically Dispersed Data Centers and Topology 205
Scale-out vs. Scale-up 206

Data Stores 208
Requirements and Criteria 209
virtualized storage: 209
External Storage Sub-Systems 210
Grid-Storage/Distributed File Systems 210
Distributed Clustered Storage 214
ZFS 215
Database Partitioning and Sharding 215
Cache concepts with shards and partitions 222
Why Sharding is Bad 223
Social data examples and modeling: 224
Partitioning concepts and consequences 224
Data Grids and their rules of usage 224
Database based Message Queues 226
Read Replication 226
Non-SQL Stores 226

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 10 03/12/2010

Key/Value Stores 229
Semi-structured Databases 229
Scalaris 231
A new database architecture 232

Part V: Algorithms for Scalability 233

I/O Models 233
I/O Concepts and Terminology 235
Connections 235
The Asynchronous Web 236
The Keep-Alive Problem 237
I/O Processing Models Overview 238
Thread per Connection Model 238
Non-Blocking I/O Model 240
Synchronous Notification (Multiplexing) Model 240
Digression: API is UI or "Why API matters" 244
Asynchronous I/O Model 246
Java Asynchronous NIO 249
Virtual Machine Level Asynchronous I/O 249
Staged Event-Driven Architecture (SEDA) 251
Building Maintainable and Efficient Servers 253
Zero-Copy 254
Context-Switching Costs 254
Memory Allocation/De-Allocation 257
Locking Strategies 257
I/O Strategies and Programming Models 258
Libevent – an example event-notification library 260
Node.js – a new async. lib 260

Concurrency 260
Classic shared state 262
Consistency Failures 263
Performance Failures 263
coarse grain locking of top-level functions or data structures 263
pre-emption with locks held 264
thundering herd problems 264
False Sharing 265
Liveness Failures 265
Software Composition/Engineering Failures 265
Visible lock owners: mutex vs. semaphore use 266
composable systems in spite of shared state concurrency with locks? 266
Performance impact of test-and swap with lock-free synchronization 266
Provable correctness? 266
Classic Techniques and Methods to deal with shared state concurrency 266
Fighting Context-Switch Overhead: Spin-locks 267
lock breaking in time: generation lock and swap, memory retiring 267
lock breaking in space: per CPU locking 267
lock breaking by calling frequency: hot path/cold path 268
threading problem detection with postmortem debug 268
Transactional Memory and Lock-free techniques 268
Generational Techniques 273
Task vs. Data Parallelism 275

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 11 03/12/2010

Java Concurrency 278
Active Objects 278
The Erlang Way 281
Multicore and large-scale sites 286

Scale agnostic algorithms and data structures 286
Partitioned Iteration: Map/Reduce 287
Incremental algorithms 289
Fragment algorithms 289
Long-tail optimization 289
consistent hashing 289
beyond transactions, large scale media processing 293
mostly consistent/correct approaches: 293
Failure Detection 293
algorithms dealing with heterogeneous hardware environments 293
Shortlived Information 294
Sharding Logic 294
Scheduling and Messaging 294
Task and processing Granularity with same block size, task time etc. 294
Collaborative Filtering and Classification 294
Clustering Algorithms 294
Number Crunching 294
Consensus: Group Communication for Availability and Consistency 295
Paxos: Quorum based totally ordered agreement 295
Paxos Implementation Aspects 297
Agreement based on virtual synchrony 300
Optimistic Replication 300
Failure Models 303
Time in virtually hosted distributed systems 303

Part VI: New Architectures 304

Cassandra and Co. 305

Adaptive, Self-Managed ULS Platforms 307
“Human-in-the-loop” 307
Self-management with interacting, hierarchical feedback loops 308
Emergent Systems Engineering 311
Scalability by Assumption Management 313

Cloud Computing: The Web as a platform and API
 318
Canonical Cloud Architecture 321
Cloud-based Storage 322
Cloud-based Memory (In-Memory-Data-Grid) 322
Time in Virtualized Environments 323

The Media Grid 323
Peer-to-Peer Distribution of Content (bbc) 324

Virtual Worlds (Secondlife, DarkstartWonderland) –
Architecture for Scalability 325
Immersive multi-media based collaboration (croquet) 326

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 12 03/12/2010

Part VII: Practice 328
A scalable bootstrap kernel 329

Exercises and Ideas 329

Data Storage 329
Modeling and Simulation 329
Performance Measurements and Profiling 329
Distributed Algoritms 329
Measurements 330
Going Social 330
Failure Statistics 330

Part VIII: Resources 331

Literature: 332

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 13 03/12/2010

Introduction

This book has three major parts. The first part deals with the interdependent
changes in media, people and distributed systems of the last 8-10 years. The
second part explores large scale sites, their architectures and technologies down to
the algorithm level. And it explains the specific adaptations for social media in
those sites in all parts of the architecture. Modeling and visualization of
distributed architectures is included as well. And the third part presents current
developments e.g. in scalable MMOG design etc.

The drivers behind the first part are: The changes in distributed systems
technology of the last 8-10 years which took those systems outside of companies
and based them after fixed wire internet also on mobile and wireless networks.
The change in media themselves which became digital and social and which are
no longer the carrier of information only. And finally the change in people who
walked away from passive consumption and turned to active communities and
social networks.

The following diagram of participating people with numerous overlays and
interacting media and communication systems displays the high degree of
entanglement present today.

youtube

facebook

twitter

wikipedia

google

Social sites search media Interacting,
producing people

Mobile
systems

The three drivers are very much interdependent on each other – with the actively
participating digital citizens perhaps being the new kid on the block.

Media and the technology they are based on have always been depending on each
other. Changes in technology have brought new classes of media or new ways to
use existing ones. Distribution too has been core to media ever since. Most visible
when we are talking about broadcasting media but also in a much deeper way
when we realize that media were always about bridging gaps between recipients

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 14 03/12/2010

distributed across space and time. We will spend a little time thinking about
media and distribution in this very basic sense because we will later see that some
of the problems media face due to this separation will show up again on different,
purely technical levels of distributed computer systems as well.

In other words we will discuss media and distributed systems on several levels:
Media in the distributed system of producers, intermediates and consumers and
media in the distributed computing infrastructures that have been a result of the
internet. And of course we will investigate the connections and dependencies
between those distributed systems because this is where lately new developments
have appeared that seem to threaten existing businesses, political practices and
individual rights. To name a few of these developments: File sharing and the
question of digital rights, content creation and distribution as a job for specialists,
ad hoc organization of groups, the question of privacy and anonymity in digital
systems.and last but not least the changing role of journalism due to blogging.
We will discuss how technologies like Web2.0, community sites and social
networks changed the way media are created, distributed and received. And we
will see that the old slogan from the first years of the web: “content is king” is no
longer true. It has been replaced by the social function of media: fostering
collaboration and communication, group building and targeting. Rightly we call
media now “social media” in this context.

The web has been an enabling technology for regular people who can now create,
manipulate, distribute and receive media in previously unknown ways. The sheer
quantity of the media constructed raises new problems: How do we store, find and
distribute those media efficiently? It looks like we will rely on collaborative as
well as computing technologies for solutions to those problems. We will take a
closer look at technologies which can further enhance this ability to participate:
Semantic tagging, microformats etc. But who are these people who live a life
around community sites, blogging, RSS feeds, twitter messages, continuous
tracking of friends, presence indications and much more? The question really
matters because it has a deep impact on the technical systems supporting those
lifestyles. These people can form ad-hoc organizations, their demands on
infrastructure has epidemic qualities which regularly overwhelm technology and
which has been answered e.g. by computing clouds with instant scalability. They
might even go beyond the mere demand for fast and reliable services and ask for
transparency of process and the company behind – again creating demand for new
features in large scale community sites. The kind of data kept in these sites
changed as well as the communication style going from n:1 (many users against
one company) to m:n:k (many users to each other to some companies).

Then it is time to investigate the technological base of the distributed systems
which created the new opportunities and which are driven by them. My approach
is to give a short history of distributed systems and their core features (and
mistakes) to give the reader a better understanding of the technical problems and
challenges behind all the new web features and perhaps even to allow certain
trends and developments to become visible.

Starting with the basic principles of distributed systems we will show the various
answers that have been given in the form of “middleware” in the past. Classical
distribution topologies like client-server, peer-to-peer and others and the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 15 03/12/2010

associated programming models explained. Architectural styles like REST or
RPC are compared with respect to coupling and scalability.

Then comes a section on RASP: Reliabilty, Availability, Scalability and
Performance. The move from company internal distributed systems to distribution
on the internet caused the biggest problems and changes exactly in RASP: The
ability to scale in an environment that is much less reliable than the company
internal Intranets became a key success factor for large community sites and
changed the way architects of distributed systems thought about certain
algorithms and technologies.

The driver behind the second part is a rather practical one: Todd Hoff of
www.highscalability.com created a portal for all things scalable and by browsing
the sheer endless information on this site I realized a couple of things: First, there
are many descriptions of large scale architectures like twitter, facebook, myspace
etc. which are extremely interesting. They could be used to sum up the core
features and methodologies behind scalable and reliable systems (e.g. do they all
use a memory-caching layer?). Second, the reports are mostly written by the core
architects and sometimes they are a bit dense. What might be a sufficient
explanation for somebody working exactly in this area is probably just a bit too
short an explanation to be understood by everybody (e.g. a comment on a certain
cache system not being based on multicast and therefore scalable beyond 20
machines). In other words: an explanation of components, specializations and
how they work together is needed. This includes modeling and visualization.
Third, these architecture studies include specific technology (e.g. replication)
which should be explained down to the algorithmic layer. Fourth, these large scale
architectures created special solutions for their problems, sometimes by inventing
new algorithms or by relaxing certain constraints. Optimistic replication, epidemic
distribution and eventual consistency, functional partitioning and parallelization
are just a couple of these new technologies.

The second part therefore presents some large-scale architectures and sites and
investigates the distributed technologies and algorithms behind. Concurrency
considerations, the handling of high speed I/O and database partitioning play a
major role there as well.

Once the social and technological base of distributed systems is clear I will bring
in the media. Media present very unique challenges to distributed systems which
result from their size, realtime distribution needs etc. But they also relieve the
technical base from some rather critical problems like transactional processing.
We will therefore take a look at how distributed systems need to be adapted to
support media properly. Concepts like partitioning of the information space are
core to efficient treatment of media. Sometimes we will see that scalability and
reliability of distributed systems forces us to adapt the higher “content” levels to
fit into an efficient distribution strategy. Caching and replication are successful
strategies to deal with media problems.

Finally in the third part I will investigate promising new applications of
distribution principles to media. There are exciting new developments which try
to go beyond current problems. Dynamically scalable, shardless Massively-

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 16 03/12/2010

Multiplayer-Online Games (MMOGs), virtual worlds, P2P driven media
distribution, self-managed distributed systems come to mind.

In the end the reader should have an understanding of current distributed systems
technology motivated by the changes in media, people and technology over the
last decade. The topic of large-scale social media sites seemed to be a good
anchor for the explanation of distributed architectures and algorithms.
Why is that so? The book has a little “hidden agenda” as well. It is the hypothesis
that the size of the systems under investigation necessarily leads to a very
different point of view towards system properties – especially the non-functional
ones like stability, scalability, performance etc. And that the architecture as well
as the development process experience major changes due to the changes in
viewpoints. Let me give you some examples: Typically developers show a strong
“functional fixation” towards interfaces for clients or customers. After looking at
the way large scale sites deal with those functions we will realize that the
“business function” part becomes somehow less important. This is probably not
correct. It does not become less important: the other functions are becoming more
important in comparison. It is not uncommon in ultra-large sites that business
functions are designed to run in roughly the same time. They are split into smaller
functions if this cannot be achieved otherwise. Sometimes business functions are
turned off to keep the overall system stable. Amazon e.g. requires the 99.9
percentile of its services to complete within the defined service time. Application
level code is suddenly forced to deal with system aspects violating transparency
principles in a strong way. To me seeing and understanding those changes in
perspective made writing this book big fun.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 17 03/12/2010

Part I: Media, People and Distributed
Systems

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 18 03/12/2010

Media

Meaning across Space and Time

Frequently media are seen as content within a container. This container
can overcome distances in space and time and make the media available at
the receiving end. When you add the capability of making copies of the
container it looks like media are simply made for distributed systems. This
point of view seems so natural that we tend to forget about the contextual
requirements behind this process: Creator (let’s assume this is the same
person as the sender) and receiver need to share a lot of context to enable
the distribution of media: a common language, a common social context
etc. Otherwise what is shipped in the container turns into nonsense at the
receiving end.

This possible “brittleness” in distributed media is a feature that media
share with distributed computing systems. When a computer
communicates with another computer they need to share certain contextual
requirements as well and most people developing distributed computing
systems had to learn this the hard way when small changes to protocols or
structures on one side caused havoc on the other. We will see more of
those structural or behavioral analogies between distributed systems on
different levels.

Partitioning

Most distributed computing systems need to partition the content and its
delivery across a population of receivers. Otherwise performance and
connection complexity bring the system down. The same is true for media.

A classic view of media concerns the process of media creation and
distribution. We can call it the one-way, top-down specialist viewpoint. In
other words: media are created by media specialists (e.g. artists), they are
published and distributed by specialists (e.g. publishers and networks) and
finally they are consumed at the receiving end. This describes the so called
broadcast process and it is a one-way street.

Production and Distribution are usually considered as two very different
phases in media lifecycle. There are producers of media or content – few.
And there are the masses of consumers of content. Even recent research
ideas of the EU on media informatics (ERCIM) show this bias towards a
client/server model of consumption and production. This hierarchical
conceptual model of media production is now threatened by universal
digital channels and machines. The digital content bits are shipped over
distributed channels and systems to end users where they are again
distributed to all kinds of players for consumption.

You need to compare this e.g. with John Borthwick, the CEO of Fotolog
and his claim that both: production and distribution need to bee seen
together. [Borthwick]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 19 03/12/2010

Before we talk about how distributed computing challenged and changed
this classic process we need to introduce the opposite of this process – the
conversation. Clay Shirky in his book “here comes everybody” took a
close look at social network sites like myspace, delicious, youtube, flickr,
friendster etc. These sites allow everybody to publish whatever they want.
Does this mean that all the media used in the context of these sites are
broadcast media? Shirky explains that while the way of distribution looks
like broadcast (everybody can watch) the media are much more geared
towards conversation. They need context information and if groups form
around those media then we see conversation and not top-down broadcast.

Conversation is peer-to-peer. It works only in small groups due to the
complexity of n to n connections and it is two-way instead of one-way.
Social network sites take the content produced in conversational contexts
and “broadcast” them – but this is only a mix-up of different creation and
distribution methods. An interesting question here is whether we can take
broadcast content and bring it into a conversational context. “Remixing”
content and discussing it in ones peergroup might be one example. The
sharing of music in closed darknets another.

We will discuss Shirky’s core statement on how social software changes
the limits to conversational groups and allows the formation of large ad-
hoc mobs further down.

Media have some other qualities that are important for distributed
computing systems. Media are – when used in the broadcast sense – not
transactional. This means simply that there are not many different clients
that might change one existing instance of a certain media concurrently. In
most cases media are not changed at all, at least not concurrently.
Of course once we enter the conversational style of media exchange (we
could also call it the collaborative style) this assumption is no longer true.
Virtual worlds and massively multiplayer games need to maintain the
world state in a transactional fashion or experience some rather unhappy
users and players.

Another important feature of many media with respect to distributed
computing is due to human biology: Media reception requires in many
cases realtime quality of service (QOS). Small delays in the playback of an
audio stream are audible and destroy the experience. This is no small
problem for loosely coupled, independently operating computers to
guarantee the necessary quality of service at the receiving end.

Media are rather large in most cases. Only compression technology made
it feasible to use media in IT systems at all. Media put a strain on
operating systems and transport channels due to their size and the time
based nature of media reception by human beings: A movie needs to
deliver 24 or more frames per second or we will recognize gaps. Audio is
worse still: even small interruptions become very audible.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 20 03/12/2010

When distributed systems need to bridge space to make media accessible
they have to do so either by copying the media to the target system for
consumption or they have to ship bits and pieces of the media towards the
target system. In this case the distributed system needs to respect the
realtime properties of media consumption if the media are continuous like
movies.

We call the two cases the download case and the streaming media case.
Both cases belong typically to the area of media consumption or
distribution but this need not be.

Social Media
Being digital, distributed and social

The previously mentioned “classic” view on media as top-down delivery
of content made by specialists and distributed by specialists received a
couple of serious blows in the past, mostly due to technical changes in
software and hardware. It started with content becoming digital and
thereby reproducible at high quality, low cost and large quantities. Ed
Felten of Princeton University describes the problems with digital media
nicely in his famous talk "Rip, Mix, Burn, Sue: Technology, Politics, and
the Fight to Control Digital Media".

What does it mean for content “being digital”? One can honestly say that
many traditional publishers did not realize the disruptive nature of digital
media and the responses to financial problems created by the digital nature
were backward oriented in many cases. The answer to “cheap, high quality
copies” was copy protection” and it became a key term for the
entertainment and in parts also for the software industry. The industry tried
– unsuccessfully – to change the digital nature back into an analog, non-
reproducible nature. Software to prevent copying was installed (sometimes
secretly), legal obstacles like making copy software illegal were tried and
even advanced Digital Rights Management (DRM) systems were used. In
many cases the regular and legal users had to pay a high price in usability
for this protection of the content publishers.

Short Digression: The fragile concept of ownership in digital
times

When copies are super abundant, they become worthless.
When copies are super abundant, stuff which can't be copied becomes
scarce and valuable. Kevin Kelly, The Technium,
http://www.kk.org/thetechnium/archives/2008/01/better_than_fre.php

There is an undeniable tension between the digital world and traditional
concepts of ownership. It becomes very visible in the struggle about
intellectual property rights. The traditional economic theory puts
ownership at the core of business and the reason is that resources are

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 21 03/12/2010

considered scarce, not shareable because not-copyable. In the traditional
economic theory things have value because of the scarceness and that
explains why the music industry wants to turn the wheel back and make
digital music again analog and thereby not copyable (at least not with the
ease and quality and speed as is possible with the digital form).

But the matter of intellectual property rights is even more backward
oriented. The proponents of software patents want to CREATE the
scarceness in the first place. Turn something that is NOT scarce into
something that becomes a value due to its artificial scarceness.
Lawrence Lessig, Author of Code2.0 and other books on digital copyright
claims that currently the law on intellectual property rights stiffles creative
use of materials. He created the Creative Commons Set of licenses
(http://creativecommons.org/) as an alternative.
On a worldwide scale the dominance of the western world with their
immense pool of patents is a major handicap for developing nations. The
situation becomes completely perverse when African nations are not
allowed to reproduce AIDS drugs even though the population there can
never afford the prices of western pharmacies.
Inctellectual property rights around hardware are an especially interesting
topic. Hardware manufacturers do not Open Source the diagrams and
construction materials used to build there systems. They fear that this
would make copies trivial and they would be face cheaper copies made in
china. But is this true? First: almost all hardware can be re-engineered by
somebody. This happens on a daily base in this world. And second: Clive
Tompson describes the Arduino microcontroller that was turned into Open
Source by a small Italian company. [Tomp]

Arduino open source

hardware

Everybody can use the wiring diagrams etc. to build an exact copy of the
controller and it is done as a matter of fact. But strange things are
happening: the Italian company is selling lots of controllers, still. They do

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 22 03/12/2010

not generate a lot of money from those controllers – and they do not plan
to do so. Their business model is about services around the controller and
it seems to work. So they are really interested in others copying their
design.
But there is something else that is vital to open source hardware: it creates
a community around such products. And the value finally comes from the
community. The community even improves the hardware design, the
community discusses new features and fixes bugs. The community helps
newcomers and manufacturers. And the original inventors are right in the
middle of this community if they play it right. This is something that both
fascinates and scares companies: they are slowly getting used to the fact
that there is an outspoken community around their products with
community sites, forums etc. But now they have to realize that some parts
of this community will get involved in the future of products, product
planning and finally in the way the company works. This kind of
transparency is scary and also powerful. Stefan Bungart, philosopher and
executive lead at IBM described these challenges in his excellent talk at
the 10 year anniversary of the computer science and media faculty at
HDM and the stream of his talk is definitely worth the time watching it
[Bung]. But what happens if we really give up on the idea of intellectual
property rights which can be used to exclude others from building the
same, just better? One can assume that the same effect as with open source
software will be seen: A ruthless, brutal Darwinism of ideas and concepts
would result from this with a resource allocation and distribution that
would be more optimal than the one that is usually claimed by capitalism
to be the best.
The digital world has seen a decrease in value of most of its goods: CPU
time, RAM size, disk space and communication costs have all come down
to a level where one could claim that sharing those resources is basically
free (and therefore a requirement that sharing happens at all as Andy Oram
points out in his book on Peer-To-Peer networks). And the open source
movement is a real slap in the face of traditional economy: Non-zero sum
games instead of zero-sum games. Sharing instead of excluding. And the
proponents of this movement have proof of the higher quality and faster
reaction times this system can offer. Open Source Software, social
networks like the one that supported Obama all show what communities
can achieve without the sole interest of making profit – something that just
does not happen in classic economic theory. And when these communities
are given a chance through open, distributed computing systems and social
software running there.

So the right answer for the content producing industry (or is it actually
more of a content distributing industry anyway?) would be: forget about
the media container and start concentrating on the real value for customers
by embedding the container into the whole music experience. To have this
experience music needs to be found, transferred and made accessible in
high quality anytime and anywhere. And this becomes a service to the
customer that the industry can charge for.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 23 03/12/2010

And this service has another advantage: it is not so easily reproducible. It
depends on knowing what people like or dislike, on knowing about their
communities, on offering fast and high quality access, on providing
excellent usability for finding music etc.

Which leads over to the question of reproduction in general. Lets take a
look at the list of non-copyable things from Kevin Kelly:
• Immediacy
• Personalization
• Interpretation
• Authenticity
• Accessibility
• Embodiment
• Patronage
• Findability

“Immediacy” is the difference between expecting the customer to visit a
shop physically and having a browsing and streaming service available
that allows immediate access to the music the customer likes.
Personalization allows simply a better service. Interpretation means
helping somebody with something digital. Authenticity is a guarantee that
the digital copy somebody is using really is correct and unchanged.
Accessibility can mean improved physical access (transport) or better user
interfaces. Apple products shine in this respect over most others.
Embodiment is a band in a live-concert: the music is tied to the body of
the band. Patronage is the willingness of customers to support somebody
via donations. And findability makes it all possible be letting the customer
find the things he wants.
Don’t get me wrong: these things are also copyable in a way, e.g. by
competing publishers. But in the first place they add to the digital copy in
a way that can’t be copied by the customer!

“being digital” does not end with physical things. Daniel H.Pink in his
bestseller “A whole new Mind” raises questions about the future of
working people and how it will look. He asks the readers three questions
about the type of work they are performing:
- Can someone overseas do it cheaper?
- Can a computer do it faster (and being a computer science guy I
would like to add: better)?
- Am I offering something that satisfies the monumental
transcendent desires of an abundant age?

The last part points to the weak spot in the book: the author assumes a
world of abundance. Goods are plenty (e.g. there are more cars in the US
than people). On the other hand the book has one theme only: how to use
the right part of your brain (which hosts creativity, gestalt perception etc.)
for one purpose only: to make yourself still usable (in other words: paid)
in this new society dominated by right brainers. Because people have
plenty the scarce things (and therefore valuable things) are art, play, design
etc. Lets just forget about the ideological nonsense behind the book (why
would I have to sell myself in a world of “abundance”?) and concentrate

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 24 03/12/2010

on the things that make copies impossible. And here the author may be on
to something right: combining know-how from different areas to create
something new is hard to copy. Combining different methods (like
narrative methods from the arts and programmatic methods from IT also
creates something new). And if the author finds enough followers we
could enter a phase where millions of amateur (writers, poets, painters,
designers etc.) create things that are unique. Again, looking at this from
with the cold eyes of sociology would show us typical overhead
phenomenons described by Pierre Bourdieu (the fine differences).
Finally, virtual worlds add another angle to the copy and scarceness
problem. In the position paper on “Virtual Worlds, Real Money” the
European agency enisa takes a look at fraud in virtual worlds [enisa].
According to enisa many of those worlds implement a concept of
“artificial scarceness” by restricting objects or services as it is done in the
real world e.g. with currency. Users of the virtual worlds can then sell
either virtual goods or services inside or outside of the virtual world. But
we should not forget that we are at a very early phase in virtual world
development where it is natural to copy existing procedures from the real
world to allow users an intuitive access to the world – much like the office
desktop concepts of some operating systems tried to mimic a real desktop
(with some very questionable success raising the question on how far
metaphors will carry us..). We will come back to the paper from enisa in
the chapter on virtual worlds.

While the media industry was still grappling with the copy problem the
next blow arrived: The digital nature of the media was now brought
together with the distributed infrastructure of the internet, including
different types of access, replication and findability options. Bringing
digital media into the distributed infrastructure changed two things
dramatically: the mode of operation or use of digital media and the way
they are found and distributed. Before this development happened the
media industry controlled how media were found, distributed and
consumed (you need a xyz-player, a media disk or tape etc.). Now the
media could be consumed in many different ways and many different
places (streamed through the house, on a mp3 portable player, from a
mobile phone, directly on a train via phone etc.). And the whole process of
copying an audio disk for friends disappeared: file sharing networks
allowed the distribution of content to millions for free. And of course they
allowed easy findability of new content as well.

We need to compare this with the “vision” of the media industry. At that
time this vision was still deeply rooted in the “disc” nature (analog) of the
media container that was at the same time the focal point of the financial
interests. “You need to sell CDs to make money”. Lets look at two
examples: publishers of encyclopedias or other kinds of information and
music publishers. An encyclopedia in the form of beautiful books bound in
leather is certainly a nice thing to have – but is it really the most useful
way of using one? The publishers reacted and started selling information
on CDs. But do you really need more CDs? If you are a lawyer or a tax
accountant you subscribe to information publishers who send you the
latest updates on CDs. Is this really useful? You can’t make annotations on

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 25 03/12/2010

those data graveyards and worse: you don’t see annotations and comments
others might have made about the same text parts. The correct way to use
information services of course was online and social and wikipedia turned
into the prototype of all those services.

The music industry did not fare better. They still shipped CDs to music
shops but who has the time to go there? And how would I find music I
don’t know yet but might like? And what should I do with a CD or a CD
archive? When you have a family you have learnt that CD archives don*t
work: the boxes are always empty, the discs somewhere in the kids rooms
or in the cars. The music industry could not solve two basic problems: to
let me find music I like easily and to let me consume this music whenever
and wherever I have an opportunity.

Finally online music shops appeared like Itunes. They were still
handicapped by copy protection rules at the cost of low usability at the end
user side. Recommendation sites appeared, based either on content
analysis of music (advanced) or simple collaborative filtering based on my
music history, my friends or anybody’s listening or buying patterns
(amazon).
And still this is a far cry from how it could be when we consider realtime
streaming. I should be able to browse music anywhere I am and at any
time and then listen in realtime to the pieces I like. The system should
record my preferences and maintain my “archive” online.

Before we deal with the next blow to the media industry a short recap of
where we are is in order. We started with media becoming digital which
allowed easy and cheap reproduction at low costs. Then we added the
distributed infrastructure of the internet with millions of PCs in the homes
of users. This allowed fast and easy distribution of digital media and at the
same time provided meta-data services (recommendations etc.) that the
music industry could not easily offer due to their social nature. And
perhaps because the industry still considered “content as king” when
media content started to become something very different: an enabling
element in a distributed conversation across groups, social networks and
communication channels. The way media were produced and consumed
started to change and this was the third blow to the media industry.

Superstructures
What does "superstruct" mean?
Su`per`struct´ v. t. 1.To build over or upon another structure; to erect
upon a foundation.
Superstructing is what humans do. We build new structures on old
structures. We build media on top of language and communication
networks. We build communities on top of family structures. We build
corporations on top of platforms for manufacturing, marketing, and
distribution. Superstructing has allowed us to survive in the past and it will
help us survive the super-threats.
http://www.superstructgame.org/s/superstruct_FAQ

Social Media and their Price

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 26 03/12/2010

http://www.slideshare.net/wah17/social-media-35304

Who creates content? In the eyes of the media industry the answer is clear:
content is created by paid specialists. Flickr, YouTube, delicious,
myspace, wikipedia and blogs have proven them wrong. Content can be
created a) by you and me and b) collaboratively. But is it the same
content? Is it as good as professionally created content? The quality
question behind information bases like wikipedia or open source software
led to heated discussions initially. Those discussions have calmed down
considerably as the established content or software producers had to learn
that in many cases they would not stand a chance against the driving forces
behind open content or software production. A company just cannot
compete with the large numbers of users adding or correcting wikipedia
pages or testing and correcting software packages. And the lack of formal
authority leads to a rather brutal selection process based on quality
arguments instead of hierarchy.

But it is not only the content creation that changed. The content on social
network sites is different from professional broadcast content. It is usually
created independently of the media industry, it is sometimes
conversational, oriented at small, private groups. It is discussed in instant
messaging groups or chat forums. It is received, consumed, distributed and
discussed in an interactive way that is simply impossible for regular
broadcast media. IBM claims that people born after 1984 belong to a
fundamentally different user group with respect to the use of interactive,
always connected media technology. These people use chat, instant
messaging and virtual worlds just as the older population might use e-mail.
This active, conversational style of media use might be the biggest blow to
the media industry after all.

Community sites feature a lot of social information created by user
behaviour. One of the simplest being “who’s present?” at a certain
moment. Social information can be more specific like “who is watching
the same page right now?” and so on. This type of information is mostly
real-time and semi-persistent. And it creates performance problems in web
sites if one tries to use traditional databases to insert and query such
information. There are simply too many updates or queries needed per
second on a busy site to use a transactional datastore like a database for
this purpose.

Currently it looks like the print-media industry, especially the newspapers,
might pay the price of social media by going bankrupt. Even the mighty
New York Times might not survive
(http://www.spiegel.de/netzwelt/web/0,1518,607889,00.html). Online
editions of newspapers seem to be unable to collect money for their
services. And they fight with numerous problems like the micropayment
difficulty (users do not buy pieces of media products because they do not
know how to price them: there is no market for single articles). And paper
editions are facing the competition of free micro-newspapers like “20
minutes”.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 27 03/12/2010

Social media killing off the traditional media because they are much more
group oriented, active etc. is just one economic impact of social media.
There are more if we look at the next chapter: interacting people do not
only create social media. In principle they can organize many services that
traditionally have been provided by the states (like currency, security) or
companies (like hotels, pensions). Go ahead an read the quote from
Kortina at the beginning of the next chapter: Through social media and
sites people share many more things like bed and breakfast while
travelling and visiting friends made through facebook, couchsurfing etc.
These services used to be commercially available and are now put back
into the private, non-economic space. Obviously beds and breakfast are
NOT really scarce on this world. Organizing was hard and a professional
service. But this is changing with social network sites and again some
goods and services are no longer ruled exclusively by economic scarcity.
The digital life now starts to determine the prices in the analog world as
well.

People – communicating, participating, collaboratin g
Fotolog CEO John Borthwick,
http://www.borthwick.com/weblog/2008/01/09/fotolog-lessons-learnt/

By digging into usage data we concluded that the Fotolog experience was social,
social media. Understanding this helped us orientate our positioning for our
members, our advertisers and ourselves. The rituals associated with digital
images are slowly taking form - and operating from within the perspective of a
mature analog market (aka the US) tends to distort one's view of what how digital
imagery is going to be used online. The web as a distinct medium is developing
indigenous means of interactions.

URL: http://essays.kortina.net/

Couchsurfing is Beta Testing a City
June 27th, 2008 ·

Couchsurfing is my new favorite social net. I checked it out this week prior to my
trip to Palo Alto, and now CC and I have connected with 2 people in the real
world and have gained two new friends. Our hosts showed us around the area,
gave us a feel for what life was like in Palo Alto, and told us about the cool stuff
they’re doing. We got a tour of Stanford Campus, went hiking, went to a cool
place for dinner, got a homemade pancake breakfast, got some free rides, and had
great conversations.

Although I’ve been to the Bay Area before, I don’t think I’ve ever gotten a feel for
what it would be like to live there until this past visit. It’s tough to assess a city
when you’re just a visitor staying in hotels. Spending time in homes and
apartments of people that actually live there and joining them in their nightly
excursions is probably the best way to actually experience the city like a local.
Thanks to Sasha and Vanae for hosting–good times, for sure.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 28 03/12/2010

I must admit, that Twitter & Facebook also came through. I tweeted about
heading out to Cali, which got imported into my Facebook feed. My college buddy
Wes saw this and mentioned that he had recently moved to San Fran and had
some couches we could crash on. We spent two nights with Wes, ate fantastic
Mexican food, and discovered two of the coolest bars I’ve been to in some time.
Wes also introduced me to a pretty cool new band, Ghostland Observatory.
Here’s a good track: Vibrate.
I love using the internet to connect with people in the physical world.
URL: http://essays.kortina.net/

Coordination

Getting members of a distributed system to collaborate and act in an
organized way to achieve a common goal was and is a hard problem – no
matter whether we are talking about people or computers. Interestingly,
the bringing together of distributed human beings with the distributed
organization of the internet seems to reduce exactly this problem
considerably – at least for the human part.

Politically interested people might have noticed (and hoped) that the new
social networks and sites allow easy and independent organization around
specific topics. It was Clay Shirky who said in the subtitle of his book
“The power of organizing without organizations”. He claims that social
software and social networks reduce the organizational overhead needed to
form active groups and therefore allow the creation of ad-hoc groups. The
media created and distributed on those sites become actionable items, they
support group behaviour.

<<Distribution now a network effect. Mixing hierarchical and democratic
methods
(two technology rev. Articles) >>
Let us take a closer look at one of the most successful social networking
strategies of ever: Barrack Obamas fight for presidency. This fight was
supported by several social networking sites, especially
http://my.barackobama.com.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 29 03/12/2010

This site played a major role in the organization of events etc. In particular
it allowed:
- small donations to be placed easily
- sharing of personal details like phone numbers to be later used for
event organization
- learning about events
- leraning about groups and interested others
- planning and organizing of local events and activities
- sharing of stories and blogs
- contact other potential voters
- use the blog
- buy fan articles
- personalized use of the site
- meet Obama and other prominent representatives (chat, webcast)
- get information on elections, social groups etc.
- watch videos from speeches or events
- send messages to election staff
- find connections to other social network sites with Obama content:
flickr, youtube, digg, Twitter, eventful, LinkedIn, Facebook, MySpace etc.
- learn about all these features in a tour video
http://www.youtube.com/v/uRY720HE0DE&hl=en&fs=1&rel=0

A heise article mentions the following success factors of Obamas site:
It brought Obama more than 500 Million Dollar in donations, 75.000 local
events were organized using the sites data and participants which exceeded
1 million finally. A core problem for the site were the ever increasing
numbers of users.
David Talbot describes the Web2.0 strategy used in a Technology Review
11/2008, Report. According to Talbot the team around the site understood

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 30 03/12/2010

that users and visitors would automatically re-distribute content (speeches
etc.) once they were available on social networking sites. So a lot of media
content was placed on different sites like facebook or youtube as well.
One of the biggest success factors resulted from the database with
information on potential participants and supporters. This information was
used to tie online-activities with real-world events outside.

“The Obama campaign has been praised—with good
reason—for its incredible use of technology. Many organizations
would love to replicate its ability to do outreach,
its focus on data, and its ability both to coordinate the
efforts of hundreds of thousands of volunteers in a single
direction and to empower those individuals to take control
of their own distinct parts of the campaign.
The use of technology within the Obama campaign
creates two seemingly contradictory points: the technology
strategy was not a technology strategy—it was an
overall strategy—yet it could not have been executed
without technology. But this misses what programmers
have always understood about software—a truth that
has finally blossomed in the age of social networking:
software itself is an organizing force that equips organizations
to achieve their goals. The Obama campaign used
technology as a front-end enabler rather than a back-end
support, and this synchronization between mission and
tools allowed for the amplification of both.”Benjamin Boer, The Obama Campaign – A programmers
perspective [Boer]

Software and the distributed runtime systems as frontend enabler! Data
centric and linking different platforms the Obama campaign showed the
typical Web2.0 characteristics. But according to Boer there was one
special additional ingredient that made it so successful: “grassroots
experimentation”, the will to innovate and experiment with the live
system, enabled by the use of open source software that provided both a
means to changes and ubiquitous know-how by volunteers. It is this
combination of software technology and social environment that is
responsible for the success. We will take a look further down whether
those characteristics also show up in the well known social sites like
facebook, flickr etc.

Compared to Obama the competition (Clinton, McCain) led more
traditional, hierarchical campaigns with less use of new media like social
networks. In McCains case his social network site seemed to be unable to
deal with a larger number of requests or users. Obama on the other site
used different communication channels and media and therefore did not
miss larger sections of the population. And perhaps the most significant
difference was in the ways the candidates handled the “everybodys”: The
Obama site allowed self-organization of supporters and created only a very
flat hierarchy and control structure. This made the organization of local
events extremely easy and efficient because it delegated power to those
who needed it – the organizers themselves. This aspect of digital media in
the context of distributed and social systems makes many companies
extremely uncomfortable: What if the new forum is used to badmouth one
of my products? What if consumers use my collaborative site to band up
against the company? Social Networks are a far cry from the tightly
controlled information handling policies of the classic marketing and PR
departments or the classic broadcasters and that is why these classic

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 31 03/12/2010

organizations frequently show little success in dealing with social
networks. Those networks require due to their distributed, open nature a
large degree of transparency and freedom and are always a bit “out-of-
control”. (In a classic PR campaign you build some presence or
presentation and when it is done you go public with it. In social networks
and virtual worlds the phase of building the presence is the phase which
attracts the most interest and you need to realize that “the way is the goal”
here. Media in social networks need not be perfect – they need to be
useful. Btw: the Internet-Philosopher Dr. Felix Weil mentioned in his talk
on the occasion of the first Web2.0 day at HDM that transparency and
presence are the two core requirements for all activities on the internet.

Blogging has become a standard procedure in journalism. It allows
independent authors to voice their opinion and to connect it with others.
This highly distributed, egalitarian way of creating content is in stark
contrast to the highly concentrated and controlled media industry of a
Berlusconi, Murdoch or Turner. People run personal diaries on web
servers, link heavily to other sites and let others comment on their content.
This creates a content networks between independent content producers.
The content/blogs might be hosted on a large server or on individual
computers.

Blogs have had a very important side-effect: Re-mixing. Re-mixing is
taking existing content and modifying it, bringing it into a new form and
than publish it again. The idea of re-mixing is rather radical for any media.
It raises questions about authorship and ownership of content. But it has
turned into a form of art for virtual communities.

Meta-services like http://de.globalvoicesonline.org/ collect and present
selected blogs to their audience and ensure that political voices will be
heard. And even text based SMS messages can be used to form groups,
conduct surveys etc. with the help of social software like
http://www.frontlinesms.com/

So called Wiki’s – simple content management systems which allow
everybody to creade and edit pages which will be seen and/or edited by
others have become a popular way to organize projects. Augmented with
some project management and communication facilities they allow groups
to plan and schedule events or they serve as the groups permanent
memory. Wikis are simple applications running on web servers,
sometimes backed by databases or source code control systems for the
purpose of versioning and search. A good example of group planning
social software is www.basecamp.org or just for distributed appointment
scheduling www.doodle.ch.

And we haven’t even touched games, especially multi-player online games
yet. There is lots of content created in those virtual worlds (characters,
buildings, stories etc.). And sometimes the distribution infrastructure plays
an important role even for the game content.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 32 03/12/2010

Something important to notice here is that the game content – the story – is
heavily influenced by the fact of distribution (latency, bandwidth etc.)
force authors to different game ideas which have a chance to work in such
a distributed environment. But also the fact of independent players
communicating with each other can drive the game into totally different
directions: this is owned to the interaction property of distributed systems.
Those online games have to solve very difficult problems from security to
fast updates, replication of the game world and so on.

Very close the idea of multi-player online games is the idea of
collaborative work environments where people can develop things
together. This could be source code, music, videos. Or people could create
environments for learning.

Where is the Money?

We have already touched the money question in the chapter on digital
media and the fragile concept of ownership. It comes back again via social
media and interacting people. The obvious question is: who is paying for
those social network sites and services?

Looking at all the available social network and community sites, services
and offerings one question comes to mind: who pays for the services
rendered? Further down we will take a close look at the necessary
computing infrastructures to support online communities. It is true that on
the client side – what Andy Oram once dubbed “the edge of the internet”
sharing is easy due to CPU, disk, broadband connectivity etc. of the
private machines being essentially free. But this looks very different once
we look at how the services and communities are hosted on the server side
(yes, there is still a lot of good old Client/Server computing going on and
that is why this distribution architecture is discussed below).

Financing community sites adds more superstructures of distribution to the
game. And it is all about advertising, at least initially. Sites will probably
buy advertisements (e.g. from google adwords) to attract visitors. But soon
sites can sell their own page space to PR broker networks (like
www.affili.net) and generate money per click, lead etc.

But banner based PR is only one method to generate money. A successful
community site can use the special, targeted collection of individuals of
the community with their very special interests and sometime even social
characteristics to offer companies who operate in the area of the social
community very interesting services. I am not talking about selling
community data directly. Instead, the community site can offer
personalized, targeted information about articles or services to community
members – and sell this as a service to participating companies. E.g. when
a community member is searching for specific parts the companies selling
those can be shown to the member – at a price of course. This way the site
helps members to find interesting products or services.

Findability

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 33 03/12/2010

The term “findability” was coined by Peter Morville in his book “Ambient
Findability”. He defines it as:
- the quality of being locatable or navigable
- the degree to which a particular object is easy to discover or locate
- the degree to which a system or environment supports navigation and
retrieval
[Morv] pg. 4

Finding something is a core problem of all distributed systems, human or
computer-based. Services which help in finding things, services, addresses
etc. are essential for the functioning of any distributed system. The things
to be found can be internal items of a distributed computing system (e.g.
the IP address of a host) or they can be images, videos and papers targeted
for human consumption. And those services add more superstructures to
our distributed systems e.g. via the connections created by search engines:
Services supporting findability do have a self-reflective quality: they live
within the environment and extract meta-data about the same environment
which are then fed back into the same environment.

Search engines use distributed algorithms to the max, e.g. google invented
the famous map/reduce (now map//reduce/merge) pattern for the
application of algorithms to data on a large scale and at the same time
seem to offer a certain resistance to federation technologies trying to
increase scalability. We will take a look at search engine architecture
further down. Search engines can use behavioral data (e.g. the search
query terms within a certain time period) to predict trends like a possible
outbreak of the flu (http://googleblog.blogspot.com/2008/11/tracking-flu-
trends.html)

Epidemics
Michael Jacksons death has once again shown how fragile our systems are
in case of sudden, unexpected events with a high social value for many
participants. Several large sites were brought to a stillstand and –
according to some rumors – google thought they were suffering from a
distributed Denial-of-Service attack when they saw the high numbers of
requests for M.J.
Systems have a hard time to adjust to such epidemic behavior and we will
take a look at algorithms and architectures which might be capable of
more resilience against this problem. Cloud Computing is one of the
keywords here, as well as sophisticated use of consistent hashing
algorithms as well as – surprise – epidemic information distribution
algorithms. Fighting social epidemics with epidemic communication
protocols!

Group Behavior

Findability, media and social networks create the environment for user
behavior, or should we say group behavior as no users can easily aggregate
into various groups. According to a heise news article on research at the
ETH Zurich. [Heise119014], Riley Crane and Didier Sornette are
investigating the viewing lifecycle of YouTube videos from being almost

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 34 03/12/2010

unknown over creating a hype and then finally ending in oblivion [Crane].
The social reception systems seem to follow physical laws in certain cases,
like the waves of aftershocks after an earthquake. Mathematical formulas
can describe this behaviour – but is it really a surprise? Becoming popular
requires social and technical distribution networks which have
characteristics with respect to connectivity, topology etc. which define the
speed and type of distribution. And in this case several different
distribution systems (e-mail, blogs, talks between colleagues and friends,
mobile phones etc. all participate in generating a certain epidemic viewing
pattern. The researchers intend to use the viewing patterns to predict trends
and “blockbusters” early on.

For the owners of large scale community sites the user and group
behaviour is essential as well. Not only to make sure that the sites attract
many people but also as a technical challenge. Those sites need to show
exceptional scalability due to the spikes or avalanches in user behaviour
mentioned above.

Distribution is a general property and phenomenon that shows up on many
levels of human or technical systems. And these systems can have a big
impact on each other. We will discuss Clay Shirkys statement that
computer based social networks have changed our ability to get organized
– which is a requirement for successful political action. While the impact
on political actions is perhaps still debatable, the different ways of
technical and social distribution systems have had a clear impact on the
development of source code, especially Open Source. The follwing quote
is from the Drizzle development team and shows how interconnected the
various systems already are. You need to add to this list of services used
all the instant messaging, chat, e-mail, phone and live video channels used
during development to get an idea of how social and technical systems
today are connected.
“Participation is easy and fun. The Drizzle project is run using open source
software (like Bazaar) on open and public resources (like
http://launchpad.net/drizzle and irc://irc.freenode.net/#drizzle and
http://www.mediawiki.org) in a true open source fashion. The Drizzle
project also has clear guidelines for participation, as well as simple
guidelines for licensing and use“. [AboutDrizzle]

Group behaviour is important for the implementation of social sites as
well: Can users be clustered together according to some criteria? In this
case keeping the users belonging to this cluster together e.g.in a data store
makes lookups much faster. And changes to the data stay probably within
the cluster of users.

Massively Multiplayer Online Games have a rather natural way to group
users by geography: All users within a certain game location are “close” to
each other which means notifications need not exceed the location borders.
It might even pay off to organize the group of users just for the time they
spend in one game location into the same computer representation, e.g. the
same cache.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 35 03/12/2010

Notifications and group behaviour are key. Facebook tries to find friend
networks within their user data and use this for improved site performance
by organizing data sets differently. Here the user clusters are more static
than in the game case. And group behaviour – either static or dynamic –
presents large problems for scalability: Facebook is limiting notifications
to groups smaller than 5000 participants. In other words once your group
gets larger than 5000 members you can no longer send a message to all of
them easily. (twenty minutes). MMOGs sometimes create copies of game
locations and distribute users to those “shards”. We will talk more about
these partitionings later.

Social Graphs
<<open social, db models of social graphs, messages and numbers>>
http://www.infoq.com/presentations/josh-elman-glue-facebook-
web

what can be done with this information? Social networks driving Content
Delivery Networks?

Superstructures
Clay Shirky gives a nice example of the extreme fan-out possible due to
the interconnectedness of different social and technical systems:

Let me tell you what happened to a friend of mine: a former student, a
colleague and a good friend. Last December decided to break off her
engagement. She also had to engage in the 21st century practice of
changing the status of her relationship. Might as well buy a billboard. She
has a lot of friends on Facebook, but she also has a lot of friends on
Facebook. She doesn’t want all these folks, especially fiance’s friends, to
find out about this. She goes on to Facebook and thinks she’s going to fix
this problem. She finds their privacy policy and the interface for managing
her privacy. She checks the appropriate check boxes and she’s able to go
from engaged to single. Two seconds later every single friend in her
network get the message. E-mails, IMs, phone is ringing off the hook.
Total disasterous privacy meltdown.
Kris Yordan on Clay Shirky, Filter Failures Talk at Web Expo 2008

Shirky notes that privacy sometimes used to rest on inefficient information
distribution. Those days are over. Information distribution happens on
many channels at the same time and this fan-out can in seconds lead to an
extreme overload on single systems. The friends and the friends from
above will turn around and take a look at her profile. And this turns a
rather long tail personal profile into a hotspot which possibly needs a
different system architecture to scale well, e.g. dynamic caching. You
don’t cache long tail information usually.

The API Web – the Sensor Web – the Open Web?
(Tim Oreilly, Web Expo)
Twitter – a sensor web? Scalability for Billions of sensors, possible via
IPV6. Is there an open pub-sub infrastructure for sensors and actors?
Facebook – a dispatcher of social information?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 36 03/12/2010

“The knowledge tidbit that stuck out more in my mind than any other was
that Twitter gets 10 times the amount of traffic from its API than it does
through its website. It makes sense, I’d just never acknowledged it
explicitly. Dion Hinchcliffe’s workshop painted a similar story for many
other Web 2.0 successes. The canonical example is YouTube with the
embedded video. The decision to put html snippets plainly visible, right
beside of the video, was perhaps their most genius move. Modern web
applications and services are making themselves relevant by opening as
many channels of distribution possible through feeds, widgets, badges, and
programmable APIs.” Kris Jordan,
http://www.krisjordan.com/2008/09/25/10-high-order-bits-from-the-web-
20-expo-in-ny/

Joseph Smarr tied together a number of technologies that will create the
open web and thereby further accelerate the growth of social sites: OpenID
(who you are), OAuth (what you allow) and XRDS for a description of
APIs and social graphs. They all belong to the open stack (with open
social etc.)
Currently lots of social information is locked up in silos. Some users just
give away their passwords to allow the use of their social information from
another site but this is obviously very dangerous. Facebook uses a redirect
mechanism between third party sites and itself – much like liberty alliance:
Requests are bounced back and forth and Facebook adds a token after
successfully authenticating a user. The third party site does not learn
credentials from users. But all this is still not perfect as my list of friends
from one silo may be completely usesless within another silo. XRDS will
allow the specification of detailed social information together with fine
granular access, protected by Oauth technology.

Of course this open stack will again increase the load on social sites
through the use of their APIs.
For OpenID see: http://www.heise.de/newsticker/Identity-Management-
Authentifizierungsdienste-mit-OpenID--/meldung/136589

Supersize Me – on network effects and endless growth
Growth on the internet seems to follow a scale free pattern: many small
sites, fewer mid-sized sites and very few supersized ones like Google. This
seems to be the case also with social networks. We see strong competition
between social sites currently – based on the recognition of the crucial
start-up phase and its consequences for future growth. Why is it that the
internet weeds out so many competitors and leaves only a small number of
survivors? Communication platforms always show strong network effects:
new participants increase the value of the platform even more for all
participants. But this is only true within communication platforms, not
between. A new myspace participant does not increase the value for
facebook members and vice versa. These systems are technically isolated
name- and rights spaces. This means in turn that every new participant in
such a system has a rather high value for the platform – especially during
the startup phase. And it means that the selection process will be brutal
because members of platforms with a smaller growth rate will experience
increasing isolation effects.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 37 03/12/2010

But there is an escape for this disadvantage: Just build on top of a
successful community site which shows scale-free growth. Animoto is a
good example. It is a facebook application which lets you supply pictures
and audio data and creates videos from it. It supposedly grew from 50 to
5000 servers [NY Web Expo 2.0] in two days using amazon’s computing
cloud.

Animoto scalability on EC2, from Brandon Watsons blog

Looks like systems interfacing with those giant sites which show epidemic
user behavior inherit this behavior. In the secion on cloud computing we
will discuss the ramifications of this fact.

The few supersites we see today are therefore also a consequence of social
network applications. Growth, speed and the ability to provide new
features quickly are what drives these super-sites. The rest of the book will
take a closer look at the way these sites deal with their growth and speed
requirements. And it is no real surprise that the first result is quite obvious:
they are highly distributed systems. And that is why we start with a short
presentation of distributed computing and how it developed into
something that can support the super-sites of today.

Security
- federation of social applications
- private data (selling, de-anonymization)

Today’s social applications receive, collect, store, analyze and re-distribute
social data of their users. One of the biggest problems in this context
comes from the fact that in many cases more than just two parties are
involved: users want to allow other users or applications access to their
private data. Marc Zuckerberg e.g. describes the way facebook allows this
kind of access through a distributed authorization system.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 38 03/12/2010

Social sites also sell those data – albeit in an anonymized form – to PR
agencies and interested parties. It is assumed that by leaving names and
direct addresses out the users identity is protected. This is not true as has
been shown in studies. <<de-anonymization>>
But above all is the danger of semantic attacks on users – digital analogies
to the “art of deception” honed by Kevin Mitnick with his mostly
telephone based spoofings and impersonations. Bruce Schneier describes
nicely how e.g. identy theft and deception work in social networks.

Deception in Social Networks

Social Networking Identity Theft Scams
Clever:

I'm going to tell you exactly how someone can trick you into thinking
they're your friend. Now, before you send me hate mail for revealing
this deep, dark secret, let me assure you that the scammers, crooks,
predators, stalkers and identity thieves are already aware of this
trick. It works only because the public is not aware of it. If you're
scamming someone, here's what you'd do:
Step 1: Request to be "friends" with a dozen strangers on MySpace. Let's
say half of them accept. Collect a list of all their friends.

Step 2: Go to Facebook and search for those six people. Let's say you
find four of them also on Facebook. Request to be their friends on
Facebook. All accept because you're already an established friend.

Step 3: Now compare the MySpace friends against the Facebook friends.
Generate a list of people that are on MySpace but are not on Facebook.
Grab the photos and profile data on those people from MySpace and use it
to create false but convincing profiles on Facebook. Send "friend"
requests to your victims on Facebook.

As a bonus, others who are friends of both your victims and your fake
self will contact you to be friends and, of course, you'll accept. In
fact, Facebook itself will suggest you as a friend to those people.

(Think about the trust factor here. For these secondary victims, they
not only feel they know you, but actually request "friend" status. They
sought you out.)

Step 4: Now, you're in business. You can ask things of these people that
only friends dare ask.

Like what? Lend me $500. When are you going out of town? Etc.

The author has no evidence that anyone has actually done this, but
certainly someone will do this sometime in the future.

We have seen attacks by people hijacking existing social networking

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 39 03/12/2010

accounts:

Rutberg was the victim of a new, targeted version of a very old scam --
the "Nigerian," or "419," ploy. The first reports of such scams emerged
back in November, part of a new trend in the computer underground --
rather than sending out millions of spam messages in the hopes of
trapping a tiny fractions of recipients, Web criminals are getting much
more personal in their attacks, using social networking sites and other
databases to make their story lines much more believable.
In Rutberg's case, criminals managed to steal his Facebook login
password, steal his Facebook identity, and change his page to make it
appear he was in trouble. Next, the criminals sent e-mails to dozens of
friends, begging them for help.

"Can you just get some money to us," the imposter implored to one of
Rutberg's friends. "I tried Amex and it's not going through. ... I'll
refund you as soon as am back home. Let me know please."

Posted on April 8, 2009 at 6:43 AM * 52 Comments * 14 Blog Reactions

To receive these entries once a month by e-mail, sign up for the
Crypto-Gram Newsletter.
Comments

Federated Access Control to Private Data
The scenario is quite simple: A new application wants to use
private user data in facebook to allow a better service to its users,
e.g. by showing to a user what his friends selected using the new
application. To this avail the application needs to get access to the
users data within facebook. A no-good solution of course is to ask
the user for her facebook login credentials (userid, password) and
store them for later use. The new application “impersonates” the
user in this case – and could do so any time later without the users
consent because the credentials are no longer a secret between the
user and just facebook.

Recognizing that 3rd party applications would in the end fall back
to such risky behavior most social sites realized that they need a
way to federate security between sites without publishing secret
credential information. Luckily such systems have been developed
already for federated e-business on the web (see e.g. the liberty
alliance proposal, SAML2 or the WS-Federation and WS-Trust
standards) and can be used between social applications as well. The
principle is rather simple: The original credential keeping site (e.g.
facebook) is used to perform an initial authentication of the user
and a token is generated for the third-party site. If the site needs
access to user data it presents the token and thereby proves to
facebook that it acts as an agent for the user. Of course the tokens
expire after a short time.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 40 03/12/2010

Technically so called federated security can be implemented in
different ways <<slide from book one security..>> and it relies on a
trust relation between the original site and the third party site. The
third party site trusts the original site with respect to authentication,
the original site accepts the third party as a user representative. The
user herself trusts both sites with respect to proper use of the access
right to private user data. The token generated during this process
could further restrict access to parts of the user data only.
Based on opened – an open standard for authentication on the web
– a new standard called openauth has been proposed to allow the
specification of access control rules in social sites.

A special case is where a user wants to authorize another user for
access to her data or parts of them. Here the generated token is not
handed over directly to an application of the same user but to a
different user altogether who might want to use it in various
applications. Again, the access rights behind such a token should
be limited in power and time.

Problems with Oauth:
http://blog.oauth.net/2009/04/22/acknowledgement-of-the-oauth-
security-issue/

De-Anonymization of Private Data
Social sites frequently sell anonymized user data. But it turned out
that with the help of correlation techniques a users identity can be
easily reconstructed from those anonymized data. <<example
papers>>

Reality Mining: http://www.heise.de/newsticker/Von-der-Idee-
zum-Geschaeft-Reality-Mining--/meldung/136644

Geo-location used for de-anonymization: (from [Schneier]
Counterpane newsletter June 2009.
Philippe Golle and Kurt Partridge of PARC have a cute paper on
the
anonymity of geo-location data. They analyze data from the U.S.
Census
and show that for the average person, knowing their approximate
home and
work locations -- to a block level -- identifies them uniquely.
Even if we look at the much coarser granularity of a census tract --
tracts correspond roughly to ZIP codes; there are on average 1,500
people per census tract -- for the average person, there are only
around
20 other people who share the same home and work location.
There's more:
5% of people are uniquely identified by their home and work
locations

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 41 03/12/2010

even if it is known only at the census tract level. One reason for
this
is that people who live and work in very different areas (say,
different
counties) are much more easily identifiable, as one might expect.

"On the Anonymity of Home/Work Location Pairs," by Philippe
Golle and
Kurt Partridge:

Abstract:
Many applications benefit from user location data, but location data
raises privacy concerns. Anonymization can protect privacy, but
identities can sometimes be inferred from supposedly anonymous
data.
This paper studies a new attack on the anonymity of location data.
We
show that if the approximate locations of an individual's home and
workplace can both be deduced from a location trace, then the
median
size of the individual's anonymity set in the U.S. working
population is
1, 21 and 34,980, for locations known at the granularity of a census
block, census track and county respectively. The location data of
people
who live and work in different regions can be re-identified even
more
easily. Our results show that the threat of re-identification for
location data is much greater when the individual's home and work
locations can both be deduced from the data. To preserve
anonymity, we
offer guidance for obfuscating location traces before they are
disclosed.

This is all very troubling, given the number of location-based
services
springing up and the number of databases that are collecting
location
data.

Identity Spoofing in Social Networks
Recently some scenarios for the old “Nigerian attack” have been
studied in social networks. In this attack an attacker impersonates a
friend of the victim and tricks the victim into sending money e.g.
via western union to some drop where it will be collected by the
attacker.

The attack is made easier by the huge amount of private
information that is made public in social networks. The first

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 42 03/12/2010

diagram below shows an attacker Y creating fake accounts in a
social network and sending friend requests to existing users there.
Some will blindly accept those requests and thereby expose their
social graph to the attacker. The attacker will record the graph and
move over to a different social network.

Social Network

A

Y

X

Y joins network
as X and asks A,
B for friend
relation

B

I am
friend!I am

friend!

A

X
D

friend

E

C

After being accepted by A as a friend
(some users will accept anybody to bump
their friend count), A‘s friend network
becomes visible to X. X records the
network and in the next step compares it
with a different social network which he
also joined and where A will most likely
also accept him as a friend (he did it
already once..).

On this second social network the attacker will also have a
registration as X and he will send friend requests to A and A’s
friends which will most likely accept him as they did in the first
social network already. X will again record the social graph around
A and create a diff between both graphs. Users in one network but
not in the other are now especially interesting to X. The attacker
will create exactly those accounts in the network where they did
not exist yet, copy real private data and pictures from those users in
the other network over to the new accounts and create plausible
identities by doing so. A and his friends will probably believe that
those new accounts are also driven by their friends in the other
network and not notice that they are really controlled by X.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 43 03/12/2010

A

X
D

friend

E

In the new social network X also
becomes friend with A and records
the social network of A. He notices
that C is missing. X creates C and
uses C-private data from the other
network to build a plausible persona
(pictures, story, profile data).

A

X
D

friend

E

CNo C???

Created by X

Network tells A
about new C

The last step is for X
impersonating C to send A a
message about an emergency
and A should send money to
some western union spot
somewhere („nigerian attack“).
A thinks C is „his“ C from the
first network but C is really a
fake identity created by the
attacker

Finally X will send an urgent message from one of the controlled
accounts to A pretending an emergency and asking for money to be
sent. In one case reported by a Microsoft employee there was a
damage of $1200 done.

Don’t be too quick in dismissing this attack as being too far
fetched. What would be the message that would make YOU act
(perhaps with a bad feeling but still..). What if your other social
network told you that C really is in London right now where you
should send the money too because your dear American colleague
has become a victim of European criminals? What if it involves
family? What if it involves a technically challenged mother who
just lost her husband and now needs help from her son? This is
very specific but exactly this very specific type of information is
sent by your social network to numerous people all over the world.
In essence the social networks make the gathering of intelligence as
a pre-requisite of trust establishment much easier. The mechanisms
and patterns have been described by Kevin Mitnick in “The Art of
Deception”.

Scams
Is security of social networks really a technical problem? The post
by Chris Walters about the impossibility of selling a laptop on ebay
nowadays points to a very difficult relation between technical
means and improved scams: does paypal make things really safer
for buyers or sellers? Is the option to welch on a won auction really
an improvement for ebay? (real auctions are non-revokable and
cash-based).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 44 03/12/2010

http://consumerist.com/5007790/its-now-completely-impossible-
to-sell-a-laptop-on-ebay

The post also shows some clever tactics by paypal to fight scams.
What could ebay do to help people who had their account misused?
What could they do to warn potential clients when e.g. suddenly
addresses are changed? Does a changed address affect social
reputation? What if the new address is in Nigeria?

Bootstrapping a large community
<<what is needed to build a large community? Patterns? Financials? Effect
of chaotic influences on early starters == small wins turn into huge
benefits. Small differences give a headstart with the network effect
amplifying the wins.>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 45 03/12/2010

Part II: Distributed Systems

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 46 03/12/2010

Basics of Distributed Computing Systems

It is now about time to go one level deeper and take a look at the distributed
computing technologies, infrastructures and applications that run all these social
networks, communities and sites. We will do this in the form of a short history of
distributed computing with its major achievements and mistakes. The goal is to
allow the reader to understand the future possibilities but also the limitations of
distributed computing systems.

Remoteness, Concurrency and Interactions

Distributed systems are characterized by two qualitites: Concurrency and
remoteness. Taken together they allow interactivity and are responsible for
the decidedly non-deterministic, “alive” nature of distributed systems.

Concurrency leads to independent units communicating with each other.
This interaction creates a distributed algorithm which comes to life only
through the execution of local algorithms. In effect this means that
distributed systems are of an emergent quality – difficult to develop and
execute. But it also offers a positive quality: a chance to do more by using
many execution units, a chance to have a more robust system due to the
independence of the parts and possible redundancies. The price lies in
increased synchronization costs and in increased costs for redundancy. The
concurrency quality does not fit well with human programming abilities
due to its complexity. Think about the sequential nature of human
programs need to have to be understandable. A fundamental mismatch that
special types of software called middleware want to mitigate (see below).

Remoteness implies a different quality of communication with respect to
failure potential, speed, latency and throughput. Remoteness usually is
seen as a problem due to the failure potential it implies. The other side of
this coin is the possibility of several partners performing the same services
and thereby providing a level of redundancy that can be higher than in
non-distributed systems. It CAN be but usually will not because of the fact
that this – intrinsically required redundancy has high costs associated with
it. And this leads to the design of distributed applications without
redundancy which gave distributed systems the general impression of low
reliability associated with high costs.

Both, remoteness and concurrency form a third quality: computationally
independent agents which can communicate and collaborate towards
individual or common goals. It is this interactive quality that makes
distributed systems rather special: difficult, surprising and sometimes
creative.

Remoteness needs to be qualified even further: the topology of
communication paths is of extreme importance in a distributed system. It
decides whether the architecture is client-server, hierarchical or totally
distributed in a peer-to-peer manor.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 47 03/12/2010

And within the frame built by remoteness and concurrency, topology has a
major impact on performance, reliability and failures. And lastly upon the
distributed application as well because we will see a tight dependency of
application types and topology. A dependency probably much tighter than
the one between applications and the distributed middleware chosen –
which is itself dependent on the topology of communication.

An example: The last twenty years have seen the migration of
transactional applications from mainframes to distributed mid-range
systems. Only the database parts where frequently kept on mainframes.
This turned out to be a major administration, performance and reliability
problem because the midrange distributed systems could not really
perform the transactions at the required rates and reliability – but turned
out to be rather expensive.

The type of a transactional application requires a central point of storage
and control: concurrently accessed shared data with high business value
which are non-idempotent (cannot be repeated without creating logical
application errors). Trying to distribute this central point of control across
systems did not work (scale) well and today the largest companies in many
cases try to migrate applications back to mainframes – which have turned
into distributed systems themselves by now but with special technology to
mitigate the effects of concurrency and remoteness.

And take a look at the architecture of google. It is highly distributed and
seems to be doing well. But the different topology: a large number of
clients sending requests to a large number of linux hosts with the
individual host being selected at runtime and at random is made possible
by the type of application: a search engine which distributes requests to
different but roughly identical indexes. If a google machine dies (as many
of the supposedly 80000 machines will be doing during a day) a request
may be lost, run against a slightly outdated index etc. But so what? In the
worst case a client will repeat an unsuccessful request.

Choosing the proper topology for a distributed application is arguably the
most important step in its design. It requires an understanding of the
application needs with respect to latency, concurrency, scalability and
availability. This is true for transactional e-banking applications as well as
community sites, media services or massively multiplayer online games.

Another important question for distributed systems is what level of quality
should be achieved. In case of a system crash – should partners recognize
the crash or even suffer from it by being forced to redo requests? Or is a
transparent failover required? Chosing the wrong QOS gets really
expensive of error prone. And is it even possible to transparently continue
a request on a different machine independent of when and where exactly
the original request failed? (see Java cluster article by Wu). This requires a
completely transactional service implementation – a rare thing in web
applications.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 48 03/12/2010

When applications or even the lower technical layers of distributed
services called middleware do not match the characteristics of the problem
to the requirements of a distributed system we usually end up with slow
and unreliable applications.

Functions of distributed systems
The relation between distributed systems and media has not exactly been a
love affair. Actually many algorithms, techniques and even programming
models used in the distributed computing community do not fit at all to the
transport or manipulation of media, perhaps over unreliable open public
networks with unknown latencies etc. In the next chapter we will there
fore show the adaptations needed to support media handling. Right now
we give an overview of rather “classic” distributed computing and its
technical baseline.

At the lowest level of a distributed system itself the most important
function is to send and receive messages in a reliable way – with reliable
meaning “at most once” semantics in most cases: a request will not be
executed on the receiver side more than once, even if a sender did send it
twice (perhaps because a response from the server got lost). Without such
a failure detection logic which requires a message protocol with numbered
requests, acknowledgements and state keeping at the receiver side, we
would end up e.g. with orders executed several times and having goods
shipped several times to our home.

These messages can be sent synchronously or asynchronously (server
sends response some undetermined time later in a different request or no
response at all is expected).

On a higher level – when the distributed systems needs to perform real
application work – more functions are needed. The most popular ones are
functions to find things (which includes names and directories, helper
services like traders and brokers which mediate between requestors and
providers). There is a host of “finding” services available in the distributed
world, starting with the way hostnames are turned into real IP addresses
via the domain name system (DNS) over centralized services called
registries that keep information or objects (JNDI, X.500, LDAP) and
finally the distributed indexes of peer-to-peer overlay networks. Taking
this support for “findability” away from a distributed service has the same
effect as shutting down google on the distributed media level or getting rid
of white pages and phone registers in general.

Once things – which can be data or services (the ability to command
something) – are found, they need to be accessed. This requires a protocol
that allows transfer of data and or commands, including access control and
concurrency control. The first should prevent illegal access, the second
data corruption through concurrent modifications.

A sub-function of finding things is describing them so that they can be
found and understood and used. Traditionally this has been the field of
interface description languages which describe the data types and
commands of messages that will be understood by receivers. Lately this

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 49 03/12/2010

has been considerably extended. Description now includes all kinds of
meta-data describing the provided services so that customers can decide
whether and how to use the service. The role of meta-data, semantics and
ontologies will only increase in the future of distributed systems. Most of
these descriptions today are done in XML. On this level we see a major
difference to the distributed media level: Unlike people distributed
computing systems react very badly to slight changes to protocols or
structures used in the transport of messages or content. Most systems
cannot automatically adjust to changes in this area and this fact has led to
two different attituded towards those changes: either make the adjustments
quick and either because changes will always happen – or try to avoid
changes as much as possible using long term interface planning. No real
winner has been decided with respect to this question.

We have mentioned “coordination” already above when we talked about
the use of social network sites and communities to let people organize
themselves (the Obama election fight e.g.). Within distributed computing
systems we also have the need for coordination e.g. when a group of
systems needs to work towards a goal or if a group of systems needs to
learn the exact same outcome of something. In these cases we use voting
algorithms like the famous two-phase-commit to achieve transactional
qualities when we change data in several steps. Advanced algorithms use
replication and multicast messages extensively to make progress even in
case of individual failures in the group. [Birm].

There are many more functions needed in distributed systems like time
service or a service that provides a global ordering of events within the
system so that the causality of events can be respected. These functions are
intrinsic requirements in distributed systems. Most of them are a must
have for distributed applications (at different levels of quality of course).
Unfortunately creating those functions in the context of concurrency and
remoteness is hard and applications which try to implement those
functions spend most of their time with system-level problems. When this
mismatch between application programming and distributed functions was
recognized the term “middleware” was born.

Manifestation: Middleware and Programming Models

Before we dive into a short history of middleware and the associated
programming models we need to introduce two core terms: transparency
and request granularity. Transparency means that certain ugly side-effects
of distribution become invisible to the programmer – they become a “don’t
bother” entity. Request granularity is how the message transport protocol
in a distributed system is designed and especially used.
Both concepts have led to horrible mistakes in the history of distributed
computing. Overdoing transparency by promising that all effects of
distribution are hidden by clever middleware led programmers to believe
that things like latency, communication failures etc. do no longer exist.
The result were slow and buggy applications because no matter how much
middleware is put in place on communicating machines: it won’t bring
Munich closer to Rome…

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 50 03/12/2010

The same goes for request granularity. The decision about how big
messages should be, how frequent and possibly asynchronous they should
be is a function of the application design, the bandwidth available, the
machine and network latencies, the reliability of all involved components
etc. Traditionally distributed computing applications within organizations
have tended to a rather fine-granular message structure and frequency –
thereby mimicking the classical sequential and local computing model of
programming languages. Internet-savvy distributed applications have on
the other side always favored a more coarse grained message model. This
can be seen in the ftp protocol and especially in the document centric
design of the WWW and its http protocol. (see below REST architecture).
If there is one lesson to be learned it is that no matter how clever
middleware and programming model are, they cannot and probably should
not hide the realities of distributed systems completely. Every middleware
makes some assumptions and in most cases those assumptions cannot be
circumvented e.g. by a different design of interfaces and messages by the
application programmer: You can use a CORBA system for “data
schlepping” but it will never be as efficient as e.g. ftp for that purpose.

Middleware is system-level software that was supposed to shield
application programmers from the nitty-gritty details of distributed
programming. But there is a large range of possibilities: from simple
helper functions to send messages to completely hiding the fact that a
function or method call was in fact a remote message to a remote system.

Over the time this transparency became more and more supported and
developers of distributed system middleware decided to make concurrency
and remoteness disappear completely from an application programmers
list of programming constructs. Did regular programming languages
contain special commands for distributed functions? No – so why should a
programmer be forced to deals with these problems?

The concept of hiding remoteness and concurrency started with remote
procedure calls. A regular function call got split into two parts: a client
side proxy function which took the arguments, packaged them into a
message and sent the message to some server. And a server side stub
function which unpacked (un-marshalled) the arguments and called a local
function to perform the requested processing. The necessary glue-code to
package and ship command and arguments was mostly generated from a
so called interface definition and hidden within a library that would be
linked to client and server programs.

Programmers would no longer have to deal directly with concurrency or
remoteness. A function call would simply wait until the server would send
a response. The price being paid was that concurrency could no longer be
leveraged because the program behaved like a local one and waited for the
response to be ready. But this price was deemed acceptable.

The next steps where the introduction of OO technologies to even better
hide remoteness and concurrency behind the OO concept of interface and
implementation. Objects could also bundle functions better into

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 51 03/12/2010

namespaces and avoid name clashes. The proxy pattern allowed nearly
complete transparency of remote calls. Only in special exceptions a
programmer became aware of the methods being remotely executable.

Already at that stage some architects (like Jim Waldo of SUN) saw
problems behind the transparency dogma. He showed that the fact of
concurrency and remoteness cannot be completely kept from application
programmers and that the price to try this is too high. He showed e.g. the
difference in calling semantics between local methods (by reference) and
remote methods (by value) and that the respective functions should be
clearly different to avoid programmer confusion (e.g. mixing by value and
by reference semantics). He was surely right but may have missed to most
important mismatch anyway: No matter how clever a middleware tried to
hide the effects of concurrency and remoteness from programmers – it
could never make these qualities of distributed systems disappear: Bad
latency, confused servers etc. would still make a distributed system
BEHAVE differently. The dogma of transparency and its realization in
middleware caused many extremely slow distributed applications because
the programmers no longer realized that the effects of network latency etc.
would not disappear behind software interfaces.

But this was not the only problem that plagued distributed system
middleware. The resulting applications also proved to be rather brittle with
respect to changes in requirements which in turn caused frequent changes
in the interfaces. The fine grained concept of objects having many
methods turned out to be too fine grained for distributed systems. The
consequences where rather brutal for many projects: Object models
created by object experts had to be completely re-engineered for use in
distributed systems. The resulting design featured components instead of
objects as the centerpieces of architecture: coarse grained software entities
featuring a stable interface for clients, hiding internal dependencies and
relationships completely from clients. Whole design patterns where
created to enforce this model of loose coupling, like façade and business
delegate in the case of J2EE.

These components where still pretty much compile-time entities, focused
at programmers to allow reuse and recombination into ever new
applications. Enterprise Java Beans technology kind of represents the
highest level of transparency and separation of context in this area.
Programmers do no longer deal with concerns like transactions, security,
concurrency and persistence. Components are customized through
configuration information written in XML.

This distributed technology always had scalability problems – even in the
protected and controlled environment of an intranet. The load on server
machines was huge as they had the task of keeping up the transparency
promise, e.g. by dynamically loading and unloading objects depending on
use and system load. Cluster technology was introduced to mitigate the
performance and reliability problems. Nevertheless – a globally visible
entity representing a business data object and running within transactions
always represents a bottleneck.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 52 03/12/2010

And a final example of mismatch between programming model and reality
is the topic of distributed transactions. The objective of distributed
transactions is to create the illusion of global serialization of actions within
a distributed system. This is usually achieved by defining a quorum on the
outcome of a global action – in other words a vote is taken by the
participants and the global action is either accepted or rejected (sometimes
all participants need to vote the same way, sometimes a majority is
enough). The result is that a number of updates to data on different
machines – which will necessarily take many messages and some time to
do - can be done “in one go” or atomically and therefore consistent with a
certain plan.

<<diagram dist.trans>>

But the performance costs and fragility of distributed transactions are
considered very high. Blocking or not-responsive nodes can prevent the
vote from terminating and a lot of bookkeeping is required. Some
algorithms though specialize in making progress evening case of single
node failures. Interested readers are pointed to the virtual synchrony
approach of Birman and others [Birm]. According to Pat Holland most
applications do not assume a mechanism for distributed transactions
[Holl], especially if they are dealing with extremely large scalability, e.g.
order items being spread across many machines due to their numbers.
What can we do in this case? Distributed transactions are convenient but
do not scale or lead to availability problems because of their locks.
Holland shows a typical pattern to be used in this case: the application and
the application programmer needs to take over some of the responsibility
for global serialization. There is no longer a mechanism for global
serialization available, instead, the items to be changed are explicitly
represented as entities within the business logic and pushed to the
application level. Now global consistency is a question of arranging the
proper workflow to achieve it. We will present Hollands solution in more
detail in the section on adaptations of distributed systems.

Theoretical Underpinnings
A few theoretical considerations have turned out to be of essential
importance to large-scale system design. They are in no specific order:
- failure is the norm, membership detection critical
- consistency and availability are trade-offs (Brewers’s conjecture, CAP
Theorem)
- forward processing is essential
- end-to-end argument
- ways to reach consensus, vector clocks
- adaptability

The large number of components used causes repeated failures, crashes
and replacements of infrastructure. This raises a couple of questions like
how we detect failures and how algorithms deal with them. We need to
bootstrap new components quickly but without disruption to existing
processes. We need to distribute load quickly if one path turns out to be

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 53 03/12/2010

dead. But the hardest question of all is: when do we have a failute in a
distributed infrastructure? The short answer to this question is: we can’t
detect it in a distributed system with purely asynchronous communication.
There is no clock in those systems and therefore we cannot distinguish e.g.
a network partition from a crashed server/process/application. This is what
is meant by “The Impossibility of Asynchronous Consensus”, the famous
Fischer-Lynch-Paterson Theorem. A good explanation of its value and
limitations can be found in [Birman] pg. 294ff. The longer answer is that
real systems usually have real-time clocks and they use algorithms to keep
clock-drift between nodes under control. This allows them to define a
message as “lost” and take action, e.g. reconfiguring dynamically into a
new group of nodes. This allows progress to be made even in the presence
of a network partition or server crash.

Probably the one theorem with the biggest impact on large-scale systems
is “Brewer’s conjecture”, also called the CAP Theorem [Gilbert. It simply
states that we can have only two of the following three: consistent data,
available data, network partitions at the same time. The reasons for this
leads straight back to the discusson of failure detection in the
asynchronous computing model: consensus is based on membership
detection and this is again based on failure detection. The practical
consequences are nowadays reflected in architectures like Amazone’s
Dynamo eventually consistent key/value store. Here the designers have
chosen to favor availability over consistency (within limits) and use
algorithms that achieve eventual consistency (background updates, gossip
distribution etc.)
The effects of eventual consistency can be somehow limited and we will
discuss techniques to achieve this in the chapter on scale-agnostic
algorithms, specifically optimistic replication strategies. An interesting
feature of such systems is to hand back data with a qualifier that says:
watch out, possibly stale. Or the possibility to hand back several versions
which were found during a read-request to the client and let it chose which
one it will use.

In many cases traditional algorithms tend to stop working in the presence
of failures. A two-phase commit based transaction needs to wait for the
coordinator to come up again to make further progress. There are a number
of algorithms available – especially from group communication based on
virtual synchrony – which allow processing to go forward even in case of
failures.
 <<some examples from birman and fbcast, cbcast, abcast, dynamic
uniformity discussion >>

The end-to-end argument in distributed systems leads back to our
discussion on transparency. It deals with the question of where to put
certain functionalities. If a designer puts them too low in a processing
stack (network stack), all applications on top of it need to carry the burden.
But of course they also get the benefits of a built-in service. Large-scale
systems need to use very special algorithms like eventually consistent
replication and therefore have a need to push some functions and decisions
higher up towards the application logic. Partitioning of data stores is

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 54 03/12/2010

another area which requires the application to know certain things about
the partitioning concept. Another good example is the question of
transparent replicas across a number of nodes. What if an application
distributes several copies of critical data in the hope of guaranteeing high-
availability but incidentially the storage system put all the replicas into
different VMs but on one big server? The application wants a largely
transparent view of the storage subsystem but there are other views which
need to know about real machines, real distribution etc. (in p2p systems
the so called “Sybil attack” shows exactly this problem).

Consensus is at the core of distributed processing. To achieve consistency
we need to have a group of nodes agree on something. It could be as basic
as the membership of this group. Or some arbitrary replicated data value.
Many different consensus protocols exist. Paxos e.g. is a quorum based,
static group communication protocol with totally ordered messages and a
dynamically uniform update behavior. In other words it is very reliable but
potentially rather slow as it is based on a request/reply pattern for
accessing the quorum members. [Birman] pg. 380. We will discuss Paxos
below. The google lock service “Chubby” is based on it. It is used to
implement what is called the “State-machine approach to distributed
systems”: The consensus protocol is used to build a replicated log on the
participating nodes which all nodes agree on. This means that nodes who
run the same software and receive the same commands in the same order
will end up in the same state. The commands received can be input to a
database which will be in the same state on all nodes after processing those
messages. More on the state-machine approach can be found at [Turner].

<<vector clocks and merkle trees>>

<<adaptability>>

Topologies and Communication Styles
The way participants in a distributed system are ordered and connected has a
major impact on the functions of the system. We will discuss a number of well-
known topologies and how they work.

Classic Client/Server Computing
Sound outdated, doesn’t it? Today we do Cloud Computing, not old
Client/Server stuff. Fact is: most of the new Web2.0 applications, the
Software-as-a-Service (SaaS) applications like the google office suite all
work in the client-server paradigma of distributed computing. It pays to
take a look at what this paradigm really means.
Client-server computing is deeply asymmetric because expectations,
assumptions, services and financial interests etc. all differ between clients
and servers. Let us sum up some of the differences. Traditionally clients
use services from servers. They have expectations of availability therefore.
Clients send information to servers which means that they have
expectations of security and privacy as well. Clients in most cases wait for
the results which means the server plays an integral part in the workload of
the client. And when there is a human being behind her “user agent” on the
client side it means a sharp limit for the response time on the server and
what a server can do during this time. Servers on the other hand cannot be

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 55 03/12/2010

run by everybody like clients. Running servers is more expensive and
requires more money.

But some things must have changed even in client-server computing?
When we use cloud computing as an example then we can say that the
servers certainly have gotten bigger. They turned into data centers
actually. Only data-centers where whole clusters of servers look like one
big machine to the clients can handle the traffic from millions of users
which use the cluster to store media, use services etc.

And something else changed which we will discuss in more detail in the
Web2.0 section: The many to one relation of classical client server (with
clients having individual relations to the server maintainer but not to other
clients) has become a many-to-many relation, perhaps not directly
connected like in certain peer-to-peer networks but mediated through the
cluster running the social community.

The Web Success Model
There is little doubt that the success model of the web is deeply rooted in
the client-server mode of its operation. This is documented in its transport
protocol http which operates asymmetric: clients start requests, servers
answer but cannot by themselves initiate a communication with a client.
And the success model of the web is deeply document or resource centric:
nouns instead of the uncountable verbs of fine-grained, local distributed
computing. This architecture has gotten the name REST which stands for
Representational State Transfer – a term coined by Roy Fielding, one of
the inventors of http and the web architecture. This architecture proved
extremely scalable. It is the architecture which distributes lots of media
around the world.

REST Architecture of the Web
What are the core characteristics of this architecture? Readers
interested in the details and historical context should read the
dissertation of Roy Fielding or his excerpt on just the REST
architecture. But we will use a short paper from Alex Rodriguez on
RESTful Web Servers which covers the basics []Rodr] and the
excellent article by [Sletten]. And a little hint: The difference
between REST and other ways of communicating between clients
and servers is more a question of style then of technological
platform. But this is true for many cases like the difference in
interfaces between a concurrent and a single-threaded application.
And sometimes a specific style fits an application area very well
and then becomes “best practice”.

Rodriguez defines four strands that make a servive RESTful:
- explicit use of http protocol in a CRUD like manner
- stateless design between client and server
- meaningful URIs which represent objects and their
relationships in the form of directory entries (mostly parent/child or
general/specific entity relations)
- use of XML or JSON as a transfer format and use of content
negotiation with mime types

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 56 03/12/2010

But in the end there is one principal difference between RESTful
architectures and e.g. RPC-like messages: REST is all about nouns,
not verbs. What does this mean? It means that the application
developers design the interfaces to their system using a concept of
nouns, documents or resources, not actions. Most distributed
applications that use Remote Procedure Call (RPC) technology
define a lot of actions that are offered on the server side: add(x,y),
calculateFrom(input1, input2), doX, doY(parameter) and so on.
There is an endless number of actions (messages or commands)
that can be defined.

RESTful applications define access to their systems around the
concept of nouns or things and what can be done with them. If you
think a little about this concept you will realize that the actions
around things are frequently rather limited and computer science
has given those actions a short name: CRUD. Create, Read,
Update, Delete is what is needed in dealing with things like
documents, records in databases etc. And the parameters to those
few actions are the name of the thing that it concerns (the URI of
the resource) and an optional body with additional information in
case of an update or create action. Doesn’t this look very much like
the good old Unix file API? It will do the job in many situations
nicely. But there are limits and to understand the limits of REST it
might be useful to take a look at the limits of the file API.
Everything is a file, or? While true in general Unix systems had
one important escape in case of problems with the limits of the file
API: the iocntrl system call. It could be seen as another way to
write to the resource – and it actually writes to it. But what it writes
are special commands, not data. This interface has seen much use
and abuse. It breaks compatibility with existing tools which do not
know about the intricacies of iocntrl (much like a generic client
does not understand special RPC methods provided by a server).
And it has been abused to provide additional writes of data etc. The
more the iocntrl interface is used the less of the generic file API is
usefull and there have been applications and driver software that
just used open, close and iocntrl to do the job. With an extremely
complex RPC interface hidden within the numerous parameters of
the iocntrl system call for that device. This type of design is
certainly not REST like.
The RESTful interface and communication style could be called
more abstract. It concentrates on the “what” instead of the “how”.
And it has some side-effects that make it extremely valuable in a
context that requires scalability and the help of intermediates, in
other words, the web.

How does this noun-centric style of communication fit to
Rodriguez four strands? When he says that explicit http should be
used for RESTlike services it is exactly the CRUD functionality

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 57 03/12/2010

that he demands. And http itself has very few actions that basically
map perfectly to a CRUD like communication style:
GET -> Read (idempotent, does not change server state)
POST –> Create resource on the server
PUT -> Update Resorce on the server
DELETE -> Delete Resource on server

A RESTful application that is true to this type of architecture will
not use GET for anything that changes state on the server. This is
actually quite an important property because crawlers etc. can rely
on GET requests being idempotent so that they do not accidentially
change state on a server.
A POST request should mention the parent URI in the URL and
add the information needed to create the child in the body.
Many frameworks for web applications did not understand the
importance of separating idempotent operations from state
changing operations. Instead, they foolishly folded most http
operations into a single service-method and thereby lost the
semantic difference. These frameworks allowed the definition of
endless numbers of actions per application. Struts is a good
example for the more action oriented thinking instead of a RESTful
architecture. The focus is on the actions, not on the resources.
Assembling an integrated page for a portal requires the assembler
to know lots of actions which will finally extract the bits and pieces
needed. In a RESTful architecture the assembler would use the
names of the resources needed (the URIs) directly. Again, a
different level of abstraction.

Is this separation of updates and reads something new? Not by far.
Bertrand Meyer of OO fame calls this a core principle of sound
software design and made it a requirement for his Eiffel
programming language. He calls it “”command-query separation
principle”:
“Commands do not return a result; queries may not change the
state – in other words they satisfy referential transparency” B.
Meyer, Software Architecture: Object Oriented Versus Functional
[Meyer]

Especially in the case of multithreaded applications referential
transparency – the ability to know exactly that a call does not
change state – makes understanding the system much easier. A few
more interesting words from Meyer:
”This rule excludes the all too common scheme of calling a
function to obtain a result and modify the state, which we guess is
the real source of dissatisfaction with imperative programming, far
more disturbing than the case of explicitly requesting a change
through a command and then requesting information through a
(side-effect free) query. The principle can also be stated as “Asking
a question should not change the answer”. [Meyer], pg. 328f.
The big advantage of separating changes from queries is that
queries now become the quality of mathematical functions – they

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 58 03/12/2010

will return always the same output for the same input, just like
functional languages work.

(Just a small thought on the side: is this really true? Let’s say I
have created a query for the price of a thing. This looks like a
idempotent, stateless method call at first sight. But what if a shop
receives many of those queries in a short time? Couldn’t the shop
be tempted to increase the price based on the interpretation of those
queries and increased interest?)

The principle of separating queries from changes is useful in
practice. Just imagine the fun when you find that during the
processing of a request several calls to databases are made
(transacted) and that you have to do an additional http/rpc like
request (not transacted) to a foreign server. It turns out that this
request is for looking whether a certain customer already exists
within the foreign server. And that this server will
AUTOMATICALLY add the user once it receives a query for a
user that is not yet in its database. This makes the code within your
request processor much more complicated as it forces you to do
compensating function calls in case something turns out wrong
later with this user or in case you just wanted to do a lookup.
Related to the question which method to chose for an operation is
the question of response codes, especially where the http protocol
is used. Badly designed response codes can make it very hard for
an application to figure out what went wrong. Image the following
scenario taken from a large scale enterprise search project: The
search engine’s crawler repeatedly crawls a site for new or changed
articles. The site itself has the following policy regarding deleted
articles: A request for a deleted article is redirected to a page which
tells the user that this article is no longer available. This
information itself is returned with a 200 OK status code which tells
the crawler that everything is OK. The crawler will not be able to
learn that the original page has been deleted. Only a human being
reading the content of the response will realize it.

Here is a short list of status codes and their use, taken from Kris
Jordan, towards RESTful PHP – 5 basic tips
[Jordan_RESTfulPHP]

201 Created is used when a new resource has been created. It
should include a Location header which specifies the URL for the
resource (i.e. books/1). The inclusion of a location header does not
automatically forward the client to the resource, rather, 201
Created responses should include an entity (message body) which
lists the location of the resource.
202 Accepted allows the server to tell the client “yeah, we heard
your order, we’ll get to it soon.” Think the Twitter API on a busy
day. Where 201 Created implies the resource has been created
before a response returns, 202 Accepted implies the request is ok
and in a queue somewhere.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 59 03/12/2010

304 Not Modified in conjunction with caching and conditional
GET requests (requests with If-Modified-Since / If-None-Match
headers) allows web applications to say “the content hasn’t
changed, continue using the cached version” without having to re-
render and send the cached content down the pipe.
401 Unauthorized should be used when attempting to access a
resource which requires authentication credentials the request
does not carry. This is used in conjunction with www-
authentication.
500 Internal Server Error is better than OK when your PHP script
dies or reaches an exception.
Kris Jordan, http://queue.acm.org/detail.cfm?id=1508221 see also
Joe Gregorio, How to Create A REST Protocol,
http://www.xml.com/pub/a/2004/12/01/restful-web.html
The second strand is stateless design. From the beginning of
distributed systems the question of state on the server has been
discussed many times over and over. And it is clear: forcing the
server to keep state (to remember things about clients between calls
from the clients) put the server at risk of resource exhaustion and
performance problems, not to mention the failover problems in
case of server crashes. But the discussion about distributed
communication protocols has shown that sometimes state on a
server just can’t be avoided to prevent duplicate execution or to
achieve transactional guarantees. But the most important thing to
remember is that the question of state can be heavily influenced by
the design of the communication between client and server.
Distributed object technology tried to put the handling of state right
in the middle of the architecture: after all, what are objects without
the ability to hold state? And they paid a heavy price for this
transparency in terms of performance and reliability as Enterprise
Java Beans are proof of.

RESTful applications try to design the interfaces independent from
each other and make the client hold state in between. The client
will then add this state to his next call so that the server has all the
information needed to process the request. Cookies are an ideal
mechanism for that. In case the cookie cannot hold the information
anymore at least the authorization part should still be kept there
which is according to Jordan the way Flickr works.
Bad interface: server.next()
Good interface: server.next(page 3)
And of course the server will generate a response page with links to
the next couple of pages.
We could now talk days and weeks about the problems of state in
distributed systems. State has been used to attack systems, state
needs to be tracked for performance reasons, state needs to be
replicated for failover reasons and so on. But it is best when you
can avoid the problems already at the design phase of your
distributed application.

“Speaking URIs” is the third strand of REST. This is not a simple
as it may sound. There are people who defined a URI as being

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 60 03/12/2010

“opaqe” in other words URIs should not encode any form of
meaning. All they should be is unique. REST goes a very different
way and asks you to encode your object model as a tree. Paths in
the tree denote different objects at different levels of hierarchy and
readers will be able to understand the path structure because it
represents object relations in your application.

And last but not least RESTful applications should use XML or the
JSON (Javascript object notation) format to transfer responses (and
there should always be a response generated, even if the client asks
for a partial URL only).

Today most web services offered follow the REST architectural
style because it turned out to be the simplest one with the best
performance. And by a happy coincidence RESTlike architectures
seem to fit nicely into the new world of Web2.0 applications which
we will investigate next. And afterwards we will look at the
competition: Web-services based on XML, SOAP, WSDL and the
SOA concept.

Web2.0 and beyond
There have been endless books and articles on Web2.0 and
associated technologies like AJAX (e.g. “AJAX in der Praxis by
Kai Jäger) and at the computer science and media faculty at HDM
we have been early and strong adopters of this trend. Many
community applications built with traditional or new languages
(Ruby on Rails etc.) have been built during the last couple of years,
accompanied by a stream of Web2.0 oriented special interest days.
We will concentrate here only on some vital characteristics of
Web2.0 as described by Till Issler [Issl]. The following diagram is
taken with permission from his thesis:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 61 03/12/2010

It shows two important aspects of Web2.0. First it describes the
development on the web after the crash of the dotcom bubble till
today. And secondly it shows the first major characteristic of
Web2.0: its dependence on bandwidth – in other words: broadband
technology being available on a large scale at moderate prices.
There would be no XouTube, no Flickr, no Facebook or StudiVZ,
no Itunes etc. with only modem connections being available.

Lets list the major Web2.0 characteristics according to [Issl]:
- Availability of broadband connectivity
- The Web as a platform
- Web Services
- Users as active participants
- User generated content
- Collective intelligence

This list does not sound overly technical. Yes, the increasing
bandwidth was necessary to carry media of all kinds in reasonable
time and latency but the rest is more of a change in use and attitude
than due to a breakthrough technology. One technology is
frequently mentioned as THE Web2.0 technology. It is
Asynchronous Javascript with XML or shortly AJAX. It consists of
two major changes. The first change was to the communication
protocol between client and server. Up to AJAX a client needing
information did a request to some server and the result was a new
page delivered by the server. There was no reasonable way to
incrementally pull bits and pieces of information from a server and
update the display accordingly. The famous XMLHttpRequest
Object added to the browsers allowed Javascript code running on

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 62 03/12/2010

the client to transparently and asynchronously pull information
fragments from the server and update the screen in the background.

The result was a major increase in usability especially in web
shops. Previously users had to input both zip code and city name
because using the zip code to run a query on the server for the city
name would have been a costly synchronous roundtrip resulting in
a new page and thereby disrupting the user experience. Now even
single keystrokes could be secretly sent to the server who used
them to guess the word the user wanted to type (This has serious
security implications because it changed the semantics of the page
based communication style. Previously the user would have been
forced to “submit” a page to send it to the server. Now client code
running in the background could contact other servers (like google
maps) to create so called mashups – mixes of information from
different servers. Again in many cases a borderline or even clear
violation of browser security but nevertheless extremely useful.

And this brings us to the second change caused by AJAX: the
client platform (aka browser) became a powerful computing
platform ready to run major source code (mostly javascript). This
meant that some processing could be moved from the server back
to the client. Remember, the good old client/server communication
model always put a lot of strain on the server which could now be
relieved a bit. On the other hand totally new functions were now
possible e.g. the aggregation of information on the client and from
different sources.

At the same time, and perhaps enabled by technologies like AJAX,
the web turned into a computing platform itself. Things that
required a fat client program previously are now being offered on
the web. During this time the web also changed from an
information gathering platform into an active application and
service platform. This trend is far from being over: The webtop
movement turned into things like Software-as-a-Service (SaaS)
with google e.g. offering a complete office suite running on the
web and Cloud Computing where more and more users store their
date on some server on the web or use its services.

Web services in general became independent and composable,
resulting in the previously mentioned “mashups”. Applications
using different services from different providers. The typical
example is a chain of stores enhancing their location finder with
information from google maps.

It does not really matter whether those web services are
implemented using RESTlike architectures or based on SOAP and
XML/WSDL. It is only important that these services are available
(round the clock) and that they are easily integrated into ones own
applications.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 63 03/12/2010

User behavior changed considerably during those years. The
number of internet users increased and we saw the birth of the
“online family”. Families spending several hours a day connected
and communicating with each other via instant messaging and chat.
E-mail became the sign of the older generations. Users also became
much more active (we talked about it in the first chapter) and this
led to an increase in user generated content. Sites liked LinkedIn or
Xing basically provide a platform that is then filled by users. And
so are many others like YouTube, Flickr etc. Users generate
content and by doing so generate metadata, so called “attentional
meta-data”. This is data derived from their behavior and it is the
base of what we call “collective intelligence” today. It is
intelligence derived from collective actions of users. One example
is the tagging of things and thereby creating a classification
automatically and for free. This classification has the additional
advantage of being free from hierarchical control and authority as
is usually the case with ontologies. It was Clay Shirky who coined
the term “folksonomies” for this type of classification.

So far the list of Web2.0 features taken from [Issl] with some
comments and add-ons. The WebX.0 trend is far from being over.
We are now seeing more 3-D interfaces which we will discuss later
in the chapter on virtual worlds.

Web-Services and SOA

While component models where at the height of the time, a
separate development seemed to take distributed systems back into
the past technologies: Webservices – a technology based on XML
messages shipped mostly via http started to become popular. Their
design wanted to follow the architecture of the web: loosely
couples services communicating via textual messages. No objects
on the wire and therefore much less responsibility for the partners.
And of course much less transparency as clients and servers where
fully aware of the fact that they where communicating with remote
systems using data copies as messages.

But the design did not completely follow the web principles: The
web did not only operate stateless in many cases. The web uses
http which provides only a few basic functions to send and receive
documents – very much unlike traditional RPC models. It does not
promise many other things as well: no transactions, no multi-party
security, no guaranteed availability etc. And last but not least the
web had a human being in its architecture as well: the person
operating the user agent software. In other words: somebody
bringing semantic understanding into the whole game – something
webservices could not assume because they intended to provide
collaboration between machines in the first place.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 64 03/12/2010

Initially webservices seemed to follow the Remote Procedure Call
model of fine grained functions. Soon it became clear that this
approach could work in a highly protected intranet with guaranteed
response times but would raise a problem on the much less reliable
internet. The communication style soon become more “REST”-
like, using simple functions like http get and post to transfer
document like data structures in XML. This scaled much better.

One of the most interesting concepts of web services was the
automatic service discovery using a common repository called
UDDI. Service providers would register their servcies in UDDI
where clients would find them. Clients would use meta-data to
understand and use those services. The services where described in
WSDL – pretty much the same concept as an interface definition
language (IDL) but written in XML.

UDDI was a major flop – simply because services described in
XML does not imply that machine-requestors would
UNDERSTAND those XML descriptions. UDDI ran into a major
semantic problem of different terms and languages used to describe
services.

The web services concept produced more and more specifications
in the area of security, transactions and federation but it took an
integrating concept to finally turn this soup of standards into an
architecture: Service Oriented Architectures (SOA). Web services
always raised the question of why they where needed. They did not
really create any kind of new technology. Instead, they replicated
old distributed computing concepts using a new terminology.

The SOA concept finally brought a breakthrough: It represents a
top down architecture based on the notion of processes instead of
objects or components. Processes use services to achieve their
goals. The services are largely independent following the “loosely
coupled” paradigm of web services. To be useful a service must be
LIVE. This put the pressure no longer so much on development but
on the runtime systems of distributed applications. A mission
critical service must be available or a large number of business
processes can be affected.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 65 03/12/2010

SOA Design

This diagram is modelled after O.Zimmermann et.al. „Elements of a Service-
Oriented Analysis and Design“ (see resources). The paper also shows nicely how
flow oriented a SOA really is and that a class diagram does not catch the essence of
SOA. A state-diagram performs much better. The authors also note that SOA is
process and not use-case driven design.

Business
Object

Service

Component

Business
Object

Service

Component

Business
Service

Choreography

But what does “loosely coupled” really mean? Lets discuss this
promise in terms of transactions, security and semantics. But first
take a look at what the web does in those cases. There are no
transactions on the web and especially no distributed transactions.
By not providing these promises the web architecture becomes
easy and scales well in an unreliable environment. Security is
based on point-to-point relations with SSL as the mechanism of
choice and does not allow multi-party relations easily. And
semantics still rely on humans or specifications but largely escape
machine interpretation.

In traditional distributed systems transactions, just like security, are
context based. A context flows between calls and represents a
transactional call or an authentication state. A distributed
transaction would lock many objects in the distributed system.
It was clear that the topology and QOS of the Internet made a
different architecture necessary than on the intranet. Transactions
e.g. could not use the locking based model of a two phase commit.
Instead, partners cooperating on the internet need to rely on
compensating functions in case of problems. But compensation is
fundamentally a different business concept too: the system no
longer tries to hide the fact that it is a distributed system. Instead, it
makes some problems visible to the business to solve.
Collaborating companies need to create a common security
context, either through the use of central authorities (which does
not fit well to the concept of loose coupling) or through federation.
In any case intermediates may need to process those messages and
add value to them. This means they have to sign their parts to make
partners trust the information. SSL does not allow this kind of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 66 03/12/2010

collaborative document editing and webservices had to switch over
to message based security (signatures and encryption of messages
instead of using trusted channels)

The last problem: semantic, seems to be the hardest to solve.
Cooperating services and organizations desperately need to be able
to understand each other. But not in the way of the old wire
protocol specifications which use tokens within the protocol whose
meaning is caught in specifications. Instead, dynamically
collaborating services need to discover meaning dynamically using
e.g. ontology languages. Security assertions are one example where
this would be needed.

Taken together “loosely coupled” can now be defined as:
- giving up on some transparency (like atomic distributed
transactions) by bringing potential problems to the attention of
higher instances (e.g. business with compensating functions)
- not using objects or object references on the wire
- keeping services largely independent of each other
- dynamically assemble services into larger processes through
business process composition
- Specifying security requirements either in common
languages (SAML) or using semantic technlogies like ontologies to
make partners understand each other
- Share live services instead of software components
- Give services the necessary environment to work through
parameters (inversion of control)
- Model required and provided services for every service to
allow reliable composition of larger processes.

The question of service resolution, i.e. how one service finds
another one without creating a tight coupling is usually solved with
the introduction of an Enterprise Service Bus (ESB) which takes
over routing of requests.

<<ESB>>

But even with the introduction of an ESB, SOA can still mean a lot
of hidden coupling. Services know when to call another service,
what to call and especially what to expect from a service. Taken
together this interaction mode is synchronous and stack oriented
and a far cry from real de-coupling like in an event-based system.
We will investigate different interaction modes below.

Never before SOA has distributed computing been closer to
business concepts. Business thinks in process terms, not objects – a
misunderstanding that took many years to get resolved.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 67 03/12/2010

This new software concept for distributed systems certainly takes
into account the problems of services on unreliable and possibly
slow internet connections – but it cannot completely mask them –
nor does it try to do so. In a way this approach has existed for many
years in distributed computing in the form of message oriented
middleware which is closely related to the message oriented
architecture of SOA. And it is still not without major problems as
“The Generic SOA Failure Letter” by Mark Little demonstrates
[Little].

But SOA may not even be the final answer to the problem of loose
coupling. Simply knowing services and having them encoded into
the control flow of applications and components makes them less
suitable for arbitrary assembly into new designs. The answer here
lies in the separation of another concern: interaction needs to be
separated from computation. This is typically done in event-based
distributed systems. Unlike the classic client/server paradigm of
synchronous request and reply these systems separate participants
to such a degree that they do no longer know about each other.
Even worse: they do not expect other components to exist at all. In
the best case they are written as autonomous components. Below
we will discuss some of the qualities of event-driven systems.

Peer networks
We are leaving now the classic client/server topology which is not only the
dominant model on the web but also in most other business related
processes. These processes typically require central and atomic control
over transactions. Once certain transaction numbers are exceeded or the
processes are highly critical e.g. because of the money involved the server
is frequently running on a mainframe type system. All the core business
logic runs on the central system and the same goes for all transactions.
This is not necessarily so but in most cases a central large server cluster
(called a Sysplex in IBM lingo) is ideal for this type of communication.
The concept of distributed transactions has been developed in the
midrange system area but due to performance and reliability problems
never became a dominant model.
When we now move to a different topology for distributed systems we will
see that this will also change the kind of applications and processes we
will run. Different topologies favour different kinds of applications.

Distributed systems with a business purpose mostly followed either client-
server or hierarchical architectures but in academic research and now
already in the consumer world a different distributed systems technology
dominates today: Peer-To-Peer systems embrace millions of small home
PCs and tie them into one distributed system. The P2P systems range from
topologies which still use some kind of central server over hybrid systems
where nodes can change roles dynamically to totally distributed systems
without higher organisation.
<<slide on topologies of p2p>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 68 03/12/2010

All these topologies have different characteristics and there are some
dependencies between the degree of equality in P2P systems (e.g. all PCs
run the same code and perform the same functions or there are some PCs
which perform a dedicated function like keeping an index or other meta-
data) and the way the system will perform or behave in case of crashes or
attacks on single PCs. The higher the degree of equality, the more robust
the P2P system will behave in case of attacks on single nodes. But at the
same time its efficience e.g. with respect to finding things will be lower
and communication overhead will be higher.

Extensive research has been done on those systems and today the hybrid
approach seems to be the most popular one. Some kind of special
functions and services seems to be needed especially to locate services or
documents with acceptable performance. Those functions will be
performed by special nodes. But every node can theoretically change into
one of those special function nodes if needed. This separates the important
meta-data function from a specific host. Otherwise when a special,
dedicated node is shut down (e.g. for legal reasons) the whole system stops
working or becomes inefficient. The use of the meta-data e.g. to download
a resource from a peer node usually happens in a direct peer-to-peer
connection between requester and provider of a resource. Napster was a
typical p2p system operating with a number of dedicated meta-data server
who were finally taken down by the courts even if none of these servers
served a single song directly to a client – ever.
It is interesting to see that like with community sites (remember the
Obama election site) there seems to be a balance necessary between
hierarchy and anarchy.

The topology and communication style of distributed systems has a huge
impact on the quality of service they can promise. There is less central
control in p2p systems and therefore those systems can make less promises
to their users. Routing tables are typically NOT updated in a guaranted
consistent way. Resources may exist in the p2p system but due to
segmentation or request aging may not be found. There are no guarantees
that a client will receive all parts of resources. Security is weak and billing
e.g. almost impossible. And the single machine which typically lives “at
the edge of the internet” as described by Andy Oram does not have a
stable IP address and may be powered down at any minute. But despite of
all these theoretical problems the sheer numbers of participants in P2P
systems makes it likely that there is enough compute power, storage and
probably even content available.

So these systems – Kazaa, Edonkey, Emule, Bittorrent just to name a few
– have become the bane of the content producing industry. They work so
well that they became a threat to content producers which – instead of
considering these systems as new channels of distribution – see them as a
threat and started legal actions against them.

But peer-to-peer systems need not be restricted to file copying and sharing
applications. They can play a vital role in content production or
distribution of content as real-time streaming data as well. Even game

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 69 03/12/2010

platforms exist which are based on P2P technology and many companies
use these “overlay networks” to distribute updates to software, games etc.
Let’s take a look at how such a P2P network works and why they are
sometimes called “overlay networks”.

Distributed Hashtable Approaches

Many P2P systems use the concept of a distributed hashtable to assign
content (documents, media etc.) to machines. This is done through a two
layer API. One layer creates a storage layer which takes media and stores
them on specific machines. Which machines are used for storage is
decided on a lower layer which simply associates keys with machines.
This can be done by creating a distance functions between the key of a
document (which could be its hash value) and the hash value of an IP
address or better a uniqe name of a peer node.

This sounds straight forward but P2P systems need to solve another
problem: Their nodes typically change IP addresses at least every 24 hours
which means that the regular way of finding machines using the Domain
Name System does not work, at least not out of the box. P2P systems
therefore create an “Overlay” network. They assign unique identities
(stable) to machines and just assume that IP addresses are only temporary.
A clever bootstrapping process then allows new machines to announce
their presence and get integrated into the system.

Distributed Hash Tables (DHT)

For an overview of different DHT approaches compare CAN, CHORD and
e.g KADEMLIA. Look at how the routing algorithms deal with high rates of
peers leaving/entering the network. The advantage of a DHT lies in its simple
interface and location independence

get (key) returns IP address

put (key, value) --- get(key)
location independent
storage layer

ID – Host mapping
layer

Dokument Application

DHT approaches differ vastly in the way they perform, react on changes to
the network through nodes coming and going, security and reliability etc.
Some p2p systems try to guarantee anonymity and protection from
censorship, others try to optimize storage reliability. Some try to account

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 70 03/12/2010

for optimizations for geography or speed (creating specialized sub-areas
within the peer network).
Many different communication channels can be used by peer clients and
the P2P software therefore tries to create some form of transparent
communication between peers – independent of the location and
communication abilities of those peers. Because the requirements of p2p
systems are the same in many cases frameworks have been developed to
provide assistance. A very popular example is the JXTA framework from
SUN (www.jxta.org) which provides an extensible software platform for
the creation of p2p services and appliatoins. The framework does provide
help in the case that clients behind firewalls need to communicate or need
to create connections between loosely available partners.

INTRANETINTRANET

Abstracting away the physical differences

INTERNET
DNS

INTERNET
DNS

Nodes on the edge use all kinds of identities, naming and addressing modes. They
are disconnected frequently. They are behind firewalls with NAT. JXTA puts an
abstraction layer above the physical infrastructure that allows programmers to
program without worrying about the physical differences in latency etc.

ISP

ISP

mobile
phone

ISP

Fire
Wall

Peer
Peer

Endpoint Peer
Peer

Endpoint
Pipe

peer ID X peer ID Y

Peer
Endpoint

Jxta
Relay

Peers communicate initially by advertising their own existence and
features through so called advertisements – xml data – which are sent to so
called rendezvous servers. These rendezvous servers a specialized peers
which perform administrative task like storing advertisements or
communicating with other rendezvous servers. This means that a
superstructure is created on top of otherwise equal peers – A pattern that is
seen in many distributed systems and that is responsible for more efficient
communication and search between participants.

In general the working conditions of p2p systems are significantly less
reliable than tightly controlled and administered intranet software. JXTA
design reflects those problems and uses e.g. a loosely consistent tree
walking algorithm to locate and place content on specific machines. The
price to pay is the lack of guarantees that a specific content will be located
during a search. Again, this is a pattern frequently found in distributed
systems: reducing the service level guarantees makes some applications
impossible but allows new types of applications to show up. Those
applications would not have been possible under the heavy weight of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 71 03/12/2010

existing service level guarantees. A typical example in the web services
world would be whether all actions need to be transactional (can be rolled
back completely and automatically) or if it is OK to enter a second phase
of compensating actions in case one part of a complex transaction did not
go through. There are of course different business contracts behind the
different approaches.

The next slide shows how content is distributed in a way that makes
finding it more robust. Here the content is places on several hosts which
are somehow close to each other (defined by the distance function).

A loosely consistent tree-walker (Store)

The Rendevous peer R2 calculates the hash of the advertisement, applies the distance
function and finds R5 as best storage location for the indexed advertisement. It also
stores the content at „nearby“ hosts (hosts which are close to R5 in R2‘s routing table.
On a random base the rendevous peers exchange routing tables and detect dead hosts.
(See: „a loosely consistent DHT Rendevous Walker, B. Traversat et.al.)

R1

R5

R2

R3

R4

R5 is used to store the index
of the advertisement, R1 and
R4 serve as backups

put(Advertisement)

host list:

r1: hash

r3: hash

r4: hash

r5: hash

put(index)
put(index)

put(index)

If the content needs to be found and retrieved a tree-waling algorithm is
used. The closest node is calculated and the content retrieved from that
node. In case that node is unavailable or does not have the content the
search algorithm starts walking in both directions from the node and looks
for the content on nearby nodes. Hopefully the content will be found
somewhere in the neighborhood of the target node.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 72 03/12/2010

A loosely consistent tree-walker (Walking)

In case of a high churn rate the routing tables have changed a lot. In case a
query fails at one host the host will start a tree-walk in both directions (up and
down the ID space) and search for the requested content. This allows content
lookup even if the rendezvous peer structure changed beyond our initial
backup copies.

P2

R1

R7

R2 R3

R4

find(Advertisement)

host list:

r1: hash

r2: hash

r4: hash

r5: hash

r6: hash, r7:hash etc.

get(index)

P1

R6

R5

Bittorrent Example

The bane of the movie industry has one name: Bittorrent. This
content distribution network allows fast sharing of rather big
content (aka movies) in an efficient way. It uses a typical
architecture of meta-data servers (so called trackers) and download
servers (the peers). A person willing to share content creates a
torrent description and places it on a tracker. Here interested parties
can look for content and find the initial provider. Once the peers
start downloading from the initial provider the protocol makes sure
that machines that downloaded parts of the content are at the same
time functioning as download servers for those parts. This allows
extremely fast distribution of content. Critical phases are mostly
the startup phase (when everbody wants to connect to the initial
provider) and the end phase (when most requests have been
satisfied and the peers with complete copies lose interest in serving
it any more)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 73 03/12/2010

Bittorrent Architecture

Bittorrent relies on web services for finding torrents. It is a pure download
network. Mirrors do load-balancing. Trackers match peers and seeders
provide initial file upload.

Torrent
(tracker url, hash)

Torrent
link

SuprNova
Mirror

(website)

SuprNova
(website)

Torrent
(tracker url, hash)

SuprNova
Mirror

(website)

20 main

Moderators

1000 unattended

5000 moderated

check
content
integrity

authority to
upload
torrents

register new torrent

Torrent
(tracker url, hash)

Tracker
(uses BT
http based
protocol)

Torrent

downloader

Content (file)

seed

file fragments

downloader

find meta-
data

find
tracker

matching
peers

get file
fragme
nts

file fragments

downloaderupload
fragments

create seed

Special Hierarchies

Anonymity, friends, location, speed, security…
A good introduction to different approaches and to the general
concept of anonymity in P2P networks can be found in the thesis of
Marc Seeger [Seeg]. There concepts like darknets, mixes etc. are
discussed. For media people the concept behind so called
brightnets is perhaps the most interesting one as it mixes different
public media and distributes the result. At the receiving end the
original media can be reconstructed but the bits distributed are no
direct artwork and therefore not protected by copyright laws – at
least this is how the proponents of brightnets argue.

Idea: friends join a distributed streaming platform and organize
“evenings”. Each evening a different person of the group supplies
the music which is streamed to the distribution network and finally
to the friends. Is this a violation of copy right? The friends could
just as well come together physically in ones living room and
nobody could say anything about providing the music in this case.
An architecture like the media grid (see below) could be used for
p2p distribution of the streaming content.

Compute Grids

Within the lifecycle of digital media the point of creation and the point of
distribution both require huge computing power – fortunately not
permanently. The need for this computing power comes and goes,
depending e.g. on the 3-D rendering process of a computer animation or
the demand for specific media on various devices and locations.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 74 03/12/2010

Unfortunately getting the rights amount of compute power when it is
needed and only then (meaning we don’t want to pay for excess compute
power when we don’t need it) is a rather tough problem. Energy providers
have built a huge distributed computing and energy providing
infrastructure to deal exactly with this type of problem – e.g. during the
breaks of world championship competitions when literally billions of
people of suddenly use energy by cooking something.

Compute Grids are supposed to solve exactly this type of problem by
providing on demand compute power when it is needed. Owners of data
centers on the other hand can sell their excess resources which would
otherwise just sit around and idle.

It is not easy to distinguish compute grids from peer networks as in both
cases machines can play producer and consumer roles for information. The
most important difference seems to be the Quality of Sevice that is
provided, i.e. the promises that are made for users of those architectures.
Compute GRIDs typically are well administered conglomerations of hard
and software which provide a service for money. This implies several
layers of software for administrative puposes and a strong security
foundation. Billing is e.g. a concept that is not found in most peer-to-peer
systems. Security based on reputation systems is on the other hand a
typical feature of peer networks.

Virtual Organization Diagram.

Todays GRIDs are based on Web Services Standards for communication
and security. A typical platform for GRID computing is the open
GLOBUS project. GRIDs try to hide the complex internals and
administration from the user who might want to process certain scientific
data but who is probably not interested in where this computation really
happens – as long as it is safe, fast and not expensive.

For the processing of media this view of a GRID hold true but when it
comes to the distribution and delivery aspect of media the internal
architecture of a GRID may become more visible. We will see a nice
example of this during the discussion of the MediaGrid architecture below.

<<media grid >>.
The idea of compute grids is not new to media processing: Visualization
software like 3DSMax is able to use pools of inexpensive hardware for
rendering purposes. Agents installed on those machines receive processing
requests and perform partial rendering of images. But this simple reversed
client/server architecture (many servers, one client) is quite different to
what GRIDs can provide. In the first case of simple pools high-speed
networking and a controlled intranet environment make issues like security
and performance rather easy (besides dealing with complaints from users
of those rendering machines about bad performance because of the agents
eating too many cycles). A GRID cannot accept a bad QoS for other
participants, needs to keep audit data for billing and treat different tasks
separately with respect to security.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 75 03/12/2010

Event-Driven Application Architectures and Systems

The final topology and communication style presented here is rather new
and does not seem to be very relevant for media related processing. It is
the event-driven or event-based architecture for distributed systems and it
is used especially in upcoming areas of technology.

Applications of event-driven systems

• ambient intelligence, ubiquitous computing
(asynchronous events from sensors)

• Information distribution from news producers to
consumers (media-grid, bbc, stock brokers etc.)

• Monitoring (Systems, networks, intrusions) (complex
event detection in realtime)

• mobile systems with permanent re-configuration and
detection

• Enterprise Application Integration with ESB, MOM etc.
to avoid programmed point-to-point connectivity and
data transformations

Characteristics:

asynchronous communication, independently evolving sys tems,
dynamic re-configuration, many sources of information, different
formats and standards used,

The diagram says it all: Event-driven systems do have a strong focus on
asynchronous communication (senders do not wait for responses) that
leads to rather independently operating subsystems. The architecture
allows the connection between many sources and sinks of information
without tying them together. So we can say that the two main points of
event-driven systems are the de-coupling between participants and a very
easy and powerful way to use concurrent computing power without the
typical complexity associated e.g. with multithreaded systems. They
promise dynamic reconfiguration in case of changes, adaptation to changes
and a high scalability of the applications. And they are able to form data-
driven architectures operating in de-coupled pipeline modes.
We have already talked about the problems behind a classical client/server
communication. Besides performance problems there is another thing that
gives us headaches in those architectures: it is the high degree of coupling
between components. Components are software entities which operate on
nodes and which should be – at least in theory – composable to form new
applications and solutions. Fact is that this does rarely happen in practice.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 76 03/12/2010

Architectural Cold-Spots in Request/Reply Systems

client server

request

response

Performance?

Knows service, must
locate server, waits
for response, polls
service, control flow
includes service call,
Synchronous vs
asynchr. call?

Control flow encoded in applications. Makes composition of
application components very hard. Compare with separation of
concerns in EJB. Calling a service becomes a (separate) concern!
(see Mühl et.al,)

The reason for the lack of flexibility lies deep within the components and
works on several layers, from communication style up to the semantics of
the component itself. The list below mentions some of those problems.
Please note that by simply calling a service a component ties itself in
several ways to the service – an effect that became visible even in the early
CORBA architecture which was a service architecture at its core. That was
the reason later frameworks like EJB tried to hide the service calls within
the framework itself and keep them out of the business logic of the
components.

Coupling revisited: the causes

• Components have references to other components

• Components expect things from others (function call
pattern) at a certain time

• Components know types of other components

• Components know services exist and when and how
to call them

• Components use a call stack to track processing

• Components wait for other components to answer
them

Coupling is deeply rooted in the architecture of language s and
applications!

The event-based distributed architecture is radically different to
synchronous client-server types. Components do not know each other and
they do not share data in any way. Not sharing means that once a
component works on data those data a local to the component and nobody

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 77 03/12/2010

else has any access to them. Once done, the component can publish results
and other components can start working on those. This is called a data-
flow architecture because it is the availability of data itself that controls
the processing. Because components do not work concurrently on the
same data there is no need for locking or exclusion and the processing
becomes simple and reliable.

Event-based architectural style

• Components are designed to work autonomously

• Components do not know each other

• Components publish/receive events

• Components send/receive events asynchronously

• Some sort of middleware (bus, mom etc.) mediates
the events between components

• Due to few mutual assumptions components can be
assembled into larger designs

Sounds a lot like integrated circuits!

It is a violation of event-driven architecture to encode sender/receiver
information in messages. This adds coupling between components. And
publishing a message with the expectation of getting a kind of response
message simply tries to look like independent event processing but
actually is simply a form of synchronous request/reply style with strong
coupling: the sender of the requests NEEDS the response message which
makes it clearly dependent on some other component.
Security in those systems is problematic as well. PKI e.g. requires the
sender to know the receiver so that messages could be encrypted using the
public key of the receiver. But this is clearly a violation of the de-coupling
principle. Even digital signatures of messages from senders break this
principle. In many event-driven systems administrative overlay networks
are then used to provide security e.g. by creating different scopes and
connectivity between components for security reasons. But the
components themselves are unaware of these restrictions. [Mühl].
How do event-driven systems work? There are many different
technologies available, from a simple mash that connects every participant
with each other and where every message is routed to every possible
receiver to systems that use subscriptions, advertisements and content-
based routing and the creation of so called scopes (topic areas) to optimize
message flow. Middleware separates application components from the task
of distributing and receiving the events.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 78 03/12/2010

Event-Architecture and Notification Implementation

component component

Notification Implementation, Communication Protocols

Pub/sub API Pub/sub API

Event level

plumbing

All combinations are possible: event architecture can re st on a weak,
directly connected implementation (e.g. traditional ob server
implementation in MVC) or request-reply architecture can use true
pub/sub notification mechanisms with full de-coupling)

The diagram below shows a middleware that connects several participating
nodes. There is middleware logic within each node and optional control
logic within the network itself. The core network members all route and
filter events to and from the participating client nodes.

Rebecca distributed notification middleware through
overlay network

C1

C2

C5

C4

C3

See: Mühl et.al. Pg. 21

Relevant communication types are shown below:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 79 03/12/2010

Interaction Models according to Mühl et.al.

Event-
based

Anonymous
Request/Reply

Indirect

callbackRequest/ReplyDirectAdressee

Producer
initiated

Consumer
initiated

Expecting an immediate „reply“ makes interaction logical ly synchronous
– NOT the fact that the implementation might be done through a
synchronous mechanism. This makes an architecture synch ronous by
implementation (like with naive implementations of the o bserver pattern).

There is no doubt that event-based distributed systems do have a lot of
potential for scalable, flexible and independent computing. But how
relevant are they for media processing? The principle of data-flow
processing in concurrently working units is e.g. used in graphic engines
for shading and texturing. The reason the graphic pipelines in modern
cards work so efficiently lies in the simplicity of the data-flow
architecture.
Media distribution could become a domain of event-based systems with
agents waiting for content to arrive, process (e.g. re-format) and republish
the content again.
But the core domain of event-based systems within media could be the
information aggregation area. Event-based systems can be used for so
called Complex-Event-Processing (CEP). Messages from components are
processed and turned into events. These events are then collected and
aggregated in a CEP system and new, higher-level events are generated.
These events can signify problems within the processing of an
infrastructure. Or they could represent content analysis which was
performed in real-time. Many data analysis systems work in an
offline/after-the-fact mode: data warehouses collect data and then start an
analytical process. Search engines collect data and create indexes and later
run queries against the data collections. But CEP systems can detect things
in real-time and also react on those in real-time.
For more on CEP see D. Luckham [Luck] or try the java CEP framework
jesper.

Distributed Communication and Agreement Protocols
Wikipedia:
Gossip protocols are just one class among many classes of networking
protocols. See also virtual synchrony, distributed state machines, Paxos
algorithm, database transactions. Each class contains tens or even
hundreds of protocols, differing in their details and performance properties
but similar at the level of the guarantees offered to users.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 80 03/12/2010

- group communication
- transactions
- agreement and consensus

Reliability, Availability, Scalability, Performance
(RASP)

Usually you only hear about these terms (sometimes called “-Ilities”) when things
go wrong. And they do go wrong on a daily base as news about crashed sites and
services demonstrate. So turned the announcement of the new European digital
library (www.europeana.org) into a disaster because the service was unable to
cope with the flash crowd gathering after the news published the announcement.
Web-shops are overrun and crash because a new product creates a high demand
like the new Blackberry did. [HeiseNews119307].
Its not only the web applications and services which have a RASP problem: On
26 June 2008, right in the middle of a Euro 2008 football game most TV stations
lost the signal due to a power failure at the IBC center at Vienna [Telegraph].
Broadcasters had paid around 800 Million Euro for the rights to UEFA and they
were not pleased about the interruption that lasted up to 18 minutes in some
countries. It looks like a failure in the uninterruptible power supply caused a
reboot of the sending equipment after power was lost for milliseconds only. There
was only one signal for all TV broadcast stations – a classic “Single-Point-Of-
Failure (SPOF)” [ViennaOnline]. And UEFA will have to pay damages.

And we have to remember the core quality of all SOA, Web2.0, MashUps,
Community Services and networks: They have to be up and running and available
at all times to be called SOA, Web2.0 etc.
The RAS terms all mean some degradation of the quality of service promised. But
this degradation need not be so spectacular as in server crashes due to flash
crowds. Degradation can come very slowly and still deadly for a website: visitors
still come to the site but they leave earlier than before. Why? Perhaps because the
site got slower and slower over time andit is just no longer fun to use it to
communicate with friends. This in turn means that an important aspect of the RAS
terms lies in constant monitoring and reporting of system and applications status,
from outside as well as inside.

Lets define the terms a little bit more detailed without becoming religious because
they are of course tightly connected with each other and other aspects of system
design like the overall architecture.

Resilience and Dependability

When we look at definitions of availability in the literature (e.g. the nice
overview given by Morrill et.al.) we notice certain core elements. The
Definitions are nowadays mostly based on ITIL terms [ITIL3] and they
favor a rather integrated look at RAS. Resilience means business resilience
and subsumes IT resilience which in turn subsumes IT infrastructure etc.
([Morrill] pg. 495.). The whole thinking about RAS has become very
much top-down: Business requirements and a design phase concentrating
on RAS issues guarantee e.g. continuous availability of the solutions.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 81 03/12/2010

As noted, any design for availability is not complete without consideration of how the system
will be
managed to achieve the necessary availability characteristics. In the past, availability
management
has often been an afterthought: organizations would determine how they were going to
measure systems
availability once the design was complete and the solution implemented. Today, with ITIL
Version 3,
the availability management process has moved from the service delivery phase to the service
design
phase. Early on, organizations determine how they will measure and control availability,
capacity, and
continuity management processes. ([Morrill] pg. 499)

While certainly a good approach it is in rather stark contrast to the way
some of the ultra-large scale sites we will discuss below have been built.
This also shows in the statement that “Mixing and matching components
in an IT infrastructure can result in increased opportunities for failure.“
([Morrill] pg. 499). Most of our sites will be rather wild mixtures of
technologies.

But this perspective also includes the conviction that applications need to
be aware of availability techniques within the infrastructure to be able to
use e.g. monitoring features, checkpointing or failure detection. And this
might be true for all larger sites.

What we must take with us from the definitions of RAS is that availability
today is a multi-dimensional feature. It comprises the ability to change the
quality (or kind) of services rapidly to support business resilience. It also
means to adjust to changes in use by quantitatively scaling up or down (do
not forget down scaling to save costs). And it means being continuously
available during various kinds of failure conditions on all kinds of scale
and scope. Finally, the permanent monitoring of the integrity of the system
despite changes for resilience is part of availability as well.
Below we will discuss separate aspects of this overall notion of resilience
but we keep in mind that this is just an artificial separation for analysis
purposes.

Scalability

Why is scalability so hard? Because scalability cannot be an after-
thought. It requires applications and platforms to be designed with scaling
in mind, such that adding resources actually results in improving the
performance or that if redundancy is introduced the system performance is
not adversely affected. Many algorithms that perform reasonably well
under low load and small datasets can explode in cost if either requests
rates increase, the dataset grows or the number of nodes in the distributed
system increases.
A second problem area is that growing a system through scale-out
generally results in a system that has to come to terms with heterogeneity.
Resources in the system increase in diversity as next generations of
hardware come on line, as bigger or more powerful resources become
more cost-effective or when some resources are placed further apart.
Heterogeneity means that some nodes will be able to process faster or
store more data than other nodes in a system and algorithms that rely on

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 82 03/12/2010

uniformity either break down under these conditions or underutilize the
newer resources. (Werner Vogels in “A Word on Scalability”,
http://www.allthingsdistributed.com/2006/03/a_word_on_scalability.html)

There are a number of problems that can be interpreted as scalability
problems: A service shows sluggish behavior by responding very slowly to
requests. Later the service might not answer at all or may not even accept a
request or be visible at all. This gives us at least one end of scalability
issues: complete loss of availability. We will discuss availability below
and for now concentrate on scalability.
But what is scalability and when is a problem a scalability problem? Just
responding very slowly need not be a scalability problem at all. It can be
caused by a disk slowly disintegrating, by a network device becoming
instable etc. We will call it a first order scalability problem (or just a
scalability problem) if it is caused by an increase in the number of requests
directed towards a system or – in case of constant requests – by a decrease
in the number or size of resources of a system needed to process requests.
We will call it a second order scalability problem if the problem is caused
by the scalability architecture or mechanisms themselves: When the
measures taken to scale a system need to be extended. This happens when
a distributed cache needs more machines or when additional shards are
needed to store user data. Frequently in those cases it turns out that the
scalability mechanism used originally now poses an obstacle for further
extension e.g. because the algorithm used to distribute cached data across
machines would invalidate all keys when a new machine is added. Or
when user distribution across database shards turns out to be ineffective
but driven by a static algorithm that does not allow arbitrary distributions.
Actually the dying disk example from above can be a second order
scalability problem because it raises the problem of rebuild time needed to
get the system fully functional again. Raid arrays e.g. are notoriously slow
to rebuild a broken disk. Originally intended to provide performance and
availability the array can now turn into a scalability problem itself.

(First order) Scalability has two very different aspects. The first one
describes the ability of a running system to scale according to requests
received or more general to an increase of load. The goal is to keep the
Quality-of-Service either at the current level or to let it degenerate only
slightly and in a controlled fashion. In this case the ability to scale must be
already present in the running instance of the system. An analogy to the
human body comes to mind. If I need to run faster my body reacts with an
increased level of adrenaline, a higher heartbeat and so on. My body scales
to the increased load and this ability is part of the core adaptability of the
human body. But there is a downside associated with this ability: Both, the
running system as well as the body need to be prepared for increasing
load. This can mean that in both systems some parts have been running
idle while the load was low. In terms of computing hardware it is possible
that a gigabit network line has been installed at high costs, parallel running
servers have been bought that run at 5% load each, more software licenses
have been bought and so on. And all for only one reason: to be able to
scale whenever it is needed.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 83 03/12/2010

The advance costs of scalability are especially dreadful in case of the
famous flash crowds which hit sites that suddenly got popular (e.g by
being “slashdotted” or by just being announced). In this case the costs of
scalability need to be spent for a load that may only happen once in the
lifetime of a site. Clearly this is not cost effective. We will take a look at
edge caching infrastructures later that can be rented and allow a better
distribution of content by using a separate infrastructure temporarily.

The first aspect of scalability is necessarily limited therefore because
nobody spends huge amounts of money just in case some sudden increase
in load or requests might happen.

I believe the second aspect of scalability is much more important for
distributed systems: it is the potential of the architecture to be made
scalable. You might say: but isn’t every architecture scalable by adding
either hardware or software or both? The sad truth is: no, not if it hasn’t
been built to scale. To understand this statement we need to look at two
different ways architectures can scale: horizontally and vertically.
Database servers are a typical case of vertical scalable systems: the
database runs on a big server maschine, initially together with other
services. Soon those services are removed to increase CPU and IO
capability for the database. Later more CPUs and RAM are added on this
machine until the final upgrade level has been reached. Now vertical
scalability is at its end and the next step would be to add another database
server machine. But suddenly we realize that in this case we would end
with two different databases and not two servers working on one and the
same data store. We cannot scale horizontally which is by adding more
machines.
Sometimes very bad things happen and we cannot even scale vertically.
Let’s say we can run one application instance on a server machine only.
The software does not allow multiple installations. It turns out that the
software only uses user level threads, no kernel level threads. User level
threads are within one process thread which means all of these user level
threads are scheduled using one and the same process thread. We can add
tons of additional CPUs in that case without the application being able to
use any of those new CPUs.
More and more the solution to problems with vertical scalability is by
using virtualization technology that is able to create separate virtual rooms
for software on one machine. But it does not help us with the database
problem..

Frequently a much nicer solution is using horizontal scalability by adding
more machines. But this has some subtle consequences as well. Ideally it
would not matter which server receives which request. As long as all
requests are stateless this is no problem. But this requirement is clearly an
architecture and design issue. It the requests are not stateless we need to
make sure that the current state of the communication between client and
servers is stored somewhere and all the servers can get to it with good
performance. Or we make sure that requests from one client always end up
on one and the same server. This requires so called sticky sessions and
appropriate load-balancing equipment. The first solution with distributed

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 84 03/12/2010

session state btw. Is an excellent choice for the problems of the next
section: when your application needs to be available at all times and even
if single instances of servers crash.

But also within the application software there is no end to scalability
problems. Many applications need to protect shared data from access by
multiple threads. This is done by using a lock or monitor on the respective
object which realizes some form of exclusive access for one thread only.
But if those locks are put at the wrong places (e.g. too high in the software
architecture) a large part of the request path becomes completely
serialized. In other words: while one thread is busy doing something with
the locked data structures all the other threads have to wait. No number of
CPUs added to this machine will show any improvement in this case. The
new threads will simply also wait for the same lock held by one of them.

Besides fixing those bottlenecks in the software of the application the
answer to both scalability and availability requirements today is to build a
cluster of machines. We will discuss this approach in the section on
availability.

But even with cluster technology becoming a household item for large
web sites there is more to scalability and it again is associated with
architecture. But this time it can be the architecture of the solution itself,
e.g. the way a game is designed, that plays a major role in the overall
scalability of the application. The magic word here is “partitioning” and it
means the way application elements are designed to support parallelization
or distribution across machines. And this is finally a question of how
granular objects can be associated with processing. We will learn the
trade-offs between adding CPU and paying the price for increased
communication overhead in the chapter on Massively Multi-Player Online
Games (MMOGs).

And a final word of warning: we have already discussed the limiting effect
of scale on algorithms in the case of distributed transactions. Scale effects
work this way almost always. There comes a size where most proven
technologies and off-the-shelf solutions just do not work anymore and
require special solutions. We will discuss some of those large scale site
architectures later.

For a really extreme form of scalability and how it affects design – or
should we say “re-define” design – take a look at Richard Gabriel’s paper
“Design beyond human abilities” [Gabriel]. There he talks about systems
that have grown for twenty or more years and which are so large that they
can only be adjusted and extended, not remade from scratch.
Heterogeneity is natural in those systems.
A nice comparison of scale-up and scale-out techniques can be found in
[Maged et.al.] “Scale-up x Scale-out: A Case Study using Nutch/Lucene”.

Availability
Intuitively availability means taking a close look at all components within
your system (system components like hardware boxes as well as networks

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 85 03/12/2010

and application instances or databases, directories etc. There shallst not be
a single point of failure within your complete system to deserve the
attribute “highly-available” which we will from now on simply call “HA”.
This in turn means that a load-balancing concept alone is a far cry from
being “HA”. It is a necessary concept as it can remove one specific Single-
Point-Of-Failure (SPOF) but there are many other SPOFs left. Actually
what can be considered a SPOF largely depends on your scope as we will
see. (Btw: if you are having trouble understanding options in load-
balancing or why you sometimes need to balance on MAC vs. IP level,
when to choose a different route back to a client and how to do this – don’t
despair: there is a short and beautiful book about “
Load Balancing Servers, Firewalls, and Caches” by Chandra Kopparapu
and it will explain all this on less than 200 pages [Kopparapu])

The opposite of availability is downtime, either scheduled (planned
software upgrades, hardware maintenance, power savings etc.) or
unplanned (crash, defect). Unplanned outages are rather rare within the
infrastructure and seem to mostly come from application or user error.
Availability can therefore be expressed like this:

Availability (ratio) = agreed upon uptime – downtime (pla nned or unplanned)

agreed upon uptime

Contnuous availabilty does not allow planned downtime

Examples of downtime causing events are shown in the list below:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 86 03/12/2010

Morrill et.al, Achieving continuous availability of IBM systems
infrastructures, IBM Systems Journal Vol. 47, Nr. 4 , pg. 496, 2008

Today the answer to HA is usually some form of cluster technology as it is
explained in [Yu]. But before you run off to buy the latest cluster from
SUN or IBM or even try to assemble one on Linux by yourself you should
answer the most important question about availability: what level of
availability (understood as uninterrupted service) do you really need? The
answer can be in a range from “application can be restarted several times a
day and five hours downtime is ok” to “5 minutes scheduled downtime a
year with backup datacenters for disaster recovery”. And the costs will
therefore range between a few thousand dollar and many, many millions
for worldwide distributed data-centers.

We have mentioned above that a core quality of SOA and Web2.0 sites is
within the extreme availability that they provide. Continuous availability
(CA) is much more than just HA because it reduces downtime to zero.
And that means continuous operations (CO) as well – the ability to
upgrade software without restart is an example. And finally 11th
September 2001 has brought disaster recovery (DR) back into peoples
mind. Geographically distributed data centers mean avoiding SPOFs on a
very large scale.
Let’s put the various concepts of availability into a diagram which shows
the various dimensions involved (following the terminology developed in
[Morrill].

The diagram of availability scopes starts with basic reliability guaranteed
by a high MTBF of single systems. Do not underestimate the role of
simple reliabililty. Individual high reliability is still extremely important in
the light of FLP and the impossibility of consensus in asynchronous
systems. It is true as well for network connections across multiple nodes.
Without individual reliability many of our distributed algorithms will not
work properly anymore, e.g. they will not come to a consensus in
reasonable time.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 87 03/12/2010

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

Reliable
Resource

SPOF, easy update,
maintenance, simple
reliability, CO?

Redundancy, failure tracking,
HA, CA, CO possible. Load
distribution.

Cluster level, HA, CA, CO,
scalability, replication

Multi-
site
data
center,
DR,
Scale

High availability (HA) starts with redundancy of nodes and a typical
example can be found in load balancing sections of an architecture. But
even on this level the multi-dimensional nature of availability shows: We
can call it load balancing or high availability or both, depending on where
our focus is. And with this first duplication of infrastructure we inherit the
basic problems of distributed systems as well as its promises for better
throughput or availability. We will take a closer look at redundancy and
load balancing later when we discuss Theo Schlossnagel’s ideas for
availability and just mention here that even for such a simple architecture
we will have a lot of questions to answer: will there be failover and what
does it really mean? How will failures be detected? Do we need to
duplicate all nodes? Do we use passive backups with switch-over
capabilities or all-active architectures? How do we handle replicated data
between nodes?

Before we look at clustering as a solution for HA we need to clarify two
subtle points in distributed systems. The first point is about the role of
redundancy in distributed systems. Even after many years of distributed
systems und the ubiquity of multi-tier applications in intranets and
internets few people seem to understand that distributing computing across
several nodes, components etc. makes the whole processing much more
unreliable, insecure and especially brittle. The likelihood of one of those
nodes or components failing is much bigger and the only answer to this
problem is called redundancy through replicas. Actually there are more
problems behind a failing node even in case of redundant equipment: you
need to detect the failure first which again is much more difficult in
distributed systems than in a big local installation on one machine (see
below: failure detection). But let’s first concentrate on redundancy. Many
companies were shocked when they had to learn this the hard way by ever
increasing operating and maintenance costs of their distributed
applications. Server farms with hundreds and thousands of servers pile up

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 88 03/12/2010

huge costs for energy, cooling, software, monitoring and maintenance.
And still, you will only get to the potential benefits of distributed systems
if you accept the costs of redundant systems. You can build a distributed
system without redundancy but it will expose all kinds of RAS problems
due to overload, component failures etc. A typical case where redundancy
is likely to be violated in architectures is the role of the data-store. In many
applications there will be just one instance of a central database and it is
both a SPOF and a bottleneck for performance. And last but not least we
need to realize that introducing redundancy to fight distribution problems
means at the same time to introduce more distribution problems between
redundant components. We will discuss advanced consensus algorithms to
secure common state between replicas later – and learn about an
opportunity to save considerable costs.

The second subtle point is about failure detection. Redundant equipment
won’t help your system in case of failures if you cannot detect which
nodes or components are at fault and also when they start showing
problems. The good old fail-stop model assumes that a node that shows a
problem simply fails at once and completely and on top of this that the
other participants in the distributed system can detect this fact
immediately. This is an extremely unrealistic assumption. The typical case
is that an application receives a timeout error from one of the lower
network or middleware layers and is then free to assume one of several
things: a network failure (perhaps partial, perhaps total, perhaps persistent
or temporary), a node failure (the own node, the partner node, the
operating systems involved, the middleware layers involved, all of it either
permanently or temporarily), a server application failure (server process is
down, perhaps permanently, perhaps temporarily).

The next step after simple redundancy is clustering. Here the dimension of
throughput enhancement and performance are much more clear and we are
typically talking about business solutions which need continuous
availability (CA). Monitoring with automatic restart of processes or
machines is certainly a requirement as is the ability to update code for
reasons of bug fixing or business change. A core feature of those clusters
is the virtual IP concept which means that the whole cluster of machines
will look like a single entity to outside clients and failures within the
cluster will be transparently masked by the infrastructure. The most
advanced examples of this technology is probably represented by the IBM
parallel Sysplex architecture with its various options for scalability and
availability across distances.

Caching is of core importance within such clusters and we will look a
products like memcached. Also on the level of clusters database
partitioning and replication becomes a requirement and we will discuss
several solutions for this problem.

We have said that availability is a question of scope. One cluster serving a
site to the whole world might both be a throughput problem as well as a
disaster recovery problem. Soon the need for more data centers will show
up and create problems with respect to replication of data. How do we

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 89 03/12/2010

keep the replicas in sync? How do we guarantee that users will get the
closest (meaning fastest) server access? Routing requests to and between
geographically distributed data centers is part of our section on content
delivery networks.

And the next important question is about the exact quality of service that is
hidden behind pure “availability”. In other words: how transparent for the
user is the implementation of HA? Here the answer can be in a range from
“after a while the user will realize that his user agent does not show any
progress and will deduce that the service might be down. She will then try
to locate a different instance of our service running somewhere in the
world, connect and login again. Then she has to redo all the things she has
already done in the crashed session because those data were lost when the
session crashed. When a service crashes the user is transparently routed to
a different instance of the service. All session data were replicated and the
service will simply continue where the old one stopped. The user did not
lose any data from the old session.”

Clearly “availability” has a different quality in both cases. It depends on
your business model which quality you will have to provide and hopefully
you can afford it too. The second case of transparent switching to a new
service is called “transparent fail-over” and has substantial consequences
for your architecture (yes, it needs to designed this way from the
beginning) and your wallet.
More reasonable assumptions include nodes that show intermittent failures
and recovery, leading to duplicate services or actions in case backup
systems were already active because a more permanent failure was
assumed. There are algorithms to deal with these cases – so called virtual
synchrony and group communication technologies which try to organize a
consistent view of an operating group in a very short time of
reconfiguration [Birman] but those algorithms are rarely used in regular
distributed applications as they require special middleware. Birman
correctly points out that the in many cases the concepts of availability by
redundancy and failure detection can be simulated with regular distributed
system technology, e.g. by using wrappers in front of SPOF components.

The worst case assumptions of failure modes includes completely sporadic
operation of nodes which finally leads to a state where a consistent view of
a group of communicating nodes is no longer possible. If we add bad
intent as a specific failure we end up with so called “Byzantine failure
models” where subgroups of nodes try to actively disrupt the building of
consensus within the system.

Werner Vogels and the CAP Theory of consistency, availability and
network partitions. Eventually consistent data. What are the implications
for data (data with TTL, probability factor?) Amazons Dynamo makes
these options explicit (against transparency).
Read replication (slaves) and consistency: problem. Better with
memcaches? But what if single source memcached data are overrun?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 90 03/12/2010

Modeling availability with failure tree models will be part of our modeling
chapter.

Concepts and Replication Topologies

High-Availability can be divided into application availability
(runtime) or data availability [LSHMLBP]. Only application
availability of course knows the difference between stateless and
stateful architectures: stateless applications can be made highly
available rather easily: Just run several instances of these
applications! The problems lie in routing clients to a working
instance of such an application and track existing instances to make
sure that enough are available.
Once applications hold state the problems start. In order to move
processing to a different instance the state must be available to the
new instance. Various ways have been found to transport state
over: state on disk storage, state in a database, state in shared
memory, state replicated over networks etc. (<<how does
virtualization today change state management e.g. network state,
memory etc.?>>

The way application handled state has always had a big influence
on performance and failover capabilities and we will take a close
look at how our example site architectures deal with this problem.
Do they use “sticky” sessions? Where do they hold state? J2EE
applications use replicated stateful session beans to hold client
session state across machines and use an external database to
serialize requests. [Lumpp] et.al. page 609.

Communication state is also critical for modern multi-threaded
applications: requests from one client need to be serialized, e.g by
using transactions. No amount of CPUs and threads allows us to
process these requests in parallel because then inconsistencies
would materialize.

In case of a crashed server, how is a new application attached to the
current state? There are a number of options available:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 91 03/12/2010

Associating a new instance with current state during failo ver

-Cold standby (server and application need to be started when
primary hardware dies

-Warm standby (failover server is already running but failo ver
application needs to be started first. Both share one SAN e.g.)

-Hot standby (both failover server and application are ru nning but
application acts as a secondary only – i.e. does not cont rol
requests. Data is possibly replicated)

-Active-active configuration (both servers and apps are r unning
and processing requests. Needs coordination between app s in
case serialization of requests is needed. Load can be sha red but
room must be left for one machine to take over the load from th e
other. Every application holds its own data which make dat a
replication a requirement as well).

From: Chiterow et.al, Combining high availabilty and d isaster recovery
solutions for critical IT environments, IBM Systems Jo urnal 47, Nr. 4/2008

Obviously there are big differences between those approaches with
respect to failover time and visibility to clients due to delays. And
at least in the case of cold standby an external arbiter is required
who decides that the primary is down, starts the backup and routes
all requests to the new instance. All the other configurations can be
driven with external arbiters as well but could also use some form
of group communication protocol to decide by themselves who is
going to run the show. Financially the differences are probably not
so big as in any case the backup machine needs to be able to take
the same load as the primary. The only exception could be made in
case of dynamically increasing capacity e.g. due to additional
CPUs made available as is done by IBM mainframe systems. Here
an active-active configuration could run with 50% mips on both
machines which are changed to 100% mips in case of failover.
Midrange systems usually do not have this capability and you will
be charged for all the CPUs built in independently of the current
use.

<<clarify the concept of lock holding time during failover!!>>

A typical high-availability configuration today is called a cluster. A
cluster is a number of nodes who work together and present
themselves to the outside world a one logical machine. In other
words: clients should not realize that they are dealing with a
number of nodes instead of just one but they should be able to get
the benefit of better availability and scalability.

An important distinction in cluster solutions is between shared-
nothing clusters and shared data clusters [Lumpp] et.al. page 610ff.
A shared nothing cluster partitions its data across server machines.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 92 03/12/2010

Shared Nothing Cluster

Server A Server B Server C

While this is a typical architecture of ultra-large scale sites as we
will see shortly, without additional redundancy built into the
architecture it leads to very poor availability. If one server dies a
whole data partition will be unavailable. A better architecture is
provided by shared data clusters as shown below:

Shared Data Cluster

Server A Server B Server C

Here every server can access all data and it does not matter when
one server does not function. Of course the storage should not be
designed as a single point of failure as well.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 93 03/12/2010

Can a cluster span across different locations? The answer is yes,
within reason. A very popular form of clustering according to
Lampp et.al. is the stretched cluster which works across locations.
In a stretched cluster it is assumed that there is no difference with
respect to nodes. All nodes can be reached equally fast and with the
same reliability. This is of course only true within limits once we
span the cluster across different locations. But it is a cluster form
that is easy to administrate. Once the distance between locations
becomes an issue due to latency and network failures or bandwidth
we need to go for a global cluster and by doing so enter the area of
disaster recovery which we will discuss below. A global cluster has
one primary and one secondary cluster and a special management
component decides which cluster does processing of requests and
which one is the backup.

Hot standby already requires some form of data replication. Several
solutions exist which work on different levels: Operating System
replication via IP (e.g. Linux DRBD), disk/storage system (block)
level replication (intelligent storage subsystems performing the
replication), DB Level replication (commands or data are sent to
the replica), application level replication. An important question
about replication mechanisms is about the level of consistency they
provide. It is usually either block consistency (possibly across
volumes) or application consistency. Using this classification on
the above technologies it turns out that operating system replication
via IP and disk/storage replication offer only block level
consistency. The atomic unit of work is basically a block of data,
much like or exactly like a disk block. The sequence of block
writes will usually be respected (in a fbcast like manor), even
across volumes which are frozen/paused in that case. This way so
called “consistency groups” are created. What these methods
cannot provide is an application unit of work consistency because
they do not know which operations form one atomic, all-or-nothing
group of writes. This is only known at the application or DB level.

We have just described the consistency aspect of replication. There
is another aspect in replication and it regards the atomicity of
replication: Either have both primary and replica updated or none
of them. This is an extremely important feature and depends on the
replication protocol used. A synchronous replication protocol will
guarantee the atomicity of replication because it always waits for
the acknowledgement of the replica as well. It will not allow a case
where the primary got updated but the replica didn’t due to a crash
or network problem. Or vice versa. And it pays the price in round-
trips needed to achieve this. Usually there are two roundtrips
necessary at least. And due to this reason there are distance limits
for synchronous replication, currently around 300 kilometers
between primary and replica.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 94 03/12/2010

Asynchronous replication does not need to wait for
acknowledgements and allows both higher throughput and longer
distances. The price is paid in a potential loss of data resulting in an
inconsistency between primary storage and replica. And in case of
a failover this can result in wrong business data or processes.

Before we tackle the problem of disaster recovery we need to talk
about one very important and difficult aspect of HA clusters: The
question of when and how to fail over. We have said that in a HA
solution failover needs to be automatic. But how is this done? Via
scripts? According to the authors the way this is done today is via a
three level correlation engine as it is used e.g. by Tivoli software
from IBM.

A description of such an engine can be found in Stojanovic et.al.,
The role of ontologies in autonomic computing systems. The
diagram below shows the architecture of a correlation engine:

Automation: correlation engine diagram

Correlation Engine Architecture

Stojanovic et.al., The role of ontologies in autonomic computing systems.

Managed Resources and Resource State

Event Layer who models State changes
(detection, filtering, assembly)

Rule layer: Failover Actions after Events

How close is this concept to Complex-Event-Processing languages
and architectures?

The concept of high or continuously available systems (HA, CA)
has been extended with the concept of disaster recovery (DR) over
the last decade. Actually DR has always been an important concept
in the largest of financial companies. But due to the growing
importance of internet services and presences the fear of disaster is
now present in many large websites.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 95 03/12/2010

Let’s start with some definitions of HA and DR and the differences
between them, taken from Chiterow’s et.al. paper on combinations
of HA and DR technologies for critical environments [CBCS]. The
following table presents the main properties and differences
according to the authors:

High-Availability vs. Disaster Recovery

-Single component
failure assumption

-Local infrastructure

-No data loss allowed

-Automatic failover

-Synchronous replication
mechanisms used

-Sometimes co-located
with failover
infrastructure

-Short distance to
failover infrastructure

-Multi-component or complete site
destruction assumes

-Long distance infrastructure

-Some data loss possible

-Human decision to use backup
facility due to costs

-Replication mostly asynchronous

-Share nothing between sites (net,
power, computing…)

-Long distance to failover
infrastructure (several hundred
kilometers)

With DR we are obviously talking multi-site data centers,
geographically distributed data centers possibly on different
continents. There can be many reasons for such architectures:
performance, closeness to customers etc. but as Clitherow et.al.
mention frequently it is because of regulatory requirements (e.g.
that there need to be x miles between primary and secondary site)
that a multi-site configuration is chosen.
A 3-copy architecture seems to be a rather popular choice in those
cases and here we are discussing the architectures described in
[Clitherow] et.al. The role of the third site can be just as a data
bunker with no processing facility attached. It could take days to
get processing up on the third site or there could be a complete hot
standby processing facility in place just waiting to take over. Due
to the asynchronous communication protocols used between the
primary sites and the tertiary site there is usually no active-active
model used for the third site. Some ultra-large scale sites solve the
problem by using the third sites actively but only for read requests
while all changes are routed to a master cluster (or a two site
active-active cluster located close to each other).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 96 03/12/2010

3-copy Disaster Recovery Solution

Primary
Cluster A

Secondary
Cluster B

Storage
Subsys

A

Storage
Subsys

B

Tertiary
Cluster A

Storage
Subsys

A

synchronous

asynchronous

Incremental re-synchronization
after failure of B

Storage
system hot
swap in case
of failure Optional, could be

just data bunker

Long
distance

After: Clitherow et.al.

The failure model in disaster recovery with a 3-copy solution is
usually like this: no data loss if either Cluster A or B fail. If both
fail there can be some data loss between the two main clusters and
the tertiary site due to asynchronous replication used.

Failure Modes and Detection
[Caffrey] J.M. Caffrey, The resilience challenge presented by soft
failure incidents,
[Google] Chubby/Paxos Implementation paper
The role of ontologies in autonomous systems
Selfman.org

Availability is based on redundancy. Redundancy is based of
failover – the ability to move a request to a new processing or data
infrastructure, possibly without the client noticing the problem. We
will discuss failover in more detail using J2EE clustering as an
example later. For now we will concentrate on one essential pre-
requisite for failover: the ability to detect an error.
And this is where all our efforts to achieve availability through
avoiding single points of failure and by replicating as much as
possible turn against us. Techniques to achieve fault tolerant
behavior tend to mask errors – sometimes over a longer period of
time until it is too late to use preventive measures.

A beautiful example for this effect has been described by the
Google engineers Tushar Chandra, Robert Griesemer and Joshua
Redstone in their paper “Paxos Made Live - An Engineering
Perspective” [CGR]. It describes the use of the Paxos consensus
algorithm (we will talk about it later when we deal with consensus
protocols for replication) to implement a replicated, fault-tolerant
database based on a distributed log system. The database is then

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 97 03/12/2010

used e.g. to implement large-scale distributed locking. The protocol
needs to make sure that all replicas contain the same entries. The
system is used to implement the Chubby distributed event
mechanism further described in [Burrows]
The paper by Chandra et.al. is especially important from an
engineering point of view. It describes the effort needed to
transform an academic algorithm (Paxos) into a fault-tolerant and
correct working implementation. The team noticed certain
deficiencies in the development of distributed systems, notable in
the area of testing and correctness. They developed advanced
failure injection techniques and implemented injection points
within their protocol which led to the discovery of several
problems and bugs. And they made the following experience:

In closing we point out a challenge that we faced in testing our
system for which we have no systematic solution. By their very
nature, fault-tolerant systems try to mask problems. Thus they can
mask bugs or configuration problems while insidiously lowering
their own fault-tolerance. For example, we have observed the
following scenario. We once started a system with five replicas, but
misspelled the name of one of the replicas in the initial group. The
system appeared to run correctly as the four correctly configured
replicas were able to make progress. Further, the fifth replica
continuously ran in catch-up mode and therefore appeared to run
correctly as well. However in this configuration the system only
tolerates one faulty replica instead of the expected two. We now
have processes in place to detect this particular type of problem.
We have no way of knowing if there are other
bugs/misconfigurations that are masked by fault-tolerance. [CGR]
page 12

So the 2/5 availability system had secretly turned into a 1/4 system.
What do we learn from this experience? Without state (or history)
we cannot detect this error because catch-up is a legal phase within
the state model of the protocol. The state model with transitions
and their respective likelihood is another requirement. The
modeling can be done with Markov models and associated
probabilities for transitions. The diagram below shows the Markov
model for blade-processor CPU plane, taken from Smith et.al, and
their availability analysis of blade server systems [STTA].

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 98 03/12/2010

Steady-State availability of
bladecenter CPU and memory
subsystems:

Smith et.al. Page
627

For us two transitions in this diagram are important: the transition
X1 leads over to an error state with associated reboot. If a hard
error is found within the failing CPU the transition Z is taken
which leads to a stable one CPU server. If the CPU problem turned
out to be spurious the reboot will transition via ZZ into the old state
of two CPUs working correctly. Z and ZZ have associated
probabilities but are legal transitions.
Let’s assume the spurious problem happens again and again due to
some unknown failure? Only when we observe the state changes
(history) of this reliable system we will notice that there is a
problem.
How do we notice the problem? From outside we might notice a
decrease in throughput or performance, depending on the workload
and its parallelism. But what if we do not have two but 20
processors? There is almost no chance to detect the problem via
workload measurements – the remaining 19 CPUs will distribute
the work and the only real error is a decrease in availability – with
19 CPUs still working this is a theoretical situation, not yet a real
performance problem. We learn that we need to separate
availability strictly from observed performance and throughput.
Both are independent concepts.

What we need to detect the problem of a CPU permanently cycling
between down and up is an event logging system which counts
those transitions and knows about the probabilities of such events
happening. In case those probabilities are exceeded (we will shortly
see how this can be calculated for more complex behavior like
transaction runtimes) the event system will raise an alarm and
provide a causal reason for the alarm: too many cycles in CPU X.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 99 03/12/2010

By this we will get an analytic explanation which we could not
derive from observed performance or throughput data.

Time to give some further terminology developed by the
availability people, here especially [Caffrey]: The diagram below
gives a short classification of error types and examples. The focus
obviously is on soft failures as the one described above.

Errors

masked hard soft

Fixed by
software
(caught
exception)

Sympahthy
Sickness,
Creeping

error

Power
supply
broken

Damaged
system

Exhausted
Resource

Seriali
zation

Unexp.
state

overflow Looping
thread,
quotas
exceeded

Prio
inversion,
deadlock

Config
wrong
, hang

Caffrey, pg. 641ff.

Creeping errors are long term consequences of other errors. Today
most failures seem to be soft failures with damaged systems and
exhausted resources being the most prominent ones. Soft failures
usually occur over a longer period of time until finally a dramatic
loss in availability occurs. This makes them especially hard to find.
Sometimes combinations of soft errors further complicate the
picture. They generally tend to be associated with the liveness of an
application, i.e. the ability to make progress. Between the real error
event and further consequences can be quite some time. Caffrey
e.g. describes a case where a wrongfully terminated management
process left locks on resources behind and prevented the start of an
application a week later.
This behavior makes it especially hard to define when exactly a
component is in error. Interdependencies between the runtime and
error logging and analysis components further complicate the data
about possible soft failures as is shown in the diagram below (see
also [Hosking] pg. 655f.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 100 03/12/2010

Runtime Image
Experiencing errors

Logging
Subsystem

Statistics and
Analytics

Load
Balancing

flood

Polluted
statistics

Artificial load

Drain
storms

Drain storms btw are false interpretations by a client regarding the
ability of a server to accept more requests. Certain error cases
within the processing of the server look like decreased response
times and are interpreted as “server is idle” by the client. Thus
more requests are sent down to the broken server. Domas Mituzas
of Wikipedia describes such effects in this paper on “Wikipedia:
Site internals, configuration, code examples and management
issues [Mituzas]. Especially load balancers are affected by drain
storms.

I call a releated phenomenon “thread hole” and it works like this: a
backend service is unavailable but a multithreaded client does not
realize this fact. Instead, every request that the client receives will
be also directed towards the non-functional backend and results in
another thread being stuck. This depletes the VM quickly of
threads and – without a limiting thread-pool size – will cause havoc
to the application.

<< dependencies between loosely coupled layers: fourthsquare
incident>>

We haven’t really solved the question of detecting errors as a pre-
requisite for failover yet. Even without the requirement of
automatic failover the situation is bad and described beautifully by
J.R.M Hosking:
In the 1970s, the most common IBM mainframe was the
System/370* Model 158, a 1 million instruction per second (MIPS)
machine with one processing unit and a maximum of four
megabytes of main memory. The current IBM mainframe is the
System z10* EC, which is a roughly 27,000 MIPS machine with up
to 64 processors and one terabyte of main memory per logical

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 101 03/12/2010

partition (LPAR). The current z/OS* operating system is a direct,
lineal descendant of the MVS* operating system that ran on the
Model 158. In the intervening years, many new types of work have
been developed and now run side by side with programs that could
have run on the Model 158. The fundamental error-logging
processing in the operating system (OS), however, remains
unchanged, as does the official IBM service recommendation that
customers look at these logs and resolve problems by doing
searches in problem databases or opening incident reports with
IBM service. [Hosking] pg. 653f.

Hosking developed two different methodologies to detect mostly
soft failures: An analytical method called failure scoring and a
statistics based method called adaptive thresholding.

Failure scoring tries to identify problems before they can lead to
unavailability. One way to do so is to properly tag the priority of
error messages. “Noise” through tons of uncritical messages need
to be filtered out to make a possible chain of critical events visible.
A clear theoretical understanding of the nature of error events is
necessary as well: when are we talking about a regular error event
like “file not found” with little chance of damaging the system or
wasting resources? And when could an error event potentially
disrupt system functions like perhaps an error event describing the
attempt to overwrite illegal memory?
A special feature of failure scoring describes Hosking as “symptom
search” where a database of past events and their consequences is
used to find out whether a certain type of event has led to severe
problems in the past. Interestingly for this method to work it is
necessary to develop a special taxonomy of “severity” of errors.
Usually people have very different ideas about severity of an error
and this turns out to be a bad indicator for soft failures.

A mathematically more involved method to detect critical errors is
“adaptive thresholding” where – based on a large number of
statistical events – a machine learning algorithm tries to decide
whether a certain “tail” of measurements simply represents
especially long running transactions or erroneously looping
transactions. Technically, the algorithm tries to find a good “cut-
off” value where the long tail begins. Then a generalized Pareto
distribution is fitted to the tail. In case of a bad fit the tail is
interpreted as being in error.
While failure scoring includes the risk to miss some critical error
events, the adaptive thresholding method (adaptive because the
method adjusts for changes in the system data over time) runs into
the danger of falsely declaring something as an error which is
simply a long running task.

In a follow up procedure the calculated threshold values e.g. for
certain transactions can then be used for comparison with actual
performance data. Transactions beyond the threshold (e.g. slow

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 102 03/12/2010

transactions) are then automatically investigated by machine
learning algorithms to find critical properties (attributes) which
could be responsible for them being slow. [Hosking] pg. 664
We end this section with the statement that both methodologies
presented are not able to drive a fully automated failover. We will
come back to the problem of error detection in our discussion of
group communication and replication protocols and the CAP-
theorem.

J2EE Clustering for Scalability and Availability
For the concepts behind clustering see Lumpp et.al, From high
availability and disaster recovery to business continuity solutions,
[LSHMLBP]. The authors describe HA approaches (stateless,
stateful, cold, warm, hot, active-active). For the use of hardware
saving group communication solutions (e.g. to achieve
loadbalancing or failover) see Theo Schlossnagels paper on
“Backhand” [Schlossnagle]

This chapter will describe the implementation of cluster solutions
using the J2EE platform. The goal is to create a platform that does
support both availability and scalability. Three concepts are
essential in this context: First the concept of contention between
parallel requests caused by locking all except one request to avoid
inconsistencies. Wang Yu describes the negative effect of
contention (hot locks) on scalability in the first part of his series on
Java EE application scaling which deals with vertical scalability.
This type of scalability is further influenced by memory
consumption and the type of I/O handling (blocking or non-
blocking).

Horizontal scalability, described in the second part of the series
[Yu] has one big problem for throughput: holding session state to
achieve fault-tolerance. With respect to fault-tolerance or
availability in general we will need to discuss the problems of
Single-Point-Of-Failure in Java EE architectures. Here the concept
of “unit of failure” is helpful in deciding where to integrate failover
options into an architecture. Finally some cluster management
issues need to be discussed where we will use the state machine
approach in distributed systems to get a better understanding.

Vertical Scalability means to grow a Java virtual machine as a
response to increasing service demand (requests). This e.g. can
mean to run more threads to service more requests. As we will see
in the modeling chapter later this will soon lead to contention
between the threads due to locking. Finally the serial part of our
code – the part that needs to run behind an exclusive lock – will
totally determine the maximum number of requests that can be
handled. Adding ore CPUs or more threads will have no positive
effect after this. Adding threads also has the ugly side-effect of
increasing response times for all users.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 103 03/12/2010

Yu mentions the typical solutions to the contention problem:
- use fine-grained locking
- keep locking periods short
- use “cheap” locking mechanisms, not synchronized
- use “test and swap” for wait free locking to avoid context
switches
- avoid class level locks

This basically means tracing your code and searching for
bottlenecks like synchronized class level (static) methods. If you
see 9 out of 10 threads waiting at the same type of lock you have
probably discovered a serious bottleneck.

Two other important causes of scalability problems are memory
consumption and I/O. Memory should not be a problem anymore –
we’ve got 64-bit processors after all and can stuff in RAM almost
as much as we want. The limiting factor turns out to be the garbage
collection caused by excessive memory use within the VM. Yu
mentions an application which simply stopped for 30 minutes
doing GC and nothing else. It is not only the use of a large number
of threads that can cause excessive memory use. Connection
buffers can also have the same effect. Facebook architects had to
re-engineer the way memcached used connection buffers to free
gigabytes of memory bound to separate connection buffers. [Hoff]
in “Facebook tweaks to handle 6 times as many memcached
requests”. “
Blocking I/O – also called “thread per connection or request” has
two painful side-effects due to the large number of threads
required: each thread needs a fixed and large piece of memory at
startup which considerably increases VM memory consumption.
And a large number of threads cause a huge number of context
switches which take away CPU from the workload until nothing is
left for the requests. We will talk about alternative I/O models later
in a special section so for now we simply state that non-blocking
I/O works with only a small number of threads and does not show
the above mentioned problems. It is albeit able to serve thousands
of requests per second.
The diagram below shows the much better scalability of the non-
blocking architecture. The blocking I/O solution on the other hand
closely follows the universal scaling algorithm by Gunther which
we will discuss in the modeling section.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 104 03/12/2010

From: Wang Yu, Scaling your Java EE Applications

What about availability in the context of vertical scaling? The unit-
of-failure here clearly is the whole VM. It does not make sense to
think about failover within a VM as typically the isolation
mechanism within a VM are too weak to effectively separate
applications or application server components from each other.
Availability is therefore defined by the overall MTBF of the
hardware and software combination. Hardware should not be a
problem to estimate – all vendors have to deliver those numbers –
but software certainly is. It might be your last resort to calculate
availability as follows: take the time for a complete hardware
replacement and the time needed to perform a complete installation
and boot of the software from scratch and multiply each value with
the probability per year. The sum of the result will be your
estimated yearly downtime and it also defines your average,
expected availability. There is no transparency of failures for the
clients which will have to accept the downtimes and also no
failover.

Let’s move to the second type of scalability: horizontal scalability.
It means adding more machines instead of growing a single
instance. Suddenly other external systems like databases, directory
services etc. need to be duplicated as well to avoid SPOFs. The
easiest cluster solution according to Yu is the “shared-nothing”
cluster where individual application servers serve requests and use
their own backend stores. These servers know nothing about each
other and a load balancer in front of the array can simply distribute
events to any server.
If there is session state involved and it is kept on a server the
loadbalancer needs to send all requests of this client to the same
server (sticky sessions). In case of a server crash the shared nothing

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 105 03/12/2010

cluster does not support fault-tolerance or failover and the client
will lose the session state. Frequently one can read that sticky
sessions are therefore a bad design feature and should be avoided.
This argument needs some clarification:
- Sticky sessions do have a negative impact on load balancer
freedom to assign the next request.
- Sticky sessions have the advantage that a server does not
need to read the session state at the begin of every request
- Sticky sessions are bad for failover if only one server
(session owner) or his replication peer (see replication pairing
below) hold a copy of the state. This forces the loadbalancer to
know about the servers that hold a specific state AND prevent the
load from a crashed server from being equally distributed across all
servers.
- Sticky sessions avoid the disadvantages (except for LB
freedom) and keep the advantages if the session storage
architecture allows every server to get to a certain session state if it
needs to, e.g. if it has to cover for a crashed server. This supports
equal distribution.
- Load Balancer freedom might be possible even with sticky
sessions in case of a pull mechanism used by application servers.
(See chapter on special web servers).

There exist several mechanisms to keep the session state within a
cluster. The determining factors are: size, frequency of storage and
number of targets. In other words: how big is the session state?
How many times will it have to be stored somewhere? And on how
many machines will it be stored?
The chicken way out is simple: Try to keep the session state inside
of a cookie and let the client take care of it. This sounds rather
outdated today – after all there are databases and distributed caches
to store session data into. But the fact is that pushing the session
storage problem to the client has huge advantages with respect to
availability: Load balancers can send a request to any server
available and the session state will always be available.

If for whatever reasons client side session state is not an option the
worst possible alternative seems to be to store it within a database
and update it frequently, e.g. per request. Pushing large numbers of
bytes into the database on every request is putting a lot of load on
it. Those data need to be serialized as well – another rather slow
mechanism involved. And finally those large numbers of writes can
change your typical read to write ratio of your web application
considerably and have a negative effect on your database-
replication setup.

Making sure that only those data that were changed are really
written is useful but forces the application to use special session
state methods to notify the storage mechanism about granular
updates. Btw: instrumenting the code that deals with session

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 106 03/12/2010

storage is a necessary method to detect abuse e.g. through
excessive session sizes.

Another alternative is replicating the session state between
application servers and keeping it in memory. While certainly
faster than the database solution this architecture forces a crucial
trade-off on you: How many machines will participate in the
replication? You can decide to simply replicate session state for a
certain client to all machines. This makes the life of a load balancer
much easier as it can now route a new request from this client to
any machine available. But it also forces all machines to participate
in every replication and even multicast based protocols will not
scale beyond a small number of machines. (We will discuss group
communication and replication algorithms later).
Pairing machines to replicate a certain session state reduces
replication overhead considerably but raises two other problems:
the load balancer needs to know about the pairs and in case of a
server crash there is only ONE machine which can take over the
processing of the current request or session.

<<pairing diagram>>

Session Replication Pairs

Server A Server B Server C

Load
Balancer

S1S2 S1S2

Paring requests means we have coupled session storage with
processing location. We can no longer route the request to any
server. And this has dire consequences: All the clients from the
crashed server will suddenly show up at the one server which hosts
the session replicas of the crashed server – in effect doubling the
processing load of this server. And this means that, to make our
fail-over mechanism work this backup server needs to run at a
capacity that will allow doubling it without causing new problems,
e.g. regarding the stability of this backup server. We are paying

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 107 03/12/2010

literally a high price due to the low capacity this server needs to
run in everyday business.
This pairing problem actually points to a rather generic problem for
failover: the bigger the machines involved are the more important
is to make sure that the load of a failed server can be equally
distributed across the remaining machines. Not doing so results in a
rather low average capacity limit for those servers as the following
diagram shows:

Total
Capacity
Of Node

CT

Normal
Use

Capacity
CN

Failover
Capacity

CF

Effect of number of nodes on wasted capacity
(assuming homogeneous hardware and no sticky
sessions bound to special hosts aka session pairing)

CN + CF = CT

CF = CT/(n – 1) (n = number of nodes)

CN = CT – (CT/(n-1) with growing number of
nodes the normal use capacity gets closer to
the total capacity while still allowing failover
of the load from a crashed host

This makes a central session storage server as used by IBM or Sun
and others much more attractive again [Yu]. The solution seems to
be a dedicated server with high availability and specialized
software for reading and writing session state efficiently. There are
no fancy SQL queries or locking needed and a specialized in
memory store could easily outperform a regular RDBMS here. Yu
claims that we will save on memory with a central solution
compared to storing session state on all servers. This is right but we
don’t save any memory compared to the server pairing described
above because to avoid SPOFs we will need two of those dedicated
session storage servers anyway.

<<Raisin example with timeout feature for sessions>>

Given the costs and complexity associated with distributed session
storage Yu suggests to re-evaluate the need for fault-tolerance and
fail-over, especially transparent fail-over again. His argument is
based on the fact that contrary to popular opinion many requests
cannot even use an automated fail-over mechanism in case of a
server crash. Because a load-balancer cannot know exactly
WHERE a request was when the server crashed only those requests

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 108 03/12/2010

that are idempotent (cause no server state change) can be
automatically restarted. Otherwise there is the danger of
performing the request twice.
Perhaps a lesser quality of fail-over might be acceptable after all?
A fail-over mechanism that makes sure that clients will find a new
server after a server crash and this server will be able to deal with
additional load caused by the crash. But the clients will have lost
some work which they have to redo now on the new server. This
even allows the option of later reconciliation between the state
before the crash and the new state created after the crash on the
new server.
To close the discussion of clustering we need to talk about three
technical aspects: how failover is done, specifics of EJB clustering
and how SPOFs in supporting services are avoided. Let’s start with
the last point: avoiding SPOFs in mission critical services. A
cluster is not much fun when it contains a single point of failure
that makes the whole cluster inoperable. Such a component e.g.
would the JNDI directory service where critical public objects have
been registered by system administration. If applications cannot get
to their directory information, no processing whatsoever will
happen in this cluster.

Vendors seem to have chosen rather similar solutions, basically
consisting of replicated JNDI services at every application
server/machine. This leads to the question how those services are
kept in sync. Some vendors seem to simply propagate a change on
one service to all the others which obviously know about each
other to make this work.
<<jndi replication >>

A fault-tolerant JNDI name service
I

From: Wang Yu, uncover the hood of J2EE Clustering,
http://www.theserverside.com/tt/articles/article.tss?l=J2EEClustering

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 109 03/12/2010

Other vendors keep the services independent and ignorant of each
other and use a state machine approach for replication. As the state
machine approach can explain some additional restrictions when
using clusters we will give a short introduction by example. Lets
assume there are system management agents running on all
application servers. These agents accept commands from a
common management station. System administration now sends
initialization commands to all agents which perform those
commands against the local JNDI service. After all those
commands have been executed the JNDI services will all have the
same content but are completely independent of each other.

<<independent JNDI services >>

Independent fault-tolerant JNDI

From: Wang Yu, uncover the hood of J2EE Clustering,
http://www.theserverside.com/tt/articles/article.tss?l=J2EEClustering

Clearly this state machine approach requires the same software on
all machines to be present. And it is only valid for the system
management aspect. Regular client requests coming from the load
balancer are non-deterministic and do not follow the state machine
idea. Software operating in lock-step on every machine is nice for
achieving replicated content across servers. But it has some
complicated side-effects on applications within a cluster, especially
those who need to run only ONCE within an infrastructure. In other
words those applications or objects that need singleton behavior.
When all software is the same it is rather hard to establish a
singleton. Yu suggests for those cases (e.g. collecting counts of
requests) to use the database to collect the data from all cluster
machines. Other solutions are to implement a group
communication protocol that achieves consensus on who within a
cluster needs to perform what.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 110 03/12/2010

The second topic to discuss is the question of how exactly a
failover is performed. It turns out that there are several possible
solutions, ranging from strictly client side decisions over code in
the infrastructure levels to server side behavior where new
machines start to respond for a crashed server. While all these
mechanisms can achieve failover the big difference sometimes is in
the system management and configuration overhead associated
with them. Transparent but optimal server selection will be handled
again in the chapter on load balancing and geographically
distributed data centers.

Finally the EJB and J2EE architecture shows some specific
problems with respect to failover and scaling. The two core
concepts here are enterprise beans and remote objects. Stateless
Session Beans are harmless and due to the fact that they contain no
state they can be replicated across machines without any problems.
Here the only problem lies in routing the client to a new instance,
e.g. by providing the bean stub with additional server addresses.
This way the client who downloads the stub dynamically does not
even know about the other potential server locations running bean
replicas.

Stateful session beans follow the same mechanism as replicated
session state and can be located through client side code. And
finally entity beans are stateless because they store their state
transactionally inside databases and could be replicated as well
across servers. But they do expose a different problem: They are no
longer used remotely because usually there is a session facade in
front of them which does a local call to the entity bean. This puts
the facade and the bean into a single unit-of-failure and removes
the remote call to the entity bean as a possibility for fail-over.
Here the importance of a reasonable definition of those units-of-
failure becomes obvious: Bundling facade and bean might reduce
failover and availability because facade and bean cannot be
replicated independently. But at the same time bundling those two
into a local unit-of-failure prevents excessive remote calls and the
terrible costs of potentially distributed transactions.
The last point nicely shows that availability and scalability can be
somewhat orthogonal concepts even if they seem to go along well
in case of horizontal scaling.
More aspects of clustering like the use of distributed caches etc.
will be discussed in separate chapters later.
<<diagram of EJB failover façade-entity bean local concept>>
<<pull concept of web application server to load balancer>>

Reliability
- idea: integrate CEP as an explanation system
- reliability and scalability tradeoff in networks (Birman pg. 459ff)
- self-stabilizing protocols
- epidemic, gossip protocols
- the role of randomness to overcome deterministic failures in state
machine protocols

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 111 03/12/2010

Dan,

listening to you (or similarly Dan Pritchet talking about eBay architecture)
I have same questions in my mind:

how do you test new features before you roll them out? how do you test
them scale? you don't have test lab with same level of scale as your
production farm, do you? that makes me think you can't guarantee or
knowingly predict exact level of performance until real users hit the new
feature in real time. how do you deal with that and what did you have to
build into your system to support new features deployment, as well as
rolling features back quickly if apparently they did not work out as you
had expected?

and another question is what did you have to do to support existence of
"practical" development environments that behave as your production
system but do not require each develop to work on dozens of servers,
partitioned databases, and cache instances. How did this change your
system's architecture?

Deployment
- transacted, incremental, available, see the Resin paper. GIT as a
repository which avoids overwrites, partial writes.

Reliability and Scalability Tradeoff in Replication
Groups

Load and
participants

Purely async. message
sends, no delivery
guarantees, epidemic
protocols

Safe – dynamically
uniform protocols.
Infrequently some
machines jam

Bursty transmit
behaviors,
acknowledgement
implosion at
receiver interfaces

20-40%

80-
100%

Intermediate
zone

See Birman, pg. 459ff.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 112 03/12/2010

D D

D

P

P

P

P

P

P

P

In the Spread group communication framework daemons contro l
membership and protocol behavior (order, flow control).
Messages are packed for throughput.

Heavyweight
membership

Lightweight
(group)
membership

Performance

- the 4 horseman plus remote collection
- event processing modes
- alternative (ERLANG)
- Latency
- Operations vs. analytics: don’t mix TAs with OLAP, keep queries
simple and use separate complex background analytical processing. Keep
search from destroying your operational throughput
- Concurrency: contention and coherence

Monitoring and Logging
CPE, Astrolabe
Schlossnagle on Spread-based logging

Distribution in Media Applications
o Large Scale Community Site
o Storage Subsystems for video,
o Audio-Server for interactive rooms, clever adaptations, new uses
o Distributed Rendering in media production
o Massively Multi-Player Online Games (gamestar architecture sony
everquest)
o Search Engine Architecture and Integration

Storage Subsystems for HDTV media

In a recent workshop with a large german broadcast organization we have
been discussing several options for large scale storage subsystems. They
should be able to support around 20 non-linear editing stations with
approximately 50 concurrent streams of HDTV content stored in those
subsystems. We are talking between 50Mbit/sec and 100Mbit/sec for each
stream and bandwidth as well as latency need to allow uninterrupted
editing. The move toward HDTV was combinied with going from tape

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 113 03/12/2010

based editing with its distribution and copy latencies to disk based,
concurrent editing of video material. The change in storage size and speed
required a new infrastructure and the broadcast organization was worried
about the scalability and usability of the solutions proposed by the
industry. The worries were not in the least caused by the fact that all the
proposals fell into two completely different camps: classic NAS/SAN
based storage subsystems using fiber channel switches etc. and the newer
architecture of grid-based storage, also called active storage.

The organization had a midrange NAS/SAN combination already in
production and the strength and weaknesses of this architecture are fairly
well known: while file-systems can grow with little maintenance and
organizational effort there are some limitations in the systems where
bottlenecks restrict scalability: there can be several filesystems running on
several NAS front-end machines but if there are hot-spots within one
filesystem few things can be done to relieve the stress on the NAS
carrying the filesystem as well as the SAN controlling the associated disks
(see the problems myspace engineers reported about non-virtualized
SANs). Storage processors used in the SAN also put some limit on
scalability. Internal re-organization of disks within the SAN can be used to
improve performance on critical filesystems. There are proven
management tools to support server-free backup. Disk errors will require
the reconstruction of disks which is a lengty process due to RAID. One
can say that the subsystem performs well but with a high management
cost. It is used for several types of content like database content or media
and there is little doubt that a new system based on NAS/SAN would be
able to offer 500 or more Terabyte of storage with the proper access and
throughput rates. Another big advantage of the classic architecture is its
support for POSIX APIs on the client side which allows standard and
unmodified applications to be used.
The diagram below shows a typical solution of a NAS/SAN combination.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 114 03/12/2010

Unix Client

NAS
1..3NAS

1..3NAS
1..3

Other
Server

FC
switch

FC
switch

SP1 SP2

LUNs:1-20

DBPool:11-20

VmWare
Pool:1-10

FC

FC

Diff. File Systems

Posix
Interfaces

NAS
1

SP1

FC

Second
site
(DR)

On the right side of the diagram Storage Processors (SP) partition disks
into different LUNs and allow partial shutdown of the storage e.g. for
maintenance. Several NAS frontend servers exist and carry different
filesystems. The subsystem also stores data from database servers. LUNs
have to be put into pools for filesystems and allow transparent growth. If a
NAS server crashes the filesystems it carries are unavailable. In case of
disaster there is a switch to a passive system which is smaller than the
master storage center. Still, it is a rather expensive solution for disaster
recovery and the possibility of active-active processing should be
investigated as the distances are small.

The situation on the grid storage side is much more complicated. The
technology is rather new, few vendors use it and of those vendors most
created proprietary solutions consisting of applications and the grid
storage system (e.g. AVID). To get a technical handle on grid storage we
compared it with a well known grid storage system: the google filesystem
(see the section on storage where a detailed description is given). We were
also careful to note the differences in requirements because most grid
storage systems tend to be specialized for certain use cases. The diagram
shows only the major components of a grid storage system. And the
question was whether the promises of unlimited scalability were justified.
Those promises were based on the fact that the overall bandwidth and
storage capacity would increase with every blade installed in the system.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 115 03/12/2010

Meta-data server

Meta-data server

Processor blade R1

Processor blade R2

Processor blade R3

client

C11

C12

C13

/wacko.avi (C = C11:R1, C12:R2,…

write(„wacko.avi“,
offset)

Lease:
R1:C11,
R2:C12…

Write…

write

Storage grid

Constraints:

-nr. replicas

-Read/update
modes

-Chunk size

-Reboot time

-Reorganiz.

Posix
API ??

Fast
lookup

Few meta-
data

The claim of unlimited scalablity seems to be in conflict with the obvious
bottleneck in the system: the master servers. Would they put a limit on
scalability? We did not have a running system where we could take the
measurements needed for regression analysis and later processing with
Gunthers “universal scalability formula” (see chapter on analysis and
modeling). The solution was to check for scalability problems with
master/slaves architectures e.g. in GoogleFS. As we will see in the chapter
on algorithms below Google uses quite a number of master/slaves
architectures without real scalability problems. The core requirement here
is that the master is only allowed to server meta-data. And those have to be
kept small. This is different to the NAS/SAN solution where a NAS server
plays the role of master for its filesystem (doing lookups and keeping
file/block associations) AND has to collect and serve the data to clients.

So with some architectural validations we could put the worries about
master bottlenecks to rest. And bandwidth as well as parallel access from
clients should be excellent due to the direct connection to the blades. In
case of disk crashes or bit-rot the new disk or chunk could be easily re-
created from replicas and in a much shorter time than in the classic
solution.

But other worries became much more visible: The API of GoogleFS e.g. is
non-standard, meaning Non-Posix. Typically in storage grids there is a
tight coupling between appliations and the grid. And a big question: what
should be done with the huge number of CPUs running in the grid? What
kind of work should the do in addition to serving data? How would
programming work? It became clear that some components were missing
in the picture and the diagram below shows a gateway and scheduler
service added:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 116 03/12/2010

Meta-data server

Meta-data server

Processor blade R1

Processor blade R2

Processor blade R3

client

C11

C12

C13

Lease:
R1:C11,
R2:C12…

MapReduce
API

Storage grid

Posix
File API

Grid
Gateway

Grid
Lib

Lease:
R1:C11,
R2:C12…
Scheduler

Grid
Lib

The gateway is needed to attach Posix based clients to the grid – for
applications which have no customizable storage interface. And the
scheduler needs to accept parallelizable jobs and distribute the tasks over
the blade CPUs using the classic map/reduce pattern that made Google
famous (see chapter on scalable algorithms below for an explanation).

In the end the following results were written down:

Grid Storage vs. NAS/SAN
• Posix-Grid gateway needed

• Special caching possible but not needed for
video (read-ahead needed?)

• Huge bandwidth and scalable

• Maintenance special?

• Proprietary?

• Parallel Processing possible

• Special Applications needed

• Questionable compatibility with existing apps.

• Disaster revovery across sites?
• Standard Lustre use possible? (framestore?)

• More electric power and space needed for grids

• Posix compatible

• Special caching difficult to implement in
standard products

• Hard limit in SPxx storage interface but
plannable and limited lifetime anyway

• Simple upgrades

• Standard filesystem support

• Dynamic growth of file systems via lun-
organization

• Maintenance effort to balance space/use

• Proven, fast technology

• Expensive disaster recovery via smaller replicas

• Several different filesystem configuration
possible

• Without virtual SAN hot-spots possible on one
drive

• Longer drive-rebuild times

Key points with grid storage: watch out for proprietary lock-in with grid
storage and applications. Watch out for compatibility p roblems with existing
apps. Without real parallel processing applications there is no use for the
CPUs, they just eat lots of power (atom?). You should be a ble to program
your solutions (map/reduce with Hadoop). Definitely more prog. Skills
needed with grids. NAS/SAN won‘t go away with grid storage (which is
specialized).

Some of the points were converted into possible student projects and the
list can be found at the end of the book. Of especial interest would be a

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 117 03/12/2010

Lustre implementation on our own grid (framestore seems to run such a
system successfully), a ZFS implementation on NAS and the
proxy/gateway servers and using Hadoop for transcoding and indexing
video content.

But not only the grid storage solution can be further optimized: the
master/slaves concept of the grid can be used just as well with the classic
NAS/SAN solution as can be seen here:

Unix
Client

NAS
1..3NAS

1..3NAS
1..3 FC

Diff. File Systems

Non-Std.
Interface

NAS
Master

Mas.
Lib

It comes as little surprise that the API problems of the grid solution show
up here as well.

Audio Server for Interactive Rooms

- concept of ubiquitous media, mobile devices, interactive rooms.
- Blog upload of media
- RWTH Aachen reference

<<picture interactive room>> (Stanford or RWTH)

Interactive rooms are facilities where users equipped with mobile
computing environment find infrastructure which enables collaboration
and communication, e.g. through the use of large TFT panels and beamers.
Users can interactively zoom in and out of presentations and have their
equipment present information on wall displays.

Everybody who has done software design in groups has notices the
difference laptops with wireless communications can make on group
performance. The presentation of visual or audio information at the correct
place in an interactive room is a problem that needs to be solved in this
context.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 118 03/12/2010

The audio servers developed by Stefan Werner at Hochschule der Medien
Stuttgart is part of an interactive room concept of the RWTH Aachen. Its
goal was to allow a large number of audio creation machines (without
speakers or audio hardware) to create audio content and control the
playback of the audio sound through a central audio server which
controlled a 7.1 audio system.

This design allowed audio content to be played in front of several different
flat panel screens in the interactive room, depending on the configuration
of the clients.

The software developed consisted of client and server parts and included a
kernel component for the MAC OS based clients. PMC encoded audio was
sent between clients and server. Distribution problems like near-realtime
requirement for playback (10ms response time), Jitter and clock scew
between machines had to be compensated for and new algorithms to
compensate for the effects of distribution had to be developed.

Software architecture of distributed audio server:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 119 03/12/2010

Distributed Rendering in 3DSMAX

Rendering is the process of media data creation from raw data using
matrix, differential and integral calculations. It is no surprise that these
calculations put a heavy burden on a single CPU.
Just to make the importance of distributed rendering clear I have taken
some numbers from Markus Graf’s thesis on “Workflow and Production
Aspects of Computer-Animations in Student-Projects” [Graf].

Creating a computer animation requires rendering the raw movie data
(animation data, light information, surface properties etc.) into frames. In
professional productions each frame takes between one half of an hour and
ninety hours to create. Some numbers: let’s say we want to make a movie
five minutes long. This means 5min. x 60sec. x 30frames and results in
9000 frames. Let’s assume only 10 minutes rendering time per frame we
end up with 1500 hours rendering time. Usually a frame consists of
multiple layers which can be rendered independently. This reduces the
individual rendering time per layer but adds to the frame rendering time.
At 5 layers per frame and only 5 minutes rendering time per layer we need
a whopping 3750 hours of rendering time.

This is when distributed rendering becomes an issue. The following pages
describe distributed rendering in 3dsMax. They have been written by
Valentin Schwind.

Understanding the Rendering Network Components of
3dsMax

The following components are common to all rendering networks:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 120 03/12/2010

• An Autodesk application that sends jobs to the rendering
network (the render client).
• At least one Windows or Linux computer that does the
rendering (the render node).
• A workstation that distributes and manages the jobs running
on the rendering network (the Backburner Manager).
• At least one workstation that monitors the jobs running on
the rendering network (the Backburner Monitor).

Note: Rendering networks for Discreet Inferno® , Flame, Discreet
Flint® , Discreet Fire® , Smoke, Autodesk Backdraft® Conform,
and Lustre require additional components in addition to those
shown. For more details about these rendering networks, see the
latest user's guide for Autodesk Burn™ and/or the latest
installation guide for Lustre.
The following list provides more detail about each component.
Render client—This is the Autodesk application running on an
SGI®, a Linux, or a Windows workstation. From here, you create
and send rendering jobs (such as a Flame Batch setup or a 3ds Max
scene) to be processed by the Backburner rendering network.
Backburner Manager—This is the hub of the background
rendering network running on a Windows 2000, XP, or higher
workstation. Jobs are submitted from the render client to
Backburner Manager, which then redistributes them among the
rendering nodes on the network. To view the progress of the tasks,
use Backburner Monitor.
You can either run Backburner Manager manually or run it as a
Windows service. Running the Manager as a Windows service
starts it automatically when the system is booted. Backburner
Manager then runs continuously until either the workstation is shut
down or the service is stopped.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 121 03/12/2010

Render node—This is a Windows or Linux workstation on the
rendering network that processes jobs sent by the render client and
assigned by Backburner Manager. Each render node runs
Backburner Server to allow it to communicate with the Backburner
Manager. Render nodes use common network protocols like
TCP/IP and/or Autodesk Wire® to obtain frames and then transfer
resulting rendered frames back to the render client.
Backburner Server—This is an application that runs on each
render node in the rendering network. Backburner Server accepts
commands from Backburner Manager to start and stop the
rendering engine that processes the frames or tasks on the render
node.
Rendering Engine—This is the Windows or Linux rendering
engine that renders frames from jobs submitted from Autodesk
applications. Many applications (such as 3ds Max) have their own
rendering engine; Inferno, Flame, Flint, Fire, Smoke, and
Backdraft Conform share a single rendering engine called Burn.
Cleaner is both its own rendering engine and a rendering engine for
Inferno, Flame, Flint, Fire, Smoke, and Backdraft Conform jobs
requiring transcoding between video formats.
The rendering engine is installed with Backburner Server on each
render node. You can install multiple rendering engines on a render
node. This allows the render node to render jobs from different
applications.
Backburner Monitor— This is the user interface for the
Backburner rendering network. It allows you to view and control
jobs currently being processed. Jobs in the rendering network can
be stopped, restarted, reordered, or removed entirely using the
Monitor. You also use Backburner Monitor to identify any render
nodes that are not working and check the overall health of the
rendering network.
Backburner Monitor runs natively on a Windows workstation but
can also be run through a Web browser from any workstation on
the network.

Using partitioning to speed things up

The above architecture allows the distribution of individual layers
and frames to rendering servers. This problem is “embarrassingly”
parallel which means it lends itself easily to parallelization because
the components (frames, layers) are independent of each other and
can be rendered separately.

It comes as no surprise that this method puts a limit on the overall
performance improvement that can be achieved: it is the time that a
layer or frame needs to be rendered because this task is done
sequentially on a server. Partitioning the movie into frames or
layers is a rather coarse grained way to distribute the workload. A
fine grained version would be to partition each frame or layer
further into smaller parts. Those parts could then again be
distributed to several servers and the overall time in the best case
reduced to the time needed to render a complete frame or layer

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 122 03/12/2010

divided by the number of fragments (if we assume no
communication or synchronization costs).

We have now increased the granularity of the partitioning of the
workload and ended up with better parallelization. This pattern is
frequently used in distributed systems and applies e.g. also to the
case of locking and synchronization: The more fine grained locks
are set, the better the parallelization of the task. We will discuss the
downsides like increased software complexity and danger of
deadlocks in the chapter on concurrency and synchronization).

Distributed rendering in computer animation is conceptually rather
simple but can still offer some surprises. When distributing
workloads to several server machines the managing software
expects identical interfaces on those servers, e.g. to accept certain
frame sizes etc. While the interfaces of the remote procedure calls
are all the same on those machines this does not mean that the
resulting rendering is correct. In case 32bit and 64bit machines are
used together rendering artefacts due to different rendering
precision can be seen. In case of coarse-grain partitioning frames
will show differences, in the fine-grained case the differences will
be seen between rectangles of the same frame or layer: Interface is
therefore not everything!

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 123 03/12/2010

Part III: Ultra Large Scale Distributed
Media Architectures

while (true)
{
identify_and_fix_bottlenecks();
drink();
sleep();
notice_new_bottleneck();
}

This loop runs many times a day.
(Todd Hoff, youtube article)

This recipe for handling rapid growth is probably very common. But the question
is whether this is all we can do? The following chapters are trying to answer the
following questions:
- What are the concepts used in large scale sites, patterns and anti-patterns?
- Can we model such sites and use the model to predict bottlenecks?
- Are there systematic ways to avoid scalability surprises?
- Certain statements show up repeatedly, e.g. “keep it very simple”. Can we
find parameters for simplicity in such sites?
- Do large sites favor certain types of software, e.g. open source?
- How do business models and architecture interact?
- What is the development methodology behind ultra-large sites? How do
they deal with extremely fast growth?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 124 03/12/2010

Analysis Framework
In this second part of the book we will look at many large scale sites like
wikipedia, myspace, google, flickr, facebook etc. Our goal is to find the core
principles and architectures used in scaling to such a size. And from there we will
extract essential components like distributed caching, replication and drill down to
the algorithms used in implementing them.

What kind of questions are we going to ask those architectures? The following list
names core categories for scalability:
- The role of hardware – when to invest in bigger irons instead of more
complicated software. Is it true that switching to 64bit hardware with its much
bigger memory support is what made MySQL scalable in the end?
- What are the core areas for scalability? Global distribution, CDN,
Loadbalancing, application servers, distributed caching, database partitioning,
storage system.
- What is the role of programming languages? Are there certain specialized
areas where on language dominates?
- What kind of software is used? Open Source or proprietary? Windows
possible?
- How do we minimize hardware costs for fault-tolerance?
- How is monitoring done?
- Is there a certain path to scalability that is mirrored by all sites? Where are
the main bottlenecks?

Last but not least we will try to describe the history of those sites as well. How
they started, what the major inventions were and finally where they might end up
in the near future.

An excellent starting point for site analysis is provided by Todd Hoff. He used a
list of questions for the architects of lavabit to describe their site, its architecture
and scalability solutions as well as the problems they had [Levison]. The core
parts of the questionnaire are listed below:

<<questionaire Hoff >>
 * What is the name of your system and where can we find out more about it?
 * What is your system for?
 * Why did you decide to build this system?
 * How is your project financed?
 * What is your revenue model?
 * How do you market your product?
 * How long have you been working on it?
 * How big is your system? Try to give a feel for how much work your system
does.
 * Number of unique visitors?
 * Number of monthly page views?
 * What is your in/out bandwidth usage?
 * How many documents, do you serve? How many images? How much data?
 * How fast are you growing?
 * What is your ratio of free to paying users?
 * What is your user churn?
 * How many accounts have been active in the past month?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 125 03/12/2010

 How is your system architected?
 * What is the architecture of your system? Talk about how your system works
in as much detail as you feel comfortable with.
 * What particular design/architecture/implementation challenges does your
system have?
 * What did you do to meet these challenges?
 * How did your system evolve to meet new scaling challenges?
 * Do you use any particularly cool technologies or algorithms?
 * What did you do that is unique and different that people could best learn
from?
 * What lessons have you learned?
 * Why have you succeeded?
 * What do you wish you would have done differently?
 * What wouldn't you change?
 * How much up front design should you do?
 * How are you thinking of changing your architecture in the future?
 What infrastructure do you use?
 * Which programming languages does your system use?
 * How many servers do you have?
 * How is functionality allocated to the servers?
 * How are the servers provisioned?
 * What operating systems do you use?
 * Which web server do you use?
 * Which database do you use?
 * Do you use a reverse proxy?
 * Do you collocate, use a grid service, use a hosting service, etc?
 * What is your storage strategy?
 * How much capacity do you have?
 * How do you grow capacity?
 * How do you handle session management?
 * How is your database/datatier architected?
 * Which web framework/AJAX Library do you use?
 * How do you handle ad serving?
 * What is your object and content caching strategy?
 * Which third party services did you use to help build your system?
 * How do you health check your server and networks?
 * How you do graph network and server statistics and trends?
 * How do you test your system?
 * How do you analyze performance?
 * How do you handle security?
 * How do you handle customer support?
 * How do you decide what features to add/keep?
 * Do you implement web analytics?
 * Do you do A/B testing?
 * How many data centers do you run in?
 * How do you handle fail over and load balancing?
 * Which DNS service do you use?
 * Which routers do you use?
 * Which switches do you use?
 * Which email system do you use?
 * How do you handle spam?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 126 03/12/2010

 * How do you handle virus checking of email and uploads?
 * How do you backup and restore your system?
 * How are software and hardware upgrades rolled out?
 * How do you handle major changes in database schemas on upgrades?
 * What is your fault tolerance and business continuity plan?
 * Do you have a separate operations team managing your website?
 * Do you use a content delivery network? If so, which one and what for?
 * How much do you pay monthly for your setup?
 Miscellaneous
 * Who do you admire?
 * Have you patterned your company/approach on someone else?
 * Are there any questions you would add/remove/change in this list?

Added:
- did you use or change to a certain programming language for certain areas and
why?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 127 03/12/2010

Examples of Large Scale Social Sites
Large sites eventually turn to a distributed queuing and scheduling mechanism to
distribute large work loads across a grid. (Todd Hoff, highscalability.com)

Architects are falling from their towers and starting to use common-sense
technology (like HTTP, RSS, ATOM, REST) more and more and are abandoning
'enterprise' patterns and tools (think JEE, Portals, SOAP etc).
http://log4p.com/2009/03/12/qcon-2009-2/

We will begin with a presentation and discussion of some hopefully prototypical
sites. Most of the papers or talks can be found at the excellent site from Todd Hoff
on scalability. www.highscalability.com. Todd Hoff collected numerous articles
and presentations and frequently creates abstracts which we are going to use here
heavily.

Wikipedia
This site has been chosen for several reasons: first of all information about
its architecture is public. Second because of its size and focus on content it
seems to represent a certain – older – type of Web2.0 site.
The discussion mostly uses information from [Mituzas] and [Bergsma].

Interesting aspects:
- content delivery network and geographical distribution
- mysql partitionings and clusters
- hardware choices
- monitoring and tracking
- application architecture and scalability
- load balancing technology used
- media related optimizations (storage, compression)

Myspace
This is one of the few Microsoft-based large scale sites. We can use a short
wrap-up of a Dan Farino talk by Todd Hoff [Hoff] which highlights some
very interesting aspects:
[Farino] Dan Farino, Behind the Scenes at MySpace.com,
http://www.infoq.com/presentations/MySpace-Dan-
Farino;jsessionid=3219699000EB763C9778865D84096897

- Correlation of registered users and technology changes needed.
This really is a nice list.
- Database partitioning used (vertical, horizontal)
- The role of caching
- Tooling on Windows platforms

The diagram below shows the first phases of Myspace evolution. It started
as a rather simple architecture with two web servers and one db server
with direct attached storage (disks). After reaching 500000 users this
architecture stopped working. Vertical partitioning was used to split the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 128 03/12/2010

main database into several databases with different topics. Soon updating
the now distributed instances became a major problem.

As a first scaling measure the disks were put into a San and the database
server relieved. Later came a switch to horizontal partitioning of the
database.

Begin: simple
architecture

ws

ws
DB

Vertical partitioning ws

ws

DB
server

San for DB relieves
DB server

ws

ws

DB
San

DB
server

DB
server

DB
server

Horizontal partitioning Ws
Shard API DB

San

DB
serverDB

server
Ws

Shard API

Further growth brought a new bottleneck – the SAN. Some applications
were hitting certain discs within the SAN very hard and caused excessive
load. Other discs in the SAN were idling. This was solved by moving to a
virtual SAN which can internally re-organize data blocks transparently and
thereby removing hot-spots on certain discs.

Then came a rather big change: the introduction of an object cache. The
creators of Myspace mention that they should have introduced a cache
much earlier (actually, most large-scale architectures use memcached or
something like it). As can be seen the Myspace team had a focus on the
database and storage layer for a long time, optimizing the hell out of it.
The new object cache did probably change read/write ratio and overall
traffic numbers considerably and it is questionable how the database and
storage layer might have evolved with an earlier introduction. Also, the
fine dependencies between cache and database organization and query
behavior (see chapter on database partitioning later) made an optimal
integration of the cache rather hard.

Finally the database servers were migrated to 64-bit architectures (again
rather late but windows OS was not ready earlier) and equipped with a
whopping 64 gigabyte of RAM. Again, not really a surprise given the
database centric scalability of myspace which was used for a long time.
The experience of moving towards a 64 bit architecture was very good and
it looks like databases can really use the advanced hardware now possible.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 129 03/12/2010

This is not the case e.g. for a huge java VM running on such a box which
would spend hours in garbage collection.

Virtual San

Object Cache

Ws
Shard API DiscDB

server

DB
server

Ws
Shard API

Disc
Disc

V
S
A
N

Ws
Shard API DiscDB

server

DB
server

Ws
Shard API

Disc
Disc

V
S
A
N

Dist.
Cache

64 Bit/64 Gig Ram

Ws
Shard API Disc

DB
server

DB
server

Ws
Shard API

Disc
Disc

V
S
A
N

Dist.
Cache

Flickr
[Hoff], [Henderson]
Again picked for its huge multi-media load together with community
functions. A rather detailed list of features on highscalability.com.

- API
- Search
- Load Balancing
- Database Org.
- Master-master shards

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 130 03/12/2010

From Henderson, Scalable Web Architectures,

Throughput numbers: 40000 pictures, 100000 cache operations, 130000
database queries
Per second!

Flickr is based on the LAMP stack with the main focus on the data store
(“push problems down the stack” approach). This principle is used in
sessions as well: no state is best. Keep session state in cookies. Do NOT
store local sessions on disk (even memory is bad). Henderson suggests
centralized sessions (what is the difference?)
Pull additional information from DB but avoid per page queries. But
Henderson claims that scaling the DB is hard.

Loadbalancing: hardware expensice, software solutions tricky but nice
with group communication providing virtual IPs with fail-over. Also layer
7 dispatching on hashed URLs, e.g. to cached pages in different cache
servers (CARP)

Asynchronous queuing: some tasks take time and need to be done
asynchronously. Image resizing e.g.

Relational data: best is to buy bigger hardware. Due to 90/10 ratio of reads
to writes master – slave replication is OK. Flickr does 6 reads per write.
But writes do not scale!

Caching: watch out for invalidation problems with shared memory.
MySQL query cache gives bad performance (not the only ones who say
so). Every write flushes the cache. With 10 reads per write there is no
chance that cache values can be re-used.

Write-through and write back problems (mention Birmans discussion of
distributed filesystems, NFS does have consistency problems with

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 131 03/12/2010

caching). We need a chaching strategy list. Sideline caching with
memcached where application writes to DB directly and then updates
cache.

High-availability. Master-Master replication, collision problems, schema
design to avoid collisions. Replication lag, auto-increment problem (some
are saying don’t ever use it..)

Data Federation: vertical partitioning of tables which do not need to be
joined. Split tables e.g. into primary objects (users) and store a reference to
those primary objects in a central lookup table which says in which cluster
the user data are stored. Migration problem between shards, locked data
structures needed. (bucket-split approach used by wordpress does not need
central lookup – the association between cluster-server and user data can
be calculated from the splits. Needs good numbering scheme for users and
application logic gets complicated in case bucketsize varies due to
machine differences.

And it raises the number of db connections needed per page creation.
Facebook approach: try to keep a user and his friends together on one
shard – but how do you know where to split? Dual tables create joins
across separate tables? Simply duplicate the data and let the application
logic deal with the two updates needed in case of changes…
Do not use distributed transactions, accept inconsistencies and catch them
over time with repair tasks running in the background.

Multi-site HA: most use master for write and backup sites for read only.
SPOF for writes but hot/hot or master/master is very hard. Master/Master
trees for central cluster? AKADNS like service with Akamai managing
your domain (latency, load split). Are more smaller datacenters really
cheaper than two big ones? (compare with Theo Schlossnagles local DNS
solutions for short latency requests) (Amazon is opening a CDN in 3
continents where static data will be available from S3)

File Serving: easy, many spindles needed. In memory, not on disk. Limits.
Inavlidation logic: use new URL after changes, avoids stale cache
entry.CDN: cachen invalidation problem. Push content to them or they
reverse proxy you. Virtual versioning: Requests contain version and are
stored with version information within a cache. Mod_rewrite converts
versioned URL to path.

Authentication: permission URLs (waterken?) embedded tokens, self-
signed hash which can be checked without going to DB. Invalidation of
permission URLs is tricky – needs automatic expiration.

File Storage: stateful == bad. Move the problem up the stack again – do
you need RAID with collocated data? File size – does it make a
difference? Flickr filesystem without meta-data. Apps hold meta-data in
special servers.

<<presentation on redmine>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 132 03/12/2010

master-master shards
meta-directory für php
indirection, transparency lost but cachable
dual-tree central DB (master/slave)

master-master plus read slaves
db schema questions: where do comments go?
de-normalization
per features assessment

filesystem: picture
read/write separation, much more reads, parallel?
meta-data and write in master only, apps must take care of meta-data
special filesystem

session state in cookie, signed
good loadbalancing and availability
load spikes: first day of year plus 20-40 percent

solution: dynamically turn off features (195)
user visible transparency break (diagram)
needs monitoring
cal henderson: no math, no pre-calculations, measure and monitoring,
calculate trend,
peaks due to catasthrophes
lessons learned:
feature, query awareness,
money?
backup: 1,2,10,30 days

Facebook

PlentyOfFish
From [Hoff]
- supposedly run by only one person??
- Business model and technology
- Storage and growth
- Database strategy
- Click Through Rates and advertising
-

Twitter – “A short messaging layer for the internet
(A.Payne)”

[Hoff], [Blaine]
A Rails application!
Stores images for more than one million users on Amazon S3.

Twitter's approach to solving their performance and scalability issues is a
great example of thinking big while taking small steps. The team set about
iterative removal of bottlenecks. Firstly they tackled multi-level caching
(do less work), then the message queuing that decouples API requests
from the critical request path (spread the work), then the distributed cache

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 133 03/12/2010

(memcached) client (do what you need to do quickly). Evan was asked
about strategic work to take them to the next 10x growth. His responded
that they were so resource constrained (can you believe there are only 9 in
the services engineering team) and so under water with volume that they
have to work on stuff that gives them most value (take small steps). But
crucially, they create solutions to the bottlenecks making sure that
whatever they fix will not appear on the top 3 problem list again (which is
thinking big - well, as big as you can when you're growing like a hockey
stick). http://apsblog.burtongroup.com/2009/03/thinking-big-and-taking-
tweet-sized-steps.html

http://qconlondon.com/london-
2009/presentation/Improving+Running+Compone
nts+at+Twitter
The following is an excerpt from an interview by Bill Venners with
Twitter engineers [Venners]:
The concept of iterative removal of bottlenecks also applies to the way
languages were handled at Twitter. Ruby was used both in the web front-
end as well as the backend of Twitter. While the flexibility of Ruby was
appreciated in the front-end it showed certain deficits in the backend:
- Stability problems with long-lived processes like daemons
- Excessive memory use per Ruby process and bugs in the garbage
collector
- Missing optional types in the language (like soft-guards in E). The
developers noticed that they were about to write their own type system in
Ruby. This is the opposite to what developers using statically typed
languages notice: that they are writing their own dynamic mechanisms
over time. Probably a good argument for both mechanism in a language.
- No kernel threads in Ruby and therefore no way to leverage multi-
CPU or multi-core architectures besides running several Ruby runtimes in
parallel (which is the typical advice given for developers in Erlang
runtimes, E vats and all other single-threaded runtimes but did not work
due to excessive memory use by Ruby). The developers were willing to
sacrifice some consistency and comfort for more threads. Scala with its
shared nothing architecture.

What does this tell us about language use in ultra-large scale architectures?
Language does both: it does not matter (lots of different languages used in
those sites) and it matters a lot (with growth some language concepts are
nor longer optimal and need to be replaced by different concepts). Ideally
the same language would be able to offer alternative programming
concepts. And finally: the stability of an “old” virtual machine like the
JVM is not to be scoffed at.
Interestingly the Twitter developers reported also that adding functional
concepts provided to be very useful. They learned to appreciate
“immutability” when later on they changed some functions back to shared
state multithreading because they noticed that not all problems were well
suited for the use of functional actors. And finally they learned that it is
beneficial to test new technologies in important but perhaps not mission
critical areas first.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 134 03/12/2010

Digg

Google
- Sorting with MapReduce
- Storing with BigTable
- Will discuss both later in algorithms, together with the API to the
engine
-

YouTube
Picked for its huge multi-media load due to video serving.
Again a short wrap-up by Todd Hoff on the architecture [Hoff], based on a
google video.
- sharding
- dealing with thumbnails
- caching strategy
- Video Serving
- CDN use
- Replication solution

Amazon
[Hoff]
- service architecture
- framework haters
- shared nothing
- eventually consistent

we will discuss the EC2 architecture later.

LiveJournal Architecture
Probably one of the top influencial sites (memcached etc.). Good
presentations available by Brad Fitzpatrick of Danga.com

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 135 03/12/2010

LavaBit E-mail Provider
(for the excellent questionnaire, their DB scaling approach and the
difficulty to scale-out a single server application like e-mail, the problems
of web-mail with IMAP and no client caching, wrong read granularity etc.)
[Xue], [Levison]

Stack Overflow

[Hoff] Stack Overflow Architecture,
http://highscalability.com/stack-overflow-architecture
http://blog.stackoverflow.com/2008/09/what-was-stack-
overflow-built-with/

[Atwood] Jeff Atwood, Scaling Up vs. Scaling Out: Hidden Costs
http://www.codinghorror.com/blog/archives/001279.html

If you need to Google scale then you really have no choice but to go the
NoSQL direction. But Stack Overflow is not Google and neither are most
sites. When thinking about your design options keep Stack Overflow in
mind. In this era of multi-core, large RAM machines and advances in
parallel programming techniques, scale up is still a viable strategy and
shouldn’t be tossed aside just because it’s not cool anymore. Maybe
someday we’ll have the best of both worlds, but for now there’s a big
painful choice to be made and that choice decides your fate. [Hoff] Stack
Overflow Architecture

The quote by Todd Hoff on the architecture of Stack Overflow shows why
I am discussing it: Stack Overflow is a medium sized site, built on the
Microsoft stack (like PlentyOfFish) and it does use scale-up instead of
scale-out like most of the other sites here. There are some subtle

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 136 03/12/2010

dependencies between hardware solution, software and finally
administration costs which become clear when we take a look at the
components used by Stack Overflow [Atwood] to achieve 16 million page
views a month with 3 million unique visitors a month (Facebook reaches
77 million unique visitors a month) [Hoff]

Lenovo ThinkServer
RS110 1U, 4 cores, 2.83
Ghz, 12 MB L2 cache, 8
GB RAM, 500 GB RAID
1 mirror array

Lenovo ThinkServer
RS110 1U, 4 cores, 2.83
Ghz, 12 MB L2 cache, 8
GB RAM, 500 GB RAID
1 mirror array

Lenovo ThinkServer
RS120 1U, 8 cores, 2.5
Ghz, 24 MB L2 cache,
48 GB RAM, RAID 10
array. SQL Server with
Full text search
(Lucene?)

Lenovo ThinkServer
RS110 1U, 4 cores, 2.83
Ghz, 12 MB L2 cache, 8
GB RAM, 500 GB RAID
1 mirror array

NAS/SAN

For other site

2 hosts for stack
overflow, .NETLB

LB

Web
ServerWeb

Server

Web
ServerFire

walls

Web
ServerVPN

Gbit
Eth.

Jeff Atwood mentions a couple of very interesting lessons learned in the
context of a scale-up solution based on mostly commercial software
(ASP.NET MVC, SQL Server 2008, C#, Visual Studio 2008 Team Suite,
JQuery, LINQ to SQL, Subversion, Beyond Compare, VisualSVN 1.5):

- Scale out is only possible with open source software, otherwise the
license costs are just too high.
- Administrating your own servers is necessary because providers
are unable to do so
- Go for maximum RAM size because it is the cheapest way to scale
- High-speed network equipment in the context of fault-tolerance is a
huge cost factor (load balancers, firewalls etc.)
- DB Design done wrongly (copied from wikipedia) needs
refactoring due to the large number of joins needed. Even a DB that is
mostly in memory cannot do many joins. Go for a joinless design
(BigTable approach).

We will take a look at the DB design of Stack Overflow in the section on
DB partitioning to see what went wrong.
(http://sqlserverpedia.com/wiki/Understanding_the_StackOverflow_Datab
ase_Schema)

There is much more to learn from Stack Overflow. Jeff Attwood compares
scale out architectures with the decision of PlentyOfFish to buy a monster

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 137 03/12/2010

HP Proliant server and comes to some surprising conclusions when ALL
costs (power, licenses etc.) are calculated. We will discuss this in the
chapter on datacenter design where we will take a look at extra costs
incurring due to centralization as well.

Massively Multiplayer Online Games (MMOGs)

“You have gained a level” was the title of a recent special edition of the gamestar
magazine focussing on the evolution of MMOGs. And there is no doubt that
MMOGs have grown up quite a bit. This is not only reflected in the quality of the
graphical representations e.g when groups of 50 participants get together to
perform a raid against some common enemy monster. The sheer numbers of
participants which go into the hundreds of thousands concurrent users and several
millions of subscribers show the social acceptance of online gaming as a hobby.
How serious in online gaming? There is real money made from selling characters
or equipment through auctions for example. This has rather large ramifications for
the technological base of those online games: once serious money depends on the
correct storage of game state transactional features become very important.
Gamers hate to lose anything due to server crashes. And having said the “S-word”
already it is clear that most MMOGs today are client/server based due to security
reasons (cheating is a major concern for gamers) and also because it allows for a
rather attractive business model: montly payments from gamers.

<<stiegler: c/s model>>

Player 1
Host

Player 1
Host

Player 2
Client

Player 2
Client

Player 3
Client

Player 3
Client

Company
Communication

Company
Communication

GameGame

R
e

q
u

e
st

CPU
Game Hosting

CPU
Game Hosting

DB
Char Data

DB
Char Data

This means the architecture is a rather traditional client server model. Peer-to-peer
approaches to gaming are discussed as well but there seems to be currently no
way to run the same numbers of users on those architectures – not to mention the
fact that with a client server architecture the company running the servers has an

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 138 03/12/2010

easy way to bill clients for the services. Also, game companies fear cheating in
peer-to-peer systems.

Even features like teamtalk – realtime communication between game participants
seem to require servers at this moment.

Support for collaboration between participants depends on each game. Some
games allow the development of new worlds by players. All of the games allow
collaborative actions like raids. Some games nowadays use peer-to-peer
technologies like bittorrent to download patches and upgrades to player machines.

The data exchanged during a game are surprisingly small. Sometimes only 50 to
60 k are needed to synchronize actions – a good fit to modem connection lines.

Cheating is a problem. Every bug will be exploited by players as well. Sometimes
the game servers can detect manipulation or the use of illegal client side software
and a player might get punished (put into jail or in the worst case lose the game
figure that had been created spending countless hours with the game)

- social superstructures (money, love, guilds, cheating)
- collaboration (raids, development of worlds by users/groups), hotspots,
flash-crowds
- extra channel communication (direct talk)
- patches and downloads via p2p
- serverfarms, clusters, proxies, worldserver, db-server, user splitting
- communication data
- large numbers (players, servers, money)
- distribution on content level through worlds.
- Transactions and availability

What is the current architecture of large online games like Everquest from Sony?
The Game is divided into so called worlds which provide an easy way to split
workload. More than 1500 servers worldwide run the game, split into cluster of 30
Machines per world. There are 3 types of server machines: proxy servers (doing
fast calculations), world servers (holding world wide state and database servers
which store the persistent state of each player and world.

But let’s hold on a bit before diving into the technical details and take a look at
something that it perhaps even more important for MMOGs than the vast
technical arrays of server machines: A clear concept of “content mapping” onto
the available hardware. This is basically simply a form of partitioning only that in
the MMOG areas this partitioning is an intricate play between game story and
content and physical hardware and its networking. An according to [Scheurer] if
we talk about database sharding today we are using a core concept from game
design.

On Shards, Shattering and Parallel Worlds

The evil wizard Mondain had attempted to gain control over Sosari
a by trapping its
essence in a crystal. When the Stranger at the end of Ultima I defea

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 139 03/12/2010

ted Mondain and
shattered the crystal, the crystal shards each held a refracted copy
of Sosaria.
[http://www.ralphkoster.com/2009/01/08/database_sharding_came
_from_uo/] (found in [Scheurer])

A shard is a copy of the game world. Players belong to a certain
copy only and this shatters the world into different copies. Because
of the binding of users to shards there is no single-world (or
continous world) illusion. Users are aware of the split nature of the
world, especially if they can even experience some IT-related
evidence like the need for server transfers. So why do MMOGs like
WoW use shards at all? Sharding or shattering allows for very
efficient mapping between game content and server infrastructure.
It can happen on different levels of the game world: copies of huge
parts of the world are called realms, copies of small sections are
called instances. The latter shows that not only content but also
actions can be mapped to separate infrastructure elements.. The
smaller the section the better it is suited for high-performance
action like PvP (player vs. player) because the number of
participants is limited.

But as Scheurer points out, shards need not only be considered a
game deficit due to technical necessities. Sometimes having
different copies of a world allows players to change the world, e.g.
after running into social problems within a certain shard. Different
play modes of a game can be represented with shards as well e.g.
fighting vs. non-fighting. And finally, games can cover the
sharding on the content level e.g. by embedding the shards as kind
of parallel worlds within the game story.

So how does a sharded architecture look like? The following gives
some examples.

Shard Architecture and visible partitioning

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 140 03/12/2010

From: Project
Darkstar, Sun

Player 1Player 1

Login ServerLogin Server Auth DBAuth DB

PID 1PID 1 Session-ID 984Session-ID 984

okok okok okok Instance ServersInstance Serversfullfull fullfull

PID 1PID 1

handover

Game DBsGame DBs

PID 1PID 1
Session-ID 984Session-ID 984

Updates via PID

Log via Session-ID

Distribution ServerDistribution Server

handover
(Both Players will join

The same instance)

Updates via PID

Log via Session-ID

PID 1PID 1
Session-ID 984Session-ID 984

Instance-ID 17Instance-ID 17

Instance-ID 17Instance-ID 17

Continuous

World Servers
(Clusters)

Continuous

World Servers
(Clusters)

Payment Information

Realm Selection Server
(Realm List / Realm DB)

Realm Selection Server
(Realm List / Realm DB)

R1R1

Player 2Player 2
PID 2PID 2

Continuous

World Servers
(Clusters)

Continuous

World Servers
(Clusters)

R2R2

fullfull

PID 2PID 2
Session-ID …Session-ID …

Instance-ID 17Instance-ID 17

PID 2PID 2
Session-ID …Session-ID …

Instance-ID 17Instance-ID 17

(R1 and R2 are in the

same Realm Pool)

Realm Pool 7Realm Pool 7

(Distribution Servers are often

split per Realm Pool)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 141 03/12/2010

Game server 1

game

System
Mgt.

Proxy

……….

Load Control

System
Mgt.

HW

Game server n

game

System
Mgt.

HW

player

Load
balancing

Load
monitor

Game
World

Game
World
portal

Shard 1 Shard n

C1
Serv

C2
Serv

C3
Serv

shard
Serv

continent 1 continent 2 continent 3

C1
Serv

C2
Serv

C3
Serv

shard
Serv

Game
World
portal

Game
server
and
control

Server
transer

World
copies

player

Shardless Architecture and Dynamic Reconfiguration

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 142 03/12/2010

Game

Binary space partition tree

Export of
game map

Coordinates and visibility
information of static
world elements

Area of
mutual
visbility

Grid node computing and administrative elements

Borders: in-process, inter-process, inter-virtual-n ode, inter node

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 143 03/12/2010

Static bsp to compute grid mapping

Connected
by visibility

Fast comm.

Could be
moved to
different
node

Dynamic reconfiguration of partitioning based on
local inconsistency and static visibility regions

Area 1

Area 2

Mutual visibility zone

Locally consistent
through event
propagation

Processing
element 1

Processing
element 2

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 144 03/12/2010

Dynamic reconfiguration of partitioning based on
local inconsistency and static visibility regions

Area 1

Area 2

Mutual visibility zone

After area split

Area 3

Mutual visibility zone

Processing
element 1

Processing
element 2

Processing
element 3

Feature and Social Management
[Stiegler] people spreading, (e.g. instances)
“dead MMO slide”: temporal content mapping needed

Good MMO

Dead MMO

Awesome MMO!

Release of a

new feature

time

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 145 03/12/2010

Content level: game balancing to avoid flash crowds and h otspots

Interesting new game
elements attracting
players

Traffic
controlled
through
quests/tasks

Deployment day
flash crowds

Daily changing user
behavior

Lifecycle development
of users

Feature management across time

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 146 03/12/2010

New
content

players

Beta testers

Game world

Security in MMOGs
<<rene Schneider on tainting in WOW, Kriha on attacking games,
Secondlife copy bot etc., EU study>>

Methodologies in Building Large-Scale Sites
-open source
- instrumentation
- customization
- multi-component
- tracing and logging
- no special language
- permanent changes
- second order scalability (extension, rebuild in case of crash)
- cheap hardware
- no licenses
You are not going to build an ultra-large scale site? Does this mean the following
does not matter to you? Think again. The goal of this exercise is to create
awareness for possible scalability problems and the concepts for solving them.
Even in smaller applications you will then be able to identify possible bottlenecks
quickly and design a scalability path up front.

Limits in Hardware and Software – on prices,
performance etc.

• DB table sizes possible? Connection numbers and multiplexing
options?
• server failure rate of 3.83%
• Google query results are now served in under an astonishingly fast
200ms, down from 1000ms in the olden days
• 100s of millions of events per day

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 147 03/12/2010

• servers crammed with 384 GB of RAM, fast processors, and
blazingly fast processor interconnects.
• 1TB of RAM across 40 servers at 24 GB per server would cost an
additional $40,000.
• 1U and 2U rack-mounted servers will soon support a terabyte or
more or memory.
• RAM = High Bandwidth and Low Latency. Latency always
underestimated.
• a cluster of about 50 disks has the same bandwidth of RAM, so the
bandwidth problem is taken care of by adding more disks.
• bandwidth of RAM is 5 GB/s. The bandwidth of disk is about 100
MB/s.
• Modern hard drives have latencies under 13 milliseconds. When
many applications are queued for disk reads latencies can easily be in the
many second range. Memory latency is in the 5 nanosecond range.
Memory latency is 2,000 times faster.
• while application processing can be easily scaled, the limiting
factor is the database system.
• Even the cheapest of servers have two gigabit ethernet channels
and switch.
• I'd much rather have a pair of quad-core processors running as
independent servers than contending for memory on a dual socket server.
• MySQL scales with read replication which requires a full database
copy to start up. For any cloud relevant application, that's probably
hundreds of gigabytes. That makes it a mighty poor candidate for on-
demand virtual servers.
• Max. 250 disk writes per second and disk.
• 15000 writes/sec against memcachedDB
• Kevin rose has 40,000 followers. You can’t drop something into
40,000 buckets synchronously. 300,000 to 320,000 diggs a day. If the
average person has 100 followers that’s 300,000,000 Diggs day. The most
active Diggers are the most followed Diggers. The idea of averages skews
way out. “Not going to be 300 queries per second, 3,000 queries per
second. 7gb of storage per day. 5tb of data across 50 to 60 servers so
MySQL wasn’t going to work for us.
• Queries per second?
• SATA drives: problem of “silent read error” where a read returns
less data than requested. [Webster]
• HDTV means a seven-fold increase in bandwidth and system
storage required
• Streaming video delivery: data rates up to 1.2 gigabytes/sec in 4k
Non-linear-editing formats [Coughlin].
• Disk cache: 32Mb-64Mb
(http://www.heise.de/newsticker/Serverfestplatte-mit-64-MByte-Cache--
/meldung/136501)
• Cloud Storage numbers (comparison Rackspace vs. EC2)
• IOPS numbers

See also the Google hardware description on CNet and Heise (the h2 unit)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 148 03/12/2010

From: Stephen Shankland, CNet, http://news.cnet.com/8301-1001_3-
10209580-92.html

A History of Large Scale Site Technology
Todd Hoff started a list of technological breakthroughs in the development
of large scale sites in his article on cloud based memory. [Hoff]

• It's 1993: Yahoo runs on FreeBSD, Apache, Perl scripts and a SQL
database
• It's 1995: Scale-up the database.
• It's 1998: LAMP
• It's 1999: Stateless + Load Balanced + Database + SAN
• It's 2001: In-memory data-grid.
• It's 2003: Add a caching layer.
• It's 2004: Add scale-out and partitioning.
• It's 2005: Add asynchronous job scheduling and maybe a distributed file
system.
• It's 2007: Move it all into the cloud.
• It's 2008: Cloud + web scalable database.
• It's 20??: Cloud + Memory Based Architectures

Growing Pains – How to start small and grow big
Top down planning of scalable solution needs a clear goal and lots of
money in the first place. Typical social sites start small. How exactly
interact users, site-management, technology and infrastructure services
provided by others to allow growth? Does a computing cloud where you
can rent computing power and services really help a startup company?
Option: visit a local social community site, e.g. from a radio/TV station?

Feature Management

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 149 03/12/2010

Avoid flash crowds, distribute functions, spread your population.
Examples in the section on virtual worlds and MMOGs

Patterns and Anti-Patterns of Scalability

Think end-to-end first
Before you start with punctual scalability measures (e.g. sharding the
database) you should have an overall architecture with the major tiers
including caching layers

Meta is your friend
- using a meta-data directory up front for flexibility and virtualization
(table of shards, director in media grid) Problem: as soon as clients
directly connect to sub-level components the meta directory can no longer
virtualize the connection.

Divide and Concquer
- sharding and partitioning. Problem: as soon as the shards scale no longer
or the partitions do not fit anymore. Mostly caused by one variable
exceeding all scales (e.g. power users on one shard, one big app on one
disc makes the disk subsystem unbalanced)

- copy and replicated to allow many concurrent channels. Problem:
how to keep the copies synchronized
- caching: Problem: how to invalidate copies, e.g. by generating new
references instead of deleting old ones.
- Breaking transparency (from SAN to DB sharding to feature
shutdown in case of overload)<<diagram>>

Parallel does it better
Request resources in parallel to avoid sequential access times – but
remember that this will also increase your communication traffic and
bandwidth needs and put load on many machines. Use a scheduler
framework for this.

Same size same time
Build requests with roughly the same size and timing behavior following
the RISC pattern in CPUs. Scheduling is better for equally sized requests.

Build Batches
Collect requests and send larger units. But respect the “same size same
time” pattern as well.

- no harmless function: Have an architect look at every function that uses
resources or crosses tiers. This includes especially also every form of
query against the database. Even better is to calculate the effects of a new
feature on the overall architecture across all layers and tiers (this again
requires the existence of a canonical architecture diagram for your
application). Make features switchable so you can turn them off in case of
problems or overload.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 150 03/12/2010

Async is your friend
Do whatever is possible outside of a request. Per-process, parallel-process
or post-process but do not use request time to calculate expensive things.
Use a queue mechanism for safe deposit of asynchronous requests.

Profiling is your friend
Measure everything (requires instrumentation which requires open source
in most cases)

Only 100% will do
This is an anti-pattern for scalability. Think about where you can cut
corners by relaxing certain rules for consistency. The road is the goal (use
eventually consistent algorithms wherever possible within the business
goals.)

Performance problems are sand dunes – they wander
This is a lesson that is sometimes hard to accept: when you have fixed a
specific performance bottleneck or problem, the problem immediately
shifts to a different spot in your architecture. When you think twice about
this effect it is a rather direct derivative of amdahls law: removing the
bottleneck with the biggest impact simply turns the next bottleneck into
the biggest one.
The following paper from facebook is a good example:
Real-World Web Application Benchmarking by Jonathan Heiliger
explains why Facebook uses a custom testbed and approach and not e.g.
SPEC [Heiliger]. An important statement of the article is that Facebook
saw a major effect of the memory architecture of their platform. It shows
how careful one has to be with statements on what gives good
performance and throughput: it is very context dependent:

As a social network the Facebook architecture is far from common - even
though it may look like a regular 3-tier architecture in the beginning. They
keep almost everything in RAM using huge clusters of memcached and
use many cheap UDP requests to get to those data. This means that their
access paths are already highly optimized and different to e.g. Google with
its big distributed file system. Only then will memory access time become
the next big bottleneck. And it is a reminder that all things said about
performance are relative to platforms and architectures and what fits the
one need not fit the other.

Finally the paper shows that performance/watt is a critical value for
datacenter use.

Integrate lessons learned at eBay: Randy Shoup, [Shoup]

Test and Deployment Methodology
- how to test concurrent systems
- how to generate load
- where to test: rapid deployment, production tests
- start with a single server in production

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 151 03/12/2010

- quality aspects?
- A/B testing with split user groups
- dynamic feature enablement or shutdown
- tool development
- monitoring and profiling
- external testing (e.g. Gomez)

Client-Side Optimizations
(with Jakob Schröter, http://www.slideshare.net/jakob.schroeter/clientside-
performance-optimizations
Probably the best information you can currently get on this subject.

wir hatten vor zwei Wochen nach Ihrer Veranstaltung „Ultra-large scale
sites“ schon mal über das Thema Frontend bzw. client-side performance
optimization gesprochen. Also was man bei großen Webseiten beachten
sollte, damit die Webseite nicht nur schnell auf den Servern generiert wird,
sondern auch schnell im Browser dargestellt und ausgeführt wird. Gerade
durch immer anspruchsvollere Layouts und mehr Logik auf den Clients
(JavaScript, AJAX, Flash, …) sehe ich dieses Thema als wichtigen
Bestandteil der Performance-Optimierung an, welches leider zu häufig
auch vernachlässigt wird, da sich viele Entwickler sehr auf die Serverseite
konzentrieren.

Important Keywords:
order and position of loading files
 - file references in <head> are loaded before page is rendered (so watch
out, which files really need to be loaded)
 - if possible, load additional files after DOM rendering
 - load css before js files

optimize images
 - PNG often smaller than GIF
 - remove unneeded meta data in image files

avoid and optimize http requests (which also helps unloading servers)
 - combine js/css files
 - use image css slices (combine images to save http requests)
 - use more than one host for serving files (CDN) due to 2-parallel-request-
limit in most browsers
 - avoid http redirects

shrink data
 - gzip compression for html, xml, css, js…
 - minify js/css (e.g. YUIcompressor, Dojo ShrinkSafe, ...)

intelligent browser caching
 - use etag header
 - use expire header
 - use http 304 not modified

js performance

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 152 03/12/2010

 - reduce onload actions
 - js best practices
 - choose the right AJAX library

tools
 - Yahoo’s YSlow Firefox extension
 - Yahoo’s smushit.com (image compressor without quality loss)
 - speed limiter for testing site performance (e.g. webscarab)

Soweit meine ersten Ideen. Yahoo ist sehr aktiv in dem Bereich, unter
Anderem gibt es hier eine interessante Präsentation bzgl. Bildoptimierung:
http://video.yahoo.com/watch/4156174/11192533
Zum Beispiel wird auch genannt, dass bei eine Verzögerung von 500ms
beim Laden der Google-Suchseite die Anfragen um 20% zurück gingen,
oder bei Amazon 1% der Käufe aus blieben als die Seite 100ms langsamer
geladen wurde. Dies zeigt, dass minimale Performanceunterschiede
durchaus auch Auswirkungen auf das Geschäft haben.

A Model for RASP in Large Scale Distribution
- SPIN/Promela
- canonical architecture
- queuing theory
- simulations
- failure tree models

After looking at the various large scale sites above we need to ask ourselves
whether we are able to define some core architectures used by those sites. Let us
start with the classic web site architecture to have something to compare to.

Canonical or Classic Site Architecture
Reception, user agent, distribution, processing, aggregation, retrieval,
storage, global distribution, DNS aliasing, load balancing equipment,
media storage, database setup and replication

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 153 03/12/2010

From: McLaughlin et.al., IBM Power Systems platform

For availability and scalability reasons lots of replicated components are
needed as shown in the diagram below. Almost every layer needs load-
balancing, switching and component replication.

Geo-
Distrib./

DNS

Load
Bal.

RP

RP

RP

Static
data

Load
Bal.

Local
DNS/alias

CDN

AS

AS

AS

App
server

LB

DS
read

DS
write

DS
read

DB
server

DS
read

Virtual
SAN

M

M

M

Mem

cached

LB

C

C

C

cache

Media Storage
File Systems

replic

Repl.

Repl.

Repl.

Search Servers

What are the conceptual building blocks for such sites? The diagram
below lists some components used by ultra-large scale sites.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 154 03/12/2010

Global
Distribution/

routing

Content
Delivery
Network

Static
Caching

layer

CARP
caches

Application
Layer

DB partitions

Virtual
StorageFile

systems

Search
engine

Switching/

Load balancing

equipment

Message
Queuing

Daemon
Processes

DB
replicas

Classic Document-Oriented Large Site Architecture
(Wikipedia)
Message Queuing System (Twitter)

Twitter seems to be ideally suited to be based on a message
queuing paradigm with background daemons processing requests
asynchronously and a huge cache holding messages.

Clients

DBs

Cache

Input event processing
daemons

Output
processing
daemons

Output event
processing
daemons

channels

Social Data Distributor (Facebook)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 155 03/12/2010

From Mark Zuckerbergs paper in “Beatuiful Architecture”.
According to him Facbook went through several evolutionary steps
which required new software technology. First came the realization
that the social data within facebook needed to be shared with other
applications. This meant opening up the business layer of facebook
as a web services API through which 3rd party apps could access
the social data in a secure and privacy respecting way. The service
interfaces needed for different languages and protocols were
generated from meta-data of the interfaces.
To avoid having users offering their facebook credentials directly
to 3rd party apps facebook developed a token based federated
authentication system much like it was done by liberty alliance and
others. Users still authenticated against facebook and received a
token which could be presented to 3rd party applications for use in
web service calls against the facebook API:

3rd party
App.

3rd
party

Business
logic

Facebook
frontend

FBook
DB

Fbook API

FQL

Privacy

Multiple
interfaces: thrift
generator

Batching queries
with FQL

Web
service
interfaces

Client

Authentication
to facebook
via token

Client login
and token
generation

FQL was invented to reduce the number of requests from 3rd party
applications for social data kept within facebook. Authentication is
done like in liberty alliance with facebook acting as an Identity
Provider. Lately facebook seems to allow OpenID authentication
through other providers as well.
Finally, with the Facebook Markup Language it is now possible to
closely integrate 3rd party applications within the facebook portal.
This allows excellent but controlled access to a users social data.

<<need to look at the open facebook system and ist data model>>
<<OAuth now used for social plug-ins, see Heise article>>

Space-Based Programming
[Adzic]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 156 03/12/2010

Queuing theory, OR
To guarantee the availability of a business solution the architecture needs
to provide performance, throughput, decent response times etc. Those are
all quantitative entities: the time it takes to service a request, the number of
requests per second arriving or being serviced etc. Queuing theory is a way
to analytically calculate request processing within systems as pipelines of
queues and processing units. Queuing theory describes the interplay of two
distributions of events: arrival rate and service time which are both in most
cases assumed as exponential (random) distributions. The kind of
distribution (random, constant etc.), their mean and standard deviation are
the most important input values for queuing formulas.

Basic Concepts

It is not the intention to provide a complete overview of queuing
theory here. What we should look at whether this instrument is
helpful in designing ultra-large scale sites. To do so we will first
take a look at basic terms and laws of queuing theory and then
think about their applicability in large scale design. The
introduction is based on two papers: The application of queuing
theory to performance optimization in enterprise applications by
Henry H. Liu [Liu] and a paper on queuing analysis by William
Stallings [Stallings]. We will also take a look at the “guerilla
capacity planning” by Gunther.

The queue processing abstraction looks like in the diagram below:

Processing
server

Waiting items

Incoming
Requests

Processed
Requests

Feedback

Queuing center

Dispatch
discipline

Service time/
utilization

Residence time

Arrival rate

These processing elements can be connected to form process
pipelines.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 157 03/12/2010

A different way to visualize queuing concepts is shown in the
diagram below. Here new tasks arrive at times T1..Tn in the
system. The tasks need different service times which is shown as a
difference in length of S1…Sn. The buildup of work in the system
can be seen as the addition of lines in the lower half of the diagram.
The dotted line crosses the x-axis exactly at the wait-time of the
newly arrived service.

T1T0 T2 T3

T1T0 T2 T3

w1 w3 w4w2w0

S2S1 S3 S4 S5
Arrival and
service time

Wait
times

Work in
system

After: K. Hazeghi /B.Hänsch

Task enter and exit behavior defines the overall number of tasks in
the system at any moment:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 158 03/12/2010

T1T0 T2 T3

w1 w3 w4w2w0

Wait
times

Work in
system

After: K. Hazeghi /B.Hänsch

T1T0 T2 T3

2

0

1

Wait
times

tasks in
system

The terminology of queuing theory is very useful to describe the
request flow through such architectures. The following list is taken
from [Liu].

<<list of queuing theory terms>>

• Server/Node – combination of wait queue and processing element
• Initiator – initiator of service requests
• Wait time – time duration a request or initiator has to spend waiting in line
• Service time – time duration the processing element has to spend in
order to complete the request
• Arrival rate – rate at which requests arrive for service
• Utilization – portion of a processing element‘s time actually servicing the
request rather than idling
• Queue length – total number of requests both waiting and being serviced
• Response time – the sum of wait time and service time for one visit to the
processing element
• Residence time – total time if the processing element is visited multiple
times for one transaction.
• Throughput – rate at which requests are serviced. A server certainly is
interested in knowing how fast requests can be serviced without losing
them because of long wait time.

Generalized Queuing Theory terms after (Henry Liu)

“time” in this context always means an average value as all values
here are of stochastic nature. Queuing Theory uses the so called

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 159 03/12/2010

Kendall Notation to express the core qualities of queuing centers
mathematically.

Server

Service policy type S; (Fifo,
shortest remaining time first
etc.

Probability
distribution
for arrivals:
M,D,G

Kendall Notation M/M/m/ß/N/Q

Population Size: ß
(limited or infinite)

Probability
distribution
for service
time: M,D,G

Number of
service
channels: m

Wait queue size: N,
unlimited

scheduler

Leave
reate

After H.Liu

Specific versions of queuing models are expressed using Kendall
notation like this:
M/M/m/N/N/FiFo which denotes: Markovian distribution of arrival
and exponential service process distribution, the number of servers
in the center, the wait queue size at the center and the population

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 160 03/12/2010

size. The last parameter is the type of service policy. Buffer size
and population size can be infinite in which case we are talking
about an open queuing model usually denoted as M/M/1 model.
Please note that the service distribution is assumed to be
exponential which means that the system will show exponential
degradation of service time in case of increased load. This is based
on empirical observations and confirmed by many queuing
specialists [Stallings].

Scheduling can either be fair (round robin, FCFS, FIFO) or unfair
(shortest remaining processing time first, priority based) and pre-
empted or run-to-completion. Pre-emption typically causes higher
overhead due to cohesion costs (storing state, swapping images
etc.).

Two important laws from queuing theory are statements about the
performance of queue processing centers. The first one is Jacksons
Law which states that it’s really the Service Demand, not the
Service Time, which is most fundamental to the performance of a
queuing system. [Liu]. Service Demand is the average number of
trips to the queuing node times the service time. Without feedback
Service Demand is equal to service time.

The second, Little’s law states that the number of requests both
waiting and in service is equal to the product of throughput and
response time.

<<simple questions and formulas>>

After:
Stallings

Typical questions about queues are: what is the utilization of the
processing element? (arrival rate x service time). How many items

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 161 03/12/2010

are in the system at any time? (r) What is the response time? (Tr)
Advanced questions are: How big must a queue be to not lose
requests? (Is increasing the buffer size really a clever way to
control your queuing system?)

Queuing Theory can shed some light on everyday phenomena as
well. Instinctively we do not like multiple single-server queues e.g.
in banks or shops. Such queues force us to chose one and stick to it
even if processing is rather slow in the queue we have chosen
(aren’t the other queues always faster?).

After:
Stallings

The global arrival rate lambda is divided by the number of servers.
Unfortunately this division is static and does not adjust for the
situation within a server or between servers. In the worst case
server 1 could be busy and server 2 could idle without the chance
for an item in server 1 to take advantage of this fact. Now let’s
compare this with a real multi-server queue:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 162 03/12/2010

After:
Stallings

Here all servers get items from a single queue. Using queuing
theory one can show that the muli-server queue allows a decrease
in residence time by a factor of three and a decrease in waiting time
by a factor of seven! [Stallings] The multi-server queue allows
variations in the arrival rate to be compensated by variations in
service time by different servers. It does not only avoid idle
servers, it also distributes extreme services times more equally
across all waiting items. We all know the ugly effect on a single
server queue when one item causes a very long service time. This
reduces the variation in response time.

<<single queue server or servers>>
While the difficulties of multi-queue server designs are abvious
due to the independence of the queues (this does not mean that this
kind of architecture is less important: it is heavily used in priority-
scheduling service stations, see below) it is much harder to decide
whether one queue with one fast server is better than one queue
with multiple but slower servers). The following is based on
B.Hänsch, Introduction to Queuing Theory [Hänsch]

First we need to calculate the utilization of a service system
according to Little’s law:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 163 03/12/2010

Utilization calculated form arrival
and service rate times number of
channels. From [Hänsch]

This formula can be further refined to cover the effects of
differences in variance of arrival and service rates.:

Expected number of jobs in the system. Rho means utilizati on.
Variation in arrival and service rate is relevant.

From [Hänsch]

Now we distinguish three different cases of service stations and use
arrival rate, service rate, variance of arrivals and services to
calculate the expected number of tasks in the system according to
the above formula.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 164 03/12/2010

From [Hänsch]

A further increase in variance of arrivals and services turns the
results around:

From [Hänsch]

Now the service station with more service units is slightly better
than the single but faster server.
Are these results “physical” and what do they mean? Some
observations and thoughts:
What needs to be explained is the big differene between two
service units compared to one faster unit. What can really hurt a

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 165 03/12/2010

multi-service station? Probably the worst case that causes serious
ineffectivity is when the two units are not fully utilized. Because
we assume that the granularity of service is currently the complete
task an empty unit cannot “help” the other which is busy. This is a
well known anti-pattern in parallel systems: the granularity of job
schedulings decide about utilization.
In our case the utilization is dependent on proper input being
available – in other words the arrival rate is critical for the supply
of tasks. With an arrival rate constantly below 2 and a service rate
constantly at 1 per unit we see that both the dual service unit as
well as the faster single service unit are constantly unterutilized.
But why does this hurt the dual-sevice unit more? Only when the
variance of this (negative) input and service behavior changes can
we get a better utilization as is shown in the second diagram.
<<need to calculate E[N] with different/higher arrival rate.>>. This
observation fits e.g. to the design principles behind the Google
Application Engine (GAE) which kills requests that take longer
than 30 seconds to complete: if a task is the unit of dispatch its
processing needs to be standardized to ensure utilization. Having
many processing units and just one huge task does not increase
efficiency.

The dual-service shows two critical phases: no input and not
enough input to fill both units. But the second case (not enough
input) is dependent on the granularity of requests: if we can make
the requests small enough then both units should be able to run
concurrently. Is the difference to the single service unit merely an
artefact based on the assumption that the queue effectivity is
determined by the number of concurrent requests in the service
station? In any case it is important to realize that the variance in
arrival rates is an important factor in multi-service unit designs.
And this automatically leads to the idea of somehow turning the
arrival rate into an optimum rate for such systems (see below:
haijunka). And don’t forget that the service distribution is
exponential, leading to a sudden increase in service time in case of
overload.

The second observation is that the differences between two slower
vs. one faster unit are rather small. Even for the case with two
queues with different priorities the difference between the high
priority queue and both single queue models is very small but the
decrease in effectivity for the slow queue is considerable!

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 166 03/12/2010

From [Hänsch]

This raises the question whether priorization really is a useful
method, especially in the context of large-scale systems.

<<design question: is priority worth the complexity? Take a look at
the alternative web server concept based on priority scheduling of
responses below>>

And finally: changes in service rates are hard to achive, both for
the single server station as well as the dual unit. Serial parts in
algorithms as well as the overhead due to multiple units (cohesion)
will put limits to scalability.

Applications of QT concepts in multi-tier Systems

Instead of trying to calculate complex wait and service scenarios
we will use some lessons learned from simple queuing models and
apply them to large-scale multi-tier architectures. Further down we
will also look at simulations of queuing models e.g. the Palladio
System of KIT [Reussner <<check bib>>].

The following topics are important from an architecture point of
view:
- Service-wait pattern in multi-tier systems
- Index in data
- Service Demand Measurements
- Cost of slow machines in mid-tier (cohesion at least,
sometimes contention as well) : does queuing theory really apply?
Requests go back instead of leaving the system through the final
queue.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 167 03/12/2010

- Queue length (timeout,of client : whole residence time
important) output queues? Buffering? Asynchronous output?
- Funnel architecture of multi-tier systems
- Heterogeneous hardware and self-balancing algorithms
- Dispatch policies in multi-queue server designs
- Unfair Dispatch disciplines
- Request Design Alternatives
- Finally: QT applicable to multi-tier systems due to requests
not leaving at the end?

Service Demand Reduction: Batching and Caching
Liu describes a rather important quality of modern multi-tier
enterprise application: it’s “service-wait-service-wait” behaviour.
The diagram below makes this rather obvious:

Reverse
Proxy

Web
Server

App
Server

Database
Server

Disk
Array

Average response time therefore is the sum
of trip average x wait time plus the sum of
service demand iterated across all nodes.
Note that all these requests are
synchronous (internally sequential) and in
all likelihood also in contention with each
other – which means that wait times occur
due to contention

Reducing wait events and service demand (number of requests)
will therefore considerably increase throughput or reduce response
times in enterprise applications. Liu mentions several strategies
(which turned out to be completely agnostic of programming
languages or runtime platforms):
- array (batch) processing requests in groups. (reduction of
service demand). This reduces the average number of trips to the
queue processing center and is the same as some large scale sites
describe as their “multi-get” feature for accessing caches or
services.
- caching at high levels to avoid requests alltogether

Liu claims that “Because of this significant improvement on
performance, every enterprise software application should adopt
and implement array processing even during the early stages of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 168 03/12/2010

product development life cycle before performance assurance and
acceptance tests begin.”

But let us first ponder over this claim a bit. Demanding that batch
processing (request bundling and avoidance strategy) should be
used from the very beginning turns it into an architectural quality
of enterprise systems. We are no longer really talking
“optimization” here, even if Liu calls it this way. Given the
sequential, synchronous nature of multi-tier architectures this is a
reasonable thing to do. But what are we actually doing when we
introduce batch processing? Exactly where do we win the time and
throughput?
Clearly we have fewer requests at a specific queue processing
center when we start batching requests. But individual service time
should increase because of batched requests take longer to be
processed. We will save on protocol overhead (sending and
receiving the requests) and interrupt processing time and possibly
also on context switching time if our individual requests would be
sent by different threads otherwise. But if we cannot use internal
parallelism during the batch request processing it is not really
obvious where we make our wins. And if we can use parallelism
internally at the receiving queue we could use this also to process
more requests and would not have to use batching at all. Batching
does not change the fundamentally synchronous way of processing
either: initiators will still have to wait for the remote requests to
finish and in case of batched requests they ALL need to be
finished. Below we will take a look at the use of unfair dispatch in
a web server and we will learn that getting rid of requests within a
service station is extremely beneficial to throughput. Alternatively
we could return requests on an individual basis, thereby reducing
wait times within the upstream queue processing center at the cost
of increased transport protocol effort. This is something that we
will have to investigate further when we talk about I/O processing
options later. I have a feeling that we need to express queue
behaviour in terms of service time and contention only. I guess I
am simply questioning Jacksons law here. Liu’s next optimization regards caching which reduces wait time. (I
would have guessed that it reduces trips to the queue and by doing
so indirectly also wait time). Introducing caching at the application
server level obviously has the biggest effect as it reduces a whole
number of requests later. When frequently used objects are no
longer cached applications can experience severe performance and
throughput degradation.

Service Demand Reduction: Data-in-Index
An interesting case of service demand reduction is “data-in-index”
technology which can be used to avoid going to large data tables.

Select C3 from T1 where C1=<value> and C2=<value> order by 1 ASC;
Select C3 from T2 where C1=<value> and C2=<value> order by 1 ASC;

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 169 03/12/2010

With T1 and T2 being huge tables and C3 being the only column
returned it pays off to add C3 to the indexes of C1 and C2. The
reduction of unnecessary logic is just another case of service
demand reduction while increasing the storage speed e.g. reduces
wait time. The proposed duplication to avoid joins is a very
effective technique used in large-scale storage systems. It simply
takes some time to get used to this trade-off between lookup-time
and storage utilization. <<link to the well known article on “how I
learned to love data duplication…”>>

Intuitively we feel that pipelines of processing nodes work best if
all nodes experience the same service demand. Another way
according to Liu is to express this using utilization (being equal to
throughput times service demand). A processing pipleline performs
best if all nodes show the same utilization. As service demand is
expressed as trips times service time it explains why equal service
times are seen as a way to achieve equal utilization e.g. in CPU
internal pipelines. Longer response times at one pipeline stage
cause longer wait times upstream. (And now we know why web
requests should be short when synchronous). And most importantly
utilization is easily measured and compared between systems and
equal utilization stands for a balanced and therefore stable overall
system. [Liu]

Service Demand Measurements
As we are going to use our analytical results and heuristics to
define measurement points in our architecture one very important
point needs to be discussed: the measurements of service demand.
Just measuring the service rate in the processing units and keeping
them close to 100% is a dangerous way to judge the performance
of our system: Once we reach 100% utilization of our processing
units we do not know how much additional work actually resides
within our system waiting to be processed. We need to make the
trade-off between customers waiting and optimal utilization of our
processing units visible and measurable at all times to avoid
creating long wait times which in turn cause timeout problems and
dead request processing.

The n-tier funnel architecture

In concrete web applications many architects do an even more
conservative interpretation of balance by demanding a funnel
shaped request pattern from the beginning to the end of the
processing pipeline:

<<diagram of request funnel for web applications>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 170 03/12/2010

This is based on the experience that short increases of wait times or
service demand at some point in the pipeline can have disastrous
effects on overall throughput due to upstream effects. And that by
simply adding more threads the service times for all requests
increase as well. <<what is the physical explanation for this?>>

Cost of slow machines in mid- or end-tier
(cohesion at least, sometimes contention as well)
Service access layer, cloud of resources allocated and processing
stalled, how does each tier allocate and schedule requests?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 171 03/12/2010

Geo-
Distrib.

DNS

RP

RP

RP

AS

AS

AS

DS
read

DS
write

DS
read

Virtual
SAN

M
LB

C
LB

WS

WS

WS

LB

S

Server with
problems

Multi-tier architectures typically use layers of load-
balancing/switching between horizontally arraigned servers. A
request can therefore use many different paths from entry to
backend system. We need to look at two scenarios: first, what
happens to one request when a certain server in the path
experiences performance problems and second, what does this
mean for all the requests currently in the system?

To reach a certain server a request needs to pass many previous
servers. By doing so the request typically allocates per server
resources which are kept until the reuest comes back from a
downstream component. In other words: a request blocks resources
on upstream servers. Both contention and coherence in upstream
servers get worse!

It depends on the implementation of those resources how severely
other requests will be affected: a Thread-per-request model means
that a thread blocked will not be able to service other requests and
soon the available threads in a thread-pool will be depleted. Does
this mean we should use a non-blocking I/O strategy anyway where
we just save the request stack somewhere and use the thread to
handle a new request? It will not help us in case of a serious
problem with a server: all it does is to fill up our machines
(upstream) with requests that cannot continue. Load balancing
would soon route more and more requests to the remaining
machines and – if their limits are reached – start to no longer
accept new requests.

This example shows several important things:
- input queue limits are important. We should not accept
more requests upstream just because we cannot continue some of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 172 03/12/2010

them downstream: we would just overload the remaining
downstream servers.
- A slow or broken server affects many requests across a
cloud of servers upstream.
- A slow or broken server reduces the number of input
connections for upstream servers because they cannot forward
those requests downstream
- A slow or broken server should be detected as quickly as
possible to avoid sending requests against it and to reduce request
acceptance upstream
- Non-blocking resource allocation does not help. Without
strict resource management it can even blow up our servers.
-

Queue length and Residence Time
 (timeout,of client : whole residence time important) output
queues? Buffering? Asynchronous output?

In queuing theory the queue length as is usually a rather
uninteresting parameter and in many cases it is assumed to grow
infinitely. If a fixed queue size is assumed the most important
question is usually: when do we start to lose customers because the
queue is full?
Reality is much different here because a full queue is not the only
reason for losing customers: customers can implement timeouts, in
other words they can cancel requests if they take too long. Queue
size is therefore just one parameter and we are really concerned
about Residence Time, not queue wait time.

Some considerations:
Residence Time == Waittime in queue plus time spent in service
Residence Time < Customer Timeout

Queue size needs to be calculated so that for a given arrival and
service rate the residence time is smaller than the customer
timeout. <<give formula>>

What happens if we reject the request due to a full queue? The
client is free to issue the request again, perhaps polling for a free
slot. This is communication overhead for sure but it does not affect
our internal servers in any negative way. The client is of course
free to chose a different service station. In this case we lose a
potential customer.

But what happens if we do not restrict queue size and end up with a
residence time bigger than the client timeout? Then something
really ugly happens: we end up processing dead requests. A typical
example is when a client always uses the reload button on her
browser faster than we can respond with the proper page. The
previous request is already dead when we want to send its
response.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 173 03/12/2010

How can we protect us from such a behavior? Caching our
complete responses is certainly a good idea. Other instruments are
asking the client during request processing whether she is still
interested (e.g. by checking the connection or by asking for a
computation token). If we know that clients use an aggressive form
of timeout handling we can even offer them the average current
residence time as a base for their decision.

In every case we need to track the number of closed connections or
timeouts we experience throughout the processing in our multi-tier
architecture: they can be signs for dead request processing. And we
have to decrease queue size (or service time). And this has to
happen in real-time because we want to avoid processing
potentially dead requests.

Output traffic shaping

Many queuing theory algorithms assume independence between
incoming and outgoing requests meaning that there is no
connection between requests. This is of course only an assumption
made for mathematical simplification. In reality user sessions
consist of more than one request and therefore requests are not
really independent. But what if we could use those dependencies?
One idea could be to shape the incoming traffic through
modulation of outgoing (processed) requests. Usually a user spends
some time between requests to think about results of a request. And
then she will issue a new request. By slightly delaying responses
we can influence the time before a new request will be issued. This
may sound like a rather small achievement but given thousands of
requests per second it might make a difference in our machine. I do
not know of any system that currently uses this approach though.

The realism of Queuing Theory based Models for
distributed systems

We will later on discuss a certain type of load balancer: a pull
based system. This system consists of service nodes which – on
being idle – request new jobs from a central queue. A central queue
model avoids the problems of multi-server queues where one queue
is still full while others are idling. It should therefore lead to a
better throughput. But implementations of this model have shown
the adverse effect. What might be the reason for this?

One explanation could be that there are some important variables
missing in the model, or perhaps in most QT models once it comes
to distributed systems. QT seems to assume absolutely no latency
between queues and processing nodes. After processing a node
there is no time lost until a new request is being processed. This
assumption is obviously not true in the case of real pull servers. If
they wait for a request to finish throughput will suffer due to the
time it takes to send a request to the central queue and getting a
new request back. An alternative of course would be to slightly

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 174 03/12/2010

overlap request processing at each pull server but this is essentially
only the re-introduction of multi-server queues. A pull server
would have to know exactly when to requests a new client request
for processing without losing time. If a request has to wait at the
node it could have possibly been processed at another node in the
mean time.

The example only shows that important variables of real distributed
processes are not modelled in QT and that this can lead to wrong
assumptions.

Request Processing: Asynchronous and/or fixed
service time

The overview of large scale sites has shown an increasing use of
asynchronous request processing. Other examples like Google
Application Engine API and the Darkstar Game Engine
architecture enforce fixed or at least limited service times. The
reason is well expressed by Neil Gunther in his Guerilla Capacity
Planning book (see below) where he discusses the connection
between Amdahls law (the fatal consequences of serialization) with
the classic repair man queue model (a wait-based synchronous
service model).

“Conversely, I have shown elsewhere (Gunther 2005b) that both
Amdahl’s
law (4.15) and Gustafson’s law (4.30) are unified by the same
queueing
model; the repairman model. Theorem 6.2 tells us that Amdahl’s
law corresponds
identically to synchronous throughput of the repairman.
Synchronous
throughput is worst case because it causes maximal queueing at
the repairman
(Fig. A.1) or bus. In that sense, Theorem 6.2 represents a lower
bound
on throughput and therefore is worse than the mean throughput.
Once this
interpretation understood, it follows immediately that Amdahl’s
law can be
defeated, much more easily than proposed in (Nelson 1996), by
simply requiring
that all requests be issued asynchronously!” [Gunther] pg. 218

Interestingly asynchronous requests have been also added to the
new servlet API 3.0, see [Bartel]. While mostly geared towards
Comet style AJAX communication, this would also allow parking a
request, issuing parallel asynchronous subrequests and – once a
fixed timespan has expired – to collect the data, skip missing data
and return after a constant service time to the user. Clever request

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 175 03/12/2010

design could then achieve an effect close to Hajunka (see below): a
partitioning of service effort and time into same sized blocks.

Heterogeneous hardware and self-balancing
algorithms

<<to-do>>

Dispatch in Multi-Queue Servers

The role of the dispatch discipline in multi-queue designs is quite
interesting: What would be an optimal dispatch of incoming items?
Load balancers have to find an answer to this question e.g. by
tracking the load on servers. An alternative dispatch strategy would
be to use pull instead of push: Let the servers pull new items when
they are done with the previous item. But how would we
implement priority queues in that case?

Unfair Dispatch: Shortest Remaining Processing Time
First

We have not changed the way the system performs scheduling yet
and simply assumed it would be FCFS – in other words a fair
schema. Experiments have shown that a fair schema need not be
the most effective. If the number of requests currently in the system
is used as a measure for effectiveness of a processing station and if
only a certain variance of arrival and service rate are assumed it
turns out that the most effective strategy is to pick those tasks with
the least processing time left before completion first. In the case
discussed below the file size requested is used as an indicator for
the processing time needed.

<<web server SRPT example>> [Schroeder]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 176 03/12/2010

Surprisingly long requests (for large files) were not starved to death
under unfair scheduling. Under the constraint that the system
experiences also situations of low load the large requests were then
serviced mostly uninterrupted and this made more than up for the
short delays by servicing short requests first.

What is the “physical” explanation for this? It is in the fact that
multiple connections and tasks all require a certain overhead for
switching and multiplexing which is reduced by an SRPT strategy.
But we cannot only look at slight improvements of throughput in
our large scale architectures: we also need to calculate the effects
of our optimizations in case of a different input distribution. In
other words: how does our system behave if we do not see the
expected variance in the arrival rate for some time? We might
detect a rather disturbing behaviour in this case, namely that the
system might become much less effective or even instable due to
the fact that not all the big requests are unable to complete. Fair
scheduling might have been less effective in the case of an optimal
input variance but it might deal better with less optimal input
distributions. This is also a lesson learned from building operating
systems: frequently a less effective but more general algorithm (for
memory allocation or sorting e.g.) will show a more benign
behaviour across a wider range of input situations.

Request Design Alternatives

It looks like a common and rather short request size and latency
allows better throughput. But what if there is a big difference
between some requests with respect to service time? The answer
givent till now was: use asynchronous processing. Are there
alternatives to asynchronous processing? Surprisingly there are a
number of design alternatives and they start at design time: In
many cases it is a matter of request architecture whether the service
times will differ largely or show a rather common service time.
Every request needs to be checked at design time for unnecessary
bundling of functionality which creates overly long service times.
Requests can be configured towards a common time.

What else is possible? The section above used unfair scheduling to
improve throughput. This is OK as long as arrival time distribution
allows for low traffic times where long requests are handled
effectively. Otherwise they are starved. Content based routing and
partitioning can prove a viable alternative in this case: Route
requests of a common service time towards one server only and use
other servers for different requests. And even more optimization is
possible: Once the requests are partitioned along service time the
whole further processing chain can be optimized for the specific
request requirements: block sizes, network parameters etc.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 177 03/12/2010

A very interesting alternative is descriptive batching of requests as
is done in the case (like FQL) for internal optimization. At the first
glance it seems to create larger request service times and achieve
exactly the opposite of the intended effect. But due to its
descriptive nature it allows internal partitioning and optimizations
as most SQL processors e.g. do.

An easy alternative which also works in case of failures in recently
deployed API functions is to dynamically turn API functions on
and off if a the system experiences overload.

Finally there is the question why multi-tier archictectures don’t
come with a feature that is e.g. very common in networks: the
sliding window feature of TCP allows throttling of requests back to
the client. And interestingly: we find exactly this feature in the
Darkstar game platform architecture discussed below. Overloaded
servers can send exceptions to clients and prevent further requests.
In any case the worst design is to allow too many requests into
your system. Or requests of very different service times. If one
could kind of chop requests into a common size at runtime this
would turn out very beneficial to throughput. The next section
discusses the “heijunka” method used in Japanese automotive
plants to achieve exactly this.

Heijunka

The last concept we are going to discuss here is “leveling” or
“Heijunka” as it is called by Toyota. Leveling tries to avoid spikes
in demand or production as these have been found rather
cumbersome and ineffective. The opposite of those spikes is a
balanced system. But the core assumption behind levelling or
heijunka is that you need balance first before you can get velocity.
The follwing diagrams and concepts are taken from the queuing
theory pages of Peta Abilla [Shmula] who did supply chain
management with various large companies like amazon.

The diagram below shows the levelling effects of heijunka:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 178 03/12/2010

Heijunka seems to chop incoming items into equally sized pieces.
This could happen in the spatial as well as the temporal domain:
either blocks of equal size are created (same sized compound
messages, same size memory or disk blocks etc.) or the frequency
of requests is fixed at a certain rate (x requests per time unit).
A whole supply chain with levelling element might look like this:

To better understand the concept of levelling and balance we can
take a look at car engines. A car engine from an engineering point
of view can be considered as a standing wave: From the carburator

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 179 03/12/2010

and air filter elements through the intake manifold, valve system,
cylinder area and throughout the cylinder exit and exhaust system a
standing wave forms when the engine is running. The frequency of
this wave can change e.g. to get more power but his change must
lead to a new frequency throughout the whole system. You can’t
get more power by simply adding more fuel without regard to the
other elements in the system. Is this balance tied to a low
utilization of resources as some statements from Birman on the
behaviour of protocols in relation to hardware utilization might
suggest? Intuitively the answer seems to be yes. Network protocols
break down when utilization reaches high levels (CSMA protocols
especially), operating systems break down when disk utilization
(both spatial and temporal) gets very high. Most servers in
distributed systems run at rather low utilization rates (frequently as
low as 20%) and system admins get rather nervous when these
numbers are exceeded. On the other hand IBM mainframes are
meant to run close to 100% utilization. This can only be achieved
with an extreme form of workload measurements, prediction and
balance in those systems. Does this have something to do with
synchronous vs. asynchronous processing or the treatment of
failures and exceptions?
For more information on queuing theory see Myron Hlynka’s
Queuing Theory pages at:
http://web2.uwindsor.ca/math/hlynka/queue.html

Tools for QT-Analysis
In QT-Analysis a point where the complexity of the calculations
exceeds our abilities is quickly achieved. Calculators for QT exist
which make life a bit easier <<example QT calculator
Clausthal/Hänsch>>
http://www.integrierte-simulation.de/
or: http://www.stochastik.tu-
clausthal.de/index.php?id1=Presse&id2=Schulen

With multiple queues, heterogeneous processing units and non-
standard distributions only simulation can be done.

Applicability of QT in large-scale multi-tier
architectures

Finally a word on the applicability of QT. QT makes several big
assumptions about the queuing network under analysis which are
probably not very realistic. The assumptions are made to make the
math calculable. Considering the chain of nodes in a multi-tier
architecture as a markov chain requires the nodes to be
independent. In this case a single node can be treated as a simple
queuing node with most likely M/M/1 characteristics. Bur are the
nodes really independent? QT usually models production systems
where request leave the queuing network at the end and (hopefully
to allow easy distribution assumptions) do not come back (no

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 180 03/12/2010

feedback). But real requests in multi-tier architectures leave the
system at the entry point instead at the backend nodes. A request
gets “smeard” across all nodes which are visited during its
processing and that makes nodes far from being independent.
Event-driven architectures using asynchronous I/O – if not
programmed in a subrouting calling style – do not expect a request
coming back from a downstream component. We will look at the
Staged Event-Driven Architecture (SEDA) in the chapter on I/O as
it represents a rather typical form of this architecture.

So QT models may lack quantitative applicability in our systems.
They nevertheless let us explore very interesting heuristics about
connected nodes and requests and are very important for a
qualitative analysis. Still, a model that brings all the discussed
“lessons learned” and constraints into one consistent model would
be very nice to have.

Combinatorial Reliability and Availability Analysis
Systems are getting more complex every day. Multi-tier systems are
notoriously hard to debug and cause enormous costs for servers and
software units. But how much availability do we really get for the money
or how much redundancy will we need to achieve a certain degree of
availability?
Before we delve into questions about reliability and availability we need to
think about the structure of the problem zone a bit. No matter what we
want to track: bugs, performance, availability, events or steps – we will
always realize that the system under analysis is composed of low-level
components which interact with each other. On top of those components
we find higher-order components which represent activities and even
higher ones which finally represent business processes. Most companies
have a hard time to associate business processes with certain server
configurations, networks etc. We will discuss this type of architecture
again in the section on logging and tracing where we will take a look at
complex event processing approaches. Here we need to mention a rather
new feature of today’s systems: their dependency on external services.
Architectures which use external services (perhaps following a Service
Oriented Architecture –SOA) can no longer just look at the availability of
components. They need to find new ways to express reliability and
availability guarantees for external services which then become core parts
of the architecture.

Formal, perhaps even pre-implementation analysis of availability is not in
widespread use, due to efforts or skills involved. This is rather unfortunate
because we will see shortly that adding reliability and availability to
existing components or tiers is rather difficult and expensive. For real-
world projects we need analysis models that are both easy to learn and
easy to use. Bailey et.al. present three reliability engineering techniques
which show those properties [BSLT]:
- Failure Modes,
- Events and Criticality Analysis (FMECA),
- Reliability Block Diagrams (RBD) and
- Failure Tree Analyis (FTA).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 181 03/12/2010

We will take a look at those methods and how they work and also
speculate about dependencies between capacity, utilization and
availability.

The simplest method to start a reliability/availability analysis is FMECA.
It is a risk assessment method and it mirrors analogous methods from other
areas. The First Cut Risk Analysis (FCRA) in security analysis comes to
mind and they are virtually identical:

Funct
.

Hang

Crash

Mode

3

lowATM
block

lowATMCredit2

mediu
m

ATM
block

Med
.

Line

lowNo
money

LowATM Cash dep.1

Severit
y

EffectPro
b.

ReasonBusiness
Function

Nr

Failure Modes, Effects and Consequences (FMECA) Analysis

The method starts with the most important business functions and creates
scenarios where those functions fail. The “mode” expresses different types
of failure. It is a heuristic methodology and allows early identification of
potential problems. You can easily extend it with properties that deem
important in your case, e.g. the way to detect the failure.
Bailey at.al. mention some deficits as well: it is a static analysis only and it
cannot represent multi-component failures and redundant components
properly. But to me the biggest disadvantage is that the analyis is largely
de-coupled from system architecture. It requires a very good implicit
understanding of the system architecture to come up with critical functions
and their possible causes. It is therefore clearly geared towards the
business/financial effects of failures and does not tell you how to build a
reliable system.

A more expressive modelling method are Reliability Block Diagrams
(RBD’s) like the following taken from Bailey et.al:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 182 03/12/2010

That the connection to system architecture is a bit closer can be seen at the
bottom part of the diagram where the components involved in a request are
drawn in sequential order. It is important to realize that ALL of these
components need to be available TOGETHER to achieve some defined
degree of availability. This in turn means that the availability of each
component (or tier) needs to be higher than the targeted overall
availability.

Above the request chain the diagram shows how components are
redundantly implemented and organized as tiers. The various ways of
doing so are represented in the diagram below:

A B C
(SPOF 0.99)

D
(SPOF
0.9999

E

Request: ALL tiers
must be available
(„AND“)

B‘

B‘‘

E‘

(B & B‘) || (B & B‘‘) || ….
(OR mixed with AND)

A‘

More
machines
== more
failure
(individual)

High-
reliability
machine

Silent
(passive
) backup

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 183 03/12/2010

Instead of talking about “and” and “or” we can also use the terms “serial
availability” and “parallel availability” according to [Scadden]

Serial chain of ALL needed components: multiplying avai labilities
gives less overall availability or: the more chain members the higher
individual availability needs to be

Redundant, parallel components where only ONE needs to be up:
multiply unavailabilities and subtract from 1.

From: Scadden et.al.,
pg. 537

A number of observations follow:
1. If we add more machines we will experience more failures One big
machine with an MTBP of 0.9999 is better than two smaller machines
with the same MTBF because we now have twice the chance for failure.
2. In the architecture above component C with a reliability of 0.99 will
limit the overall availability of the whole request processing chain to 0.99
* Prest. And even if we could optimize the other components to zero
failure probability Amdahls law states that our limit would be 0.99. In
other words: the weakest link determines overall availability
3. Sometimes a single big and highly reliable machine might be beneficial.
We are using vertical scalability in this case, based on a highly reliable
platform. Database Tiers frequently follow this pattern.
4. Passive standby can be used to achieve failover as well. Watch out for
manual steps needed.
5. The redundant tier with B machines presents a 1/3 availabilty solution
which means that one out of three machines can fail without disrupting
service guarantees. The formula calculates the probability of more
machines failing. Often some wrong assumptions are made in this case: it
is assumed that the failure of one machine does not have an impact on
other machines. This is frequently not true because of the effects of
utilization on reliability: Most components show a more unreliable
behaviour beyond a certain utilization level. The diagram below shows the
increase in utilization that is caused by the crash of machine B’’. The load
is then distributed to machines B and B’ but if these machines are now
pushed beyond a certain utilization level our overall availability will go
down.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 184 03/12/2010

B B‘ B‘‘

Normal
Capacity

Normal
Capacity

Normal
Capacity

B‘‘

Failover
capacity

Failover
capacity

1/3 tier redundany with p
being a function of k due to
capacity increase

This is the reason why 1/2 redundant configurations of midrange machines
frequently show a very low utilization of no more than 20% to avoid
getting into the “red” zone in case of crashes.

Bailey et. Al. also discuss the concept of fail over and define it as follows:
- switch over to redundant system
- preserve lock state
- roll back lost work.

“The difference in solution availability comes down to the shape of the
probability distribution of the lock holding time. It turns out that on
failover there is no perceived outage most of the time. However, because
there is always a finite probability of a long failover due to long lock
holding time in all of these schemes, individual node availability is key to
keeping down the probability of a long failover. A tighter distribution
around a fast average failover will also drive availability higher.” [BSLT]
pg. 587

Failover will be discussed in detail in the section on J2EE clustering.

With Failure Tree Analysis (FTA) the third methodology presented gets
even closer and deeper into the architecture of the system: FTA assigns
Boolean symbols to all connections between components which express
AND or OR effects on availability.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 185 03/12/2010

We can reproduce part of our RBD model from above as a FTM as shown
in the diagram below:

service down

or

WAS
Tier

down

or

and

B B‘

and

B B‘‘

and

B‘‘ B‘

The value of FTA and FTM is not without questions according to the
literature. Models seem to depend on individual authors and can become
quite complex and crowded. Automatic analysis is possible but rather
demanding with respect to space.

<<link to critiques of FTM >>

Let us finish reliability engineering with a short discussion of reliability
and software. Much of the above comes from hardware development and
relies heavily on reliability estimates. In case of hardware those number

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 186 03/12/2010

can be gathered from statistics and are therefore rather reliable. But what
about the software part of system architectures? This has always been the
weak link, even in mainframe architectures as has been documented e.g.
by K.Klink. Let’s assume we are using a state-machine based replication
technology between our server machines in the application server tier (see
below the discussion of PAXOS consensus protocol within a replicated log
in Chubby [Google]). What happens if the software algorithm has a bug?
The state-machine approach will replicate the bug on all machines
involved and crash each and every one of them. A similar effect once led
to the destruction of an Ariane V rocket because the buggy software killed
the backup hardware component just as quickly. [Meyer]. Multi-language,
multi-hardware designs were considered long as a sure means to fight
individual software bugs. The theory was that different languages and
designs used would prevent all replicated instances of a solution from
failing at the same time. There seems to be quite a bit of folklore involved
as has been demonstrated by Tichy who performed empirical analysis of
software development: He was able to show that most of these replicated
software components still had the problems at the same spots in the source
code and could not prevent crashes of the whole system. [Tichy].

Stochastic Availability Analysis

[STTA] W.E.Smith, Availability analysis of blade server systems (Markov
Models, Semi Markov Processes, Generative Markov Models) state-space
modeling approach
<<self management, fitting of long tail function>>

Guerilla Capacity Planning

<<see also John Allspaw, Capacity Planning, oreilly
Integrate slide set>>

One unique Guerrilla tool is Virtual Load Testing, based on Dr. Gunther's
"Universal Law of Computational Scaling", which provides a highly cost-
effective method for assessing application scalability. Neil Gunther, M.Sc.,
Ph.D. is an internationally recognized computer system performance
consultant who founded Performance Dynamics Company in 1994.

Some reasons why you should understand this law:

1. A lot of people use the term "scalability" without clearly defining it, let
alone defining it quantitatively. Computer system scalability must be
quantified. If you can't quantify it, you can't guarantee it. The universal
law of computational scaling provides that quantification.

2. One the greatest impediments to applying queueing theory models
(whether analytic or simulation) is the inscrutibility of service times within
an application. Every queueing facility in a performance model requires a
service time as an input parameter. No service time, no queue. Without the
appropriate queues in the model, system performance metrics like

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 187 03/12/2010

throughtput and response time, cannot be predicted. The universal law of
computational scaling leapfrogs this entire problem by NOT requiring
ANY low-level service time measurements as inputs.

The universal scalability model is a single equation expressed in terms of
two parameters α and β. The relative capacity C(N) is a normalized
throughput given by:

C(N) = N / (1 + αN + βN (N − 1))

where N represents either:

1. (Software Scalability) the number of users or load generators on a fixed
hardware configuration. In this case, the number of users acts as the
independent variable while the CPU configuration remains constant for
the range of user load measurements.

2. (Hardware Scalability) the number of physical processors or nodes in
the hardware configuration. In this case, the number of user processes
executing per CPU (say 10) is assumed to be the same for every added
CPU. Therefore, on a 4 CPU platform you would run 40 virtual users.

with `α' (alpha) the contention parameter, and `β' (beta) the coherency-
delay parameter.

This model has wide-spread applicability, including:

 * Accounts for such effects as VM thrashing, and cache-miss latencies.
 * Can also be used to model disk arrays, SANs, and multicore
processors.
 * Can also be used to model certain types of network I/O
 * The user-load form is the most common application of eqn.
 * Can be used in combination with measurement tools like LoadRunner,
Benchmark Factory, etc. [geekr]

The following slides are taken from the Guerilla Capacity Planning Guide
by [Gunther]

Concurreny and Coherence

Concurrency effect:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 188 03/12/2010

Contention effect: it is really the size of the serial part of a
computation that limits speedup and scalability.

This has a profound impact on response times in a multiprocessor
setup:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 189 03/12/2010

Actually this should be true in a single processor setup as well:
adding more threads creates an increase in service time which
again increases residence time (response time).

Added coherence effect (universal scalability law)

R.Smith mentions another contributor to coherence effects and
calls it the O(N) Serial Bottleneck [Smith]: It describes the effect
that a growing number of threads extends the time spent in serial
sections of the code. This is e.g. caused by algorithms within

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 190 03/12/2010

critical sections which operate on the number of threads in
collections. The more threads the more time is spent in a critical
section. Event thread-packages seem to show O(N) behavior in the
number of threads [vonBehren]

The resulting graph which shows a clear maximum which would
not be visible with the original law by Amdahl:

Calculation of contention and coherence parameters
The parameters of the universal scalability function control the
shape of the curve and therefore contention and coherence effects.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 191 03/12/2010

contention
coherence

The procedure to calculate those parameters is described by
Gunther as follows:

The generation of test data is necessary from which the following
ratios can be calculated and later be used for regression analysis:
(from Gunther)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 192 03/12/2010

contention coherence

For regression analyis. Determining a
and b will allow us to calculate the
theoretical maximum of capacity.

The final result is a curve that can be overlayed over the test
values. Gunther points out some very important properties of the
universal scalability formula and its parameters:

- both parameters have a physical interpretation and can tell
something about the concrete architecture
- The calculation of the theoretical maximum of a capacity
curve avoids premature false peak assumptions and therefore
hardware costs
- Differences between measured and calculates values can be
an indicator for problems in certain configurations

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 193 03/12/2010

Client Distribution over Day/Week/Year

Simulation

Queuing theory quickly becomes extremely complex and no longer
analytically solvable in case of multiple queues, heterogeneous hardware
and non-exponential distributions. Here the only solution is to simply
create empirical data, let them flow through a model and look at the
results.
The simulation approaches I found were basically three: event-advance,
unit time and activity based.

An example of an activity based simulation design can be found by
[Perros]. Activity based simulation uses processes to model a system and
according to Perros the method excels when simulating systems with
complex interactive processing patterns.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 194 03/12/2010

From H.Perros, pg 94 ff. Arrival time can be during WTi,
during STi or when the processor is idle.

The diagram below shows how the values for the next incoming request
can be calculated:

From H.Perros, pg 96 ff. Activity based simulation design of a single
server queue

Event-advance simulations can simulate many days of operations within a
few hours by always advancing to the next possible event. This type of
discrete event simulation is described in [Pravanjan], together with a list of
DES tools.

Tools for statistical analysis, queuing models and
simulation

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 195 03/12/2010

Diagram taken from the Palladio Component Model
http://sdqweb.ipd.uka.de/wiki/Palladio_Component_Model
A modelling and simulation package based on GEF/EMF especially suited
for performance simulations.

PDQ Pretty Damn Quick. Open-source queueing modeler.
Supporting textbook with examples (Gunther 2005a)
www.perfdynamics.com/Tools/PDQ.html

R Open source statistical analysis package.
Uses the S command-processing language.
Capabilities far exceed Excel (Holtman 2004).
www.r-project.org

SimPy Open-source discrete-event simulator
Uses Python as the simulation programming language.
simpy.sourceforge.net

Example for an analysis of infrastructure based on device and architecture
templates:
http://storagemojo.com/2009/02/05/bayesian-analysis-of-it-
infrastructure

Vensim 5.9 Available

Vensim 5.9 now supports date labeling on graphs and in the Table tool.
This ability makes it easier to present results to people who are not
comfortable with decimal values for time. You can format the date by
specifying a format string that allows dates to appear in such forms
as 2009-04-09, 2009Q2, Mon Jan 1, or, for elapsed time, as 12:35:22.3
in hours, minutes and seconds. Date labeling is not available with PLE
or PLE Plus. To see details on other changes and bug fixes see:

http://www.vensim.com/new.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 196 03/12/2010

2009 System Dynamics Conference July 26-30
--
The 2009 System Dynamics Conference will be held in Albuquerque New
Mexico USA. It should be a fun event, do consider attending. See

http://www.systemdynamics.org/conferences/current

Forums for Software and System Dynamics Discussion
--

If you have questions about Vensim or need support in using it the
place to go is the Vensim forum at

http://ventanasystems.co.uk/forum/

Architectural Principles and Metrics

Here we are going to discuss “lessons learned” from modelling and
simulation for the design and operation of large-scale systems.
Architectural principles will help us to avoid bottlenecks and
inefficiencies. Metrics will tell us when and what changes are needed to
our system.

Architectural Principles
- avoid multi-queue service design without mechanisms to
balance load further
- use small granularities for job sizes to allow balancing and
uniform service times (small variance)
- track availability of service stations in multi-tier request
paths closely and dynamically re-arrange request numbers of one
station is out
- put limits on input request numbers
- avoid resource locking per request, use asynchronous
request handling but respect the limits set
- use self-balancing mechanisms if possible instead of remote
adjustments by meta-data collected
- put measurement points at input and output locations of
service stations

Metrics
What are the core metrics we are interested in? (We assume
averages here).
- arrival and service rates, service times
- change over time (trends) in those values
- customer timeout/cancel rate (useless computation rate)
- contention and cohesion values and trends
- service station up

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 197 03/12/2010

Which of these metrics do we need in real-time? In other words:
which of those metrics can be used for immediate, possibly
automated action? How is this handled in Cloud Computing?

Changes in Perspective
<<what is essential for request construction? >>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 198 03/12/2010

Part IV: System Components

System Components for Distributed Media
In this part of the book we are working out way down from complete sites to
individual components used to scale across large numbers of requests and with a
decent response time. The first chapter explains the causes of latency and how to
fight them. The following chapters go into details of caching, replication and
prediction as techniques for scalability. Much in these chapters is based on my
own (bad) experiences from large scale portals and internet sites and I also draw
heavily on wisdom collected by Todd Hoff, David Patterson, Nati Shalom and
David Prittchet.

Component Interaction and Hierarchy

Latency, Responsiveness and Distribution Architectu re
Low latency is not only important for shop-like applications as Todd Hoff
points out in “latency is everywhere and it costs you sales - how to crush
it” [Hoff] where the reader can find lots of pointers to other latency related
resources. Social networks with their focus on collaboration and multi-
media may be free
b

scheduler

Failure detectorDistributed file system

Key/value store

Consensus algor.

Membership service

IP service relocator

Load balancer

Locking service

Consistent hashing

Memory cache

Optimistic repl.Map reduce

Failure Models

Fragment handler

Log Service

Notification Service

Data Analysis and Request Processing Applications

Queue

APIs

ut users still won’t tolerate long waiting times for their requests. To get a
grip on latency we will discuss the following topics:
- what is latency?
- How does latency develop?
- What causes latency?
- What can be done against it?
No, latency is not bandwidth (even though it has an interesting relation
with it). Let’s just define latency as the waiting time experienced after

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 199 03/12/2010

sending a request until the response arrives and can be viewed or
processed. Bandwidth decides how much data we will be able to send or
receive in a certain time. Latency decides how fast we will get a (perhaps
rather small) response. An increase in bandwidth does not improve latency
but the opposite is usually true. Latency seems to be a problem that
plagues especially websites since practically ever but is also extremely
critical in online games, virtual worlds and realtime multimedia
entertainment or collaborative and highly interactive sites.
And finally and from past experience: latency is very hard to reduce once a
problem is detected (and unfortunately latency problems get detected
rather late in projects). Also, latency is a special and overall view of the
behaviour of a system: From a latency point of view many decisions made
within collaborating systems finally result in good or bad response times.
How does scaling affect latency? The usual experience is that with more
users/requests etc. the individual latency gets worse, sometimes event
resulting in a system crash through overload.

differentiate bandwidth from latency
- compare with the effects of sharding

How does latency develop (compared to capacity and bandwidth)?

The slide from Till Issler [Issler] shows the growth of pages over 20 years.
Users expect much more content than before and it takes a lot of punch on
the server side to assemble it dynamically from different sources. David
Patterson compared the development of bandwidth with the development
of latency in four major areas (disk, memory, net, CPU) roughly over 20
years and came to the interesting conclusion that latency permanently lags
behind bandwidth (and capacity).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 200 03/12/2010

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM,
32b, 64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200,
10000, 15000 RPM (8x, 143x)

(latency = simple operation w/o contention
BW = best-case)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

Note:
Processor Biggest,
Memory Smallest

From:
D.Patterson

He also give some hints about improving latency which we will discuss
shortly but the most important statement for designers and architects is
that they should design for latency and not assume fundamental decreases
in latency in the near future. According to Patterson the reasons for latency
improvements lagging behind are that chip technology seems to help
bandwidth more (pins, number of transistors), distance limitations (speed
of light), better marketing of bandwidth improvements, the queuing
networks of todays web sites which help bandwidth but delay requests,
operating system scheduling and algorithms which favour throughput over
small setup times.
What causes latency? When we follow a request from its start till a
response is received and processed we notice that latency is caused by the
many little delays and processing or transmission times of our request
across many systems and system levels. A system call causes a context
switch to kernel mode and afterwards data are copied from user to kernel
buffers. Later the kernel creates a write request for a network device e.g.
and the data are copied onto the wire. There the data are transmitted at a
certain speed. Repeaters and other intermediates like proxies, switches etc.
cause further delays and processing times. Finally at the target server our
request is received and buffered. After a while an application receives a
notification, changes to running mode and processes our request. The more
threads or processes are busy processing other requests the more delays
e.g. through context switching times our request will experience. Perhaps
it needs data from backend storage systems which will cause further
delays. And then the same things happen on its way back to where it
originated.
Queuing theory tells us that we need to calculate the sum of all residence
times in the queuing network and together with transmission and
propagation times it becomes clear that the longer the service chain is the
bigger the latency will get. And every component that shows especially
low performance adds to it without others compensating for it.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 201 03/12/2010

If we look at a single processing step we notice something else: Most
processing of a request shows three different phases: initialization or ramp
up phase, processing phase, settle down phase. The first and the last are
independent of the size of our request. They are fixed costs that apply even
for a single byte. To adjust for those costs engineers tend to create wider
data path or higher bandwidth connections so that more data can be
transmitted or processed for the same fixed costs.
What can be done to reduce latency? From what we just said follows that
many small requests are rather inefficient. We better batch requests or
transmitt larger amounts of data and the same goes for disk and memory
page size. Fine-grained RPC methods as have been used in classic
distributed programming models like CORBA, DCOM etc. will
experience a lot of latency for little data. It does not come as a big surprise
that the web programming model is document centric with a larger
granularity of requests.
Caching and replication have been mentionen in [Patterson] as well and
from past experience I can say that they are a make or break issue for web
sites or portals. It is mandatory to shorten the request path by placing data
as close to the consumer as possible. Even DNS lookups should no have to
travel far. Prediction is also an interesting technique to cut down on
latency. Pre-fetching data is an example. Online games frequently
calculate player movements ahead and disconnected from server data.
Once the data from the game server cluster have reached the game client
the position is corrected – which leads sometimes to jumpy movements of
the character.
What else can we do on the server side or in the network? The chapter on
I/O discusses strategies for efficient and fast I/O handling. A key topic
here is to quickly notify applications on incoming requests. Avoidance of
context switches and other concurrency techniques are discussed there as
well.
Will partitioning of backend help to improve latency? This is not easy to
answer correctly. At the first glance partitioning seems to improve
bandwidth because it adds communication channels. One request should
not get faster treatment just because of partitioning. But what if there is a
queue in front of the single system and it is filled with requests? In this
case distributing the request to e.g. read-only slaves will shorten latency.
This is only true of course if the service times of the systems are roughly
equal as we have seen in our chapter on queuing theory.
Now since we know what causes latency and what can be done to reduce it
we can go ahead and optimize all request path’s in our system from one
end to the other. Or we can ask another question first: Where exactly is
latency caused and how much of it is relevant or a call to arms? We need a
good understanding of basic performance data of disks, networks, CPUs,
memory etc. – this is what the chapter on hardware numbers was about.
But we need something else which is a real bummer: we need to know the
timings between all components involved to find out where the time is
lost. And this requires a complete instrumentation of all components. As
this is probably impossible to achieve we need at least to make sure that
our own software is completely instrumented with timestamps and
allocation/de-allocation counters (the latter just to track down
unresponsible behavior by software).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 202 03/12/2010

Should the timestamp data directly drive scalability measures like running
more virtual machines to process client requests? If responsiveness of your
application is paramount to you this is probably a good idea but it comes at
substantial costs as we have seen: scale-out measures are only effective if
there really is an exceptionally long queue of requests lined up at the
server and the latency is not in reality caused by slow backend systems. In
this case having more front-end servers would be no help at all. Quite the
opposite would be true: your overloaded backend systems would
experience even more requests/sec. and latency would increase for all
requests.

If you experience disappointing roundtrip times it will most likely mean
that you will have to go with a fine comb through the complete software
chain involved: Are there any bad serialization points in your processing
software on the server side? You might run lots of threads but what are
they really doing besides causing context switching overhead? I once had
to track a performance problem in a large web site for a bank and it turned
out that nine out of ten threads were always waiting at some reflection call
within the Xalan subsystem needed to render the pages. Our code was
multi-platform enabled and did dynamic checks for extensions available
on each XSLT processor. Unfortunately the Xalan people had thought that
looking up available extensions would not be a performance critical thing
and put a “synchronized” statement around. We were able to move the
checks to initialization time and shorten the request length considerably.

Later in this book we will cover many techniques useful to cut down on
latency. Rather extreme ones like moving to “eventually consistent”
algorithms which means giving up consistency for a while – or simpler
ones like using a content delivery network. The sections on I/O and
concurrency also provide ample opportunities to reduce the response time
of requests by using more parallelism. But again: before you install an
Infiniband network and scale up to x-core CPUs, twiddle with TCP and
kernel settings etc. – make sure your measurements really indicate that
there is a problem.

<<todd Jobson, The many flavors of system latency.. along the critical
path of peak performance>>

According to Werner Vogels, CTO at amazon, the company enforces
rather strict SLAs for requests: The 99.9 or 99.99 percentile of a certain
request type have finish within a defined time. This leads us quickly to a
core part of architecture related to latency: the creation of a distribution
architecture. This can be as simple as a spreadsheet with detailed
information on all our information sources and the respective protocol,
responsible person, uptime range, average and slowest responses, variance
in runtimes, percentiles at certain times, security issues etc.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 203 03/12/2010

Distribution Architecture

700
0

808
0

80

300
0

Port

Mrs.W/p
ers-SLA

Mr.Z/qu
otes-
SLA

Mr.Y/res
-SLA

Mrs.X/N
ews-
SLA

Contact/
SLA

Oracle
JDBC dr.

plain

SSL

plain

Security

server2 times

Per week

70ms30msJDBChostWPersonal

Client Ev.Monday

1 hour

25 sec.40msCorba/

IDL

hostZQuotes

server0.00-

1.00

500ms.50msRMIhostYResearch

client17.00-

17.20

6 sec.100mshttp/xmlhostXNews

Load-

bal.

Down-

times

Worst
Resp.

Avg.

Resp.

ProtocolSource

Also add percentiles and variance for request times

Adaptations to media
Media – due to their size and timing requirements – drive even local
processing systems to the limit. Media processing across different systems
needs adaptations on all involved parts of those distributed systems: on the
archive, producer, delivery and receiver components.
Just finding and retrieving media content requires special archive
technology, organized in several processing and storage layers with
frequently needed content in high-speed temporary storage and all the long
term content in inexpensive tape libraries. Meta-data are used to tag any
content so it can be found later again. What makes the delivery side
especially critical is the fact that in many cases the requester is a human
being and not a machine which means that the time to gather and deliver
media is very much limited: it is the so called request time and all
activities necessary to fulfill a users request have to happen during this
time. Caching and replication are typical adaptations in distributed systems
to deal with limited request times. We add replication especially for high-
availability. Luckily in many cases with media as out main concern we are
not subject to the extreme requirements for both availability as well as
consistency as would be the case in an airport control tower. [Birman]
On the receiver side important adaptations for media are buffering and
compensation algorithms which are able to compensate small problems in
the real-time delivery process. We will see a nice example of
compensation in audio streams across networks.
The adaptations necessary on the producer or processing side are in many
cases what compute GRIDs or clusters (a cluster is a more homogeneous,
in-house version of a GRID) can provide: ad-hoc combination of compute
resources to perform e.g. rendering or image processing of media or to
find and server media content in close to real-time fashion. Parallelization
is one adaptation that allows e.g. parallel rendering of different frames for
a computer animation.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 204 03/12/2010

Perhaps the most important concept of adaptation is partitioning.
Partitioning simply means splitting scarce resources in a way that allows
parallel access or parallel processing. Partitioning leads to independence
between resources and those resources can then scale independently of
each other, e.g. run on different servers. Partitioning can also mean to split
complex media into fragments which can be recombined into new media
containers. This way some media like complex homepages in portal
architectures can be composed for every user in a different way -
personalized but from a limited number of fragments. Fragments on the
other hand require a proper information and distribution architecture to
work and so does caching.
The downside to partitioning is that it is sometimes visible on the
application level. E.g. when changing a world or zone in a MMOG is done
by a transfer to a different server which is visible to the player. Or when
users need to explicitly log in at specific servers to get to specific parts of a
virtual world. Partitionings are just as heavily discussed as the principle of
transparency in distributed systems. Some middleware for cluster
computing e.g. tries to offer very fine-grained and small areas for
application objects within servers (e.g. the open source game engine
DarkStar, others do a coarse grained separation of action onto different
servers and have no way to deal with overcrowded zones within one
server.
The following diagram shows partitioning on middleware, application and
user level. Ideally the middleware would be able to transparently relocate
zones across machines, split zones and add more CPU power to each etc.
But in many cases there are other limitations as well like the maximum
number of avatars that can be displayed within a certain area so that users
can still play.

Middleware

Game Application

Zone

Zone

Zone

Zone

Zone

Zone

Zone

Clever partitioning of the main resources in a distributed computing
application saves a lot of time and money and leads to well performing
applications. A distributed system with many different resources and users
is currently unable to promise a complete, transparent and consistent

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 205 03/12/2010

replication of all changes to every user. We can achieve this for special
cases and limited sizes but it is not possible on the large scale.

Content Delivery Networks (CDN)
Replication is also a key concept in serving media content. Many
successful online games of a large number of servers split into several data
centers worldwide (see below). Online services which expect lots of
requests replicate the services across a number of machines and put a load-
balancing infrastructure in front of the servers.
An important aspect of adaptation on the producer or sender side is the
question of connections and state required to serve content. Protocols
which require a permanent connection between consumer and producer
will block precious server side resources for an extended period of time
and do not scale well. This is one of the lesson learned from http. On the
other hand those protocols must still be able to allow session state or
resource sharing.
Adaptation of the delivery component knows different techniques. They
range from a change in media size (compression, several levels of quality)
to changes in the topology (multi-sender) to intensive use of edge caching
machines. Special network protocols like multi-cast can be used where
available (like for company internal TV). The use of streaming technology
is also a way to control the delivery component. While e.g. an FTP server
will – given enough requests – completely saturate a network channel, a
streaming server will restrict network input at the configured level to avoid
saturation.

Edge caching is another approach to take load from the delivery
component by getting the content closer to the consumer. Companies use
edge caching technology e.g. from Akamai or GroovyGecko when a larger
audience is expected for webcasts etc.
The streaming of popular concerts or other events like webcasts to a large
audience requires a huge amount of bandwidth at the server side as well as
a high-availability infrastructure to ensure worldwide uncompromised
reception of content.

But even without real multimedia content the serving of pages and images
to many users stresses a companies infrastructure. For this reason edge
caching networks like Akamai oder Groovy Gecko have developed. The
transport content to the “edge” of the internet, i.e. closer to the final
consumers. And at the same time the distribution of content ensures the
scalability of events. Many companies have been caught by the so called
Slashdot effect – being mentioned at Slashdot.com caused flash crowds –
large numbers of users accessing the company site at the same time. The
same goes for product announcements. Edge caching networks ensure
enough bandwidth for an estimated number of users.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 206 03/12/2010

This diagram is taken from Marc Mulzer [Mulz] and describes the
replication of content across several layers of caches. While this will
reduce the stress on the main server machines it will significantly increase
the managing efforts needed to keep those caches synchronized. A typical
problem for those architectures is a sudden and important change of
content which is not completely replicated to caches so that some caches
will deliver outdated content even after a longer time. Distributed caches
require cache invalidation protocols and in extreme cases voting protocols
for global commit.
Google recently developed a new tool “WhyHigh” which was used to
clarify a strange effect in CDN behaviour. According to google some
clients which were closely located together and which were routed
correctly to the same CDN server nevertheless suffered considerably
different round-trip-times. The research paper on WhyHigh found
inefficient routing (loops) and queueing delays to be responsible for those
effects. It turns out that simply assuming that a CDN will create equal user
experiences is wrong. [Krishnan] et.al.
Underestimating the role of caching for high-performance sites is THE
major reason for unsuccessful web projects. We will come back to this
topic when we discuss media fragments and personalization.
Especially interesting are currently attempts to use a more peer-to-peer
like architecture for delivery of video on demand. The British BBC e.g. is
trying an architecture where many different nodes can serve partial content
to a consumer. The content bits and pieces are reassembled at the receiver.
This avoids the typical server side bottleneck of video on demand where a
server cannot deliver all content through

HA-Service Distributor
<<Whackamole, spread based>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 207 03/12/2010

I am following Theo Schlossnagles concept of separating availability from
load balancing. This separation allows us to recognize as very different
services which can be implemented in a different way than the usual
centrally placed load balancer/HA unit with hot standby.

What do we want to achieve?
- We want to prevent IP addresses known to clients to suddenly
disappear because a server went down.
- We do NOT need transparent failover for reasons we have
discussed in the clustering section above.
- We want to prevent requests being sent to “dead” hosts and
hanging a long time – in other words we want immediate information on
unavailable servers to prevent request stalls.
- And we want this to happen automatically without manual
intervention.
- And on top of this we want this to be an inexpensive solution
without having lots of specialized boxes with expensive stand-by units
hanging around at every tier in our architecture.

And we can further split our component into a part that deals with IP
services and how a host can service an additional IP address and a part that
deals with failure detection and reaching consensus about a new, valid
configuration of participating hosts. The latter sounds very generic and
potentially useful for other services like replication, locking etc. That’s
why we will handle this generic service later and turn it into a platform
service for all kinds of other vital functions (see below also the section on
component hierarchy and dependencies).

A good description of Whackamole, a peer-based high-availability
component can be found in the mod_backhand description [Schlossnagle].
The mechanism differs significantly from virtual IP based load
balancer/HA units which offer only one virtual IP to clients and distribute
the requests internally. A peer-based HA solution looks like in the diagram
below:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 208 03/12/2010

DNS
Server

Hostname = foo.com

IP alias : 1.2.3.4

1.2.3.5

1.2.3.6

1.2.3.7

Web
Server 1

Web
Server 2

Web
Server 3

Web
Server 4

Wack.

Wack.

Wack.

Wack.

Config: real IP 1,2,3.4 =
…

Router

Decisions
on which
server
takes
which IP.

Distributi
on of ARP
info.

Arp
spoofing
in case
of IP
change

Takes over
second IP

Two critical points are updating the ARP information in other servers
when an IP address has changed to a different host. This can be done either
via ARP spoofing or by distributing ARP information regularly to other
hosts on the same subnet via Wackamole.
SSL Certificates in SSL connections are problematic as well as there is a
binding between servers IP and the name of the service in the certificate
and a whole bunch of certificates will be needed for peer based HA:
Every service that works stateless or mostly stateless with some state held
in a global store e.g. can be rather easily made HA with peer-based
methods. Having more than just two-machine failover helps also because
it allows a machine to take over more responsibilities. Wackamole
supports heterogeneous hardware but if a machine takes over
responsibility for another IP it needs to be able to support its services as
well which puts a damper on heterogeneity of couse. And can we really
achieve n-1 failover with peer-based methods? N-1 in this case is only a
theoretical value. We simply cannot fold n-1 loads into the one remaining
server.

Distributed Load Balancers
<<Mod backhand,>>
The decision to assume responsibility for an IP address is much easier than
a decision to route a request to a certain server – especially if load
balancing and failover are independent services so that failover does not
determine who will finally handle the request. And just like in the high-
availability service above we can split the service in two components: one
part dealing with the replication of server statistics across machines so that
every server can see them. And another part dealing with the execution of
decision functions. These functions (in the diagrm below designated with
F) operate on the replicated server statistics and try to distribute the load
evenly.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 209 03/12/2010

The mechanism works like that: there is a configuration of request types
which tells which request should be load balanced across servers. In case
of such a request a series of functions will be executed. The functions
calculate a decision according to CPU load or the number of requests
waiting or other parameters. Some functions implement preferences like
handling a request on the receiving server. Once a server has been
determined the request will either be re-directed to that server or an apache
child process uses an existing connection from a connection pool to proxy
the request to another server. The latter is not as effectice in most cases
because it forces the first server to still deal with the request by routing
data back and forth. Ideally the decision is that the server who received the
request originally will handle it as well.

Some things complicate load balancing enormously: many web requests
are short lived (< 1 sec) and there is some overhead in replicating server
statistics at a much finer granularity. A group communication protocol
based on multicast though can update a small number of servers many
thousand times per second – if no disk access is needed ([Birman]). We
can probably use just about the same as for the failover service above.

Another problem is the weak prediction quality of parameters like CPU
load. They can change so fast that they can become almost meaningless.
Queue information is probably a much more useful parameter. And finally
there is a chance for request thrasing when servers start re-directing
requests to each other. Or requests circulating endlessly between servers.
The functions can also access request parameters and detect re-directions.
What can help to make load balancing easier? Strongly controlled request
types and their behavior e.g. like in the SLAs of Amazon. Once we know
exactly that 99.9% of a request type will finish in no longer than 2 seconds
we can start calculating service times much better. Uniform hardware will
also make calculations easier.

Load balancing configuration:

Evaluator functions access
server stats in shmem and
calculate result (own server
handles, redirect or proxying
of request)

Web
Server 1

Web
Server 2

moderator

moderator

Server stats: CPU, requsts, mem,
etc., replicated in shmem‘s

Router

Server Stat
replication
via
multicast

Redirect
to other
server

shmemchild

shmemchild

Proxying request

1

2

F

F

F Configured
evaluator
function

config

config

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 210 03/12/2010

But does it have to be a push mechanism to distribute load? In the section
on special web servers below we will discuss a pull based solution.

Distributed Caching – not an Optimization
There is one mechanism of adaptation that is used by almost all
components, from processing to consumption of media content and this is
caching. And there is a big misconception around about caching in
distributed systems, based on the saying that “premature optimization is
bad”. While this is frequently right in the case of caching in distributed
systems it is absolutely the wrong approach: because caching in distributed
systems is NOT an optimization. It is an architectural core element at
several layers. And the proof for this statement lies in the fact that you
can’t add caching afterwards to your distributed application without major
changes. Just look at the well-know Struts architecture: without an API to
ask for a cached value there is no way to re-use a previously calculated
value. Instead, one has to call the specific action again to get that value.
This was fixed in the later Portle API (JSR 168).
A design of a distributed media application that does not use all available
caching mechanism on the client side, network and intermediate level up
to several layers of caching within backend server machines will not work
at all. It will neither scale nor perform. Unfortunately the possibility to use
those caching methods has to be reflected in the application design or it
won’t be possible. For developers relatively knew to caching the article
“Benchmark Results Show 400%-700% Increase In Server Capabilities
with APC and Squid Cache” gives detailed numbers on improvements
possible with caching.
[http://www.ilovebonnie.net/2009/07/14/benchmark-results-show-400-to-
700-percent-increase-in-server-capabilities-with-apc-and-squid-cache/]

Caching and Application Architecture
Why is caching so much dependent on the application architecture?
There are a number of reasons:
1. Caching requires information on the content to be cached.
Can content be cached? This sounds like a stupid question but in
many cases there are legal responsibilities associated with content
and customers might sue if being served with outdated information.
2. How long can or must content be cached? Can is a legal
aspect, must a technical aspect. Both need to form a compromise as
will be shown later.
3. What about personalized content? Every piece of content
served might be unique or more likely parts of it might be unique.
Does this mean we cannot cache at all? Should complete content
pieces (e.g. pages) with personalized content be cached?
4. What about security? Can we guarantee that the same
access control rules are in place for cached content?
All these questions finally lead us to recognize that the information
architecture of an application drives caching possibilities. The
information architecture can simply be a spreadsheet with detailed
information on each and every piece of content or content type that
is used within the application.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 211 03/12/2010

Information Architecture –
Lifecycle Aspects

Country Codes No (not often,
reference data)

No

News Yes (aging only) No, but personal
selections

Greeting No Yes

Message Yes (slowly aging) Yes

Stock quotes Yes (close to real-
time)

No, but personal
selections

Homepage Yes (message
numbers, quotes)
Question: how
often?

Yes (greeting etc.)

Data / changed
by

Time Personalization

For every bit of
information you
must know how

long it is valid and
what invalidates it

For every bit of
information you
must know how

long it is valid and
what invalidates it

Frequently we will recognize also that much of the content is
assembled from different bits and pieces of other content. Some of
these “fragments” are personal and secret, many of them public.
We can simply go ahead and on every user request start assembling
the fragments and building a new piece of content that will be
delivered. This is OK but as we will notice fairly quickly – it is
quite expensive with respect to performance (both CPU and
network). Why network performance as well? Because we now
realize that those fragments are usually pulled from all kinds of
backends over all kinds of protocols and with all kinds of quality-
of-service associated.

Caching Strategies
There is a wide variety of caching options and strategies and just
about the only one that will surely not work is to ignore caching at
the start of the architecture. There is a chapter in this book on client
side optimizations which includes caching as well. If you are
unfamiliar with http/html level caching options take a look at the
servlet book from Jason Hunter or at the book on High-
Performance Web Sites.

When not to cache
Caching things makes no sense if there is no chance that the
cached value is used by anybody during the lifetime of the
cache value. Stream-based multimedia data are a typical
example. The chunks get processed sequentially and storing
them within a cache just pollutes the cache for no reason.
The distribution of values across a certain type is also
important: a scale free distribution (followers in twitter?) is
certainly problematic to cache as only a minority of values
will be used but at a high frequency [Henney]. Do you want

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 212 03/12/2010

to cache rare thumbnails? Wikipedia seems to hold different
caches for different types of content to prevent polluting a
cache with information that has a low locality of reference.
What about realtime information like stock quotes? They
may be realtime but there is usually nothing to be said
against caching them at least for a little while (20 seconds).
In the worst case put a timestamp of the creation time to the
values or graph so viewers can see how old values really
are. This should never stop you from caching. Just about the
dumbest thing I ever did with respect to caching was to not
reject a business requirement for absolute realtime stock
values on the homepage of a large financial portal site.
Turned out that this caused huge number of XML-RPC
requests against a slow backend system and it killed the
homepage request performance wise.

Invalidation Events vs. Timeout
We could call it “the thundering herds of cached
information” in reference to other “herds” like threads that
return from waiting for a resource just to find out that the
resource is busy again (see concurrency chapter) or data
copies shipped around after re-partitioning of storage (see
chapter on storage below). In all these cases a small change
causes enormous concurrent activity to fix the situation.
Here the herd is caused by some cached values becoming
invalid and a whole bunch of requests is going straight for
the database(s) to load the new value. Even one very busy
variable can already cause this effect and lead to stalled
threads at the back-end. Lucky you if your I/O is working
asynchronously (see chapter on I/O) or may of your threads
will simply block and wait for the result.

<<dogpile discussion>>

Invalidation of cached values is very important so make
sure the invalidation mechanism is stable and able to delete
larger numbers of entries at the same time.

Operational Criticality
“It is just the cache” is no longer a good argument for
treating the nodes which host caches as unimportant. Our
large-scale sites simple do not work without caches
anymore. They would take DAYS to become operative
again. This means changes to the cache infrastructure need
to be incremental and the whole mechanism needs to be
available 100% of the time (but not with 100% data). This
is an important distinction that allows you to retire servers
with only some increase in the load on backend systems.

Pre-Loading of Caches
This is highly application specific. You should really know
the exact usage patterns of cached values to avoid loading
the cache with unnecessary information. Content

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 213 03/12/2010

management systems can benefit from pre-loading the
caches.

Local or distributed caches
In the beginning of application servers there were only local
caches available. This turned out to be one of the biggest
performance problems with horizontally scaled
applications. Each and every application server held its own
cached values. Causing repeated access to the backends for
the same data and a severe synchronization problem on top
of it: if node one changed a value in the database, only its
own cache got updated. The rest of the nodes would happily
still serve the old data. Solving the problem with timeouts
associated with the values is not really a good idea (see the
discussion from above).
Distributed caches avoid those problems (I am not talking
about replicating caches like the JBOSS treecache). I am
going to discuss the most prominent example nowadays –
memcached – below.

Partitioning Schemes
Every distributed cache needs to solve two problems:
lookup must be fast from every server and a change in the
cache infrastructure (e.g. more machines or a crashed
machine) should not make all references invalid. The
necessary algorithm is called “consistent hashing” and it is
discussed in the chapter on scalable algorithms. Here we
simply say that in many solutions the key of the data is
hashed and compared to hashed IP addresses. The host with
the smallest difference to the key hash is the one holding
the value. Memcached e.g. uses a two-level hash technique
to distribute values across machines and to find a value
quickly within a machine.

Memory or Disk
Typically page servers for web-based content management
systems use disk based caches. If they crash the cache is
still available after reboot. But those caches are local ones,
not distributed. It probably depends on the number of page
servers, the load-balancing used to distribute load, the
ability to slowly bootstrap a server etc. whether a disk cache
is still a good option today.
For performance reasons the values should be held in
memory as is e.g. the case with memcached.

Distribution of values
Why would you want to distribute one value across several
hosts? It’s only a cached value after all. With several copies
your site becomes better protected against node failures and
on top of that you can distribute requests for a hot topic
across several machines. But your memory requirements
will double or triple. You will have to decide about the level
of availability and load that your cache should provide.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 214 03/12/2010

Granularity
There is a simple rule regarding the granularity of cached
objects: the higher the costs to re-create the value, e.g.
through expensive join operations, the more important is it
to cache complete, aggregated objects. At other times
simply caching rows might already be enough.
Twitter has some interesting papers on cache use, e.g.
having one cache with only references to entries in other
caches. Netlog carefully separates some values via several
calls to the databases to allow incremental invalidation of
only parts of objects. They trade initial construction effort
against ease of use later.

Statistics
Each cache needs some administration and tweaking and
this needs to be based on actual cache behaviour like hit
rates. Cache instrumentation is key to performance.
Unfortunately caching ruins other statistics normally: If
your application can serve content from a cache the
corresponding backend systems and statistic components
will never see (and count) those requests.
But it gets worse: Once your cache really works request
numbers and behaviour in the backend systems will change
dramatically, e.g. there will be much less read requests.
Your architectural decisions e.g. to partition the database or
to go to a No-SQL store might become questionable. This is
the reason why caching is NOT a late cure for architectural
mistakes which were made in the beginning (see the
discussion on partitioning options below).

Size and Replacement Algorithms
<<later>>

Given that the number of followers is in all likelihood a
power law distribution, tracking the mean is probably not
as useful as it might first appear. For normal distributions
caching with respect to the mean makes a lot more sense
than for a power law distribution, which is very skewed and
has potentially infinite variance. I'm not sure if the article is
implying that the cache sizing is based on the mean value or
whether the mean is just being offered as an interesting
piece of information to make things more concrete for the
reader. Kevlin Henney
http://www.infoq.com/news/2009/06/Twitter-Architecture

- cache coldness, cache concentration, delete after
some time – problems with this approach.

Cache Hierarchies
There is not just one cache used in many web applications.
It starts with the browser cache, intermediate caches (e.g.
Squid), edge caches, reverse proxy caches, web server

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 215 03/12/2010

caches, web application caches (e.g. dynacache), language
caches (apc), distributed caches (e.g. memcaches), query
caches of databases and so on.
Caching techniques: cache forever and explicitly expire,
have a chain of responsibility. We had a generic expiration
time on all objects at Digg. The problem is we have a lot of
users and a lot of users that are inactive. Chain-of-
Responsibility pattern creates a chain: mysql, memcache,
apc, PHP globals. You’re first going to hit globals, if it has
it you’ll get it straight back, if not go to the next link in the
chain, etc. Used at Facebook and Digg. If you’re caching
fairly static content you can get away with a file based
cache, if it’s something requested a bunch go with
memcache, if it’s something like a topic in Digg we use
apc.[Stump]

Memcached
I have once mistakenly thought of memcached as an in-memory
database (which at that time I thought to be rather useless because
most RDBMs already hold much of the data in a memory cache.
Today with disks becoming tape and RAM becoming disk this
might change, e.g. in the Cloud.). But memcached is no database at
all, knows nothing about SQL. All it does is store key/value pairs
very efficiently across a possibly very large number of servers and
with the option to locate a certain value very quickly. First a client
hashes a key and maps it to the responsible server for that value.
Next the server hashes the key to find the locally stored value.
There is no fault-tolerance nor load-balancing provided beyond a
good distribution of values across machines. [Denga]

Let’s start with a simple example of its use, taken from [Moon].
We need to define the server pool serving as caches.

$MEMCACHE_SERVERS = array(
 "10.1.1.1", //web1
 "10.1.1.2", //web2
 "10.1.1.3", //web3
);

Then we create an instance of a memcached client ('$memcache')
and initialize it with the server pool..
$memcache = new Memcache();
foreach($MEMCACHE_SERVERS as $server){
 $memcache->addServer ($server);
}

Now we take a SELECT call which i seither long running or of
high frequency and wrap it with a call to the cache first: We first
check whether the results are already in the cache, otherwise we go
to the database, extract the result and put it into the cache for reuse.

$huge_data_for_frong_page = $memcache-
>get("huge_data_for_frong_page");

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 216 03/12/2010

if($huge_data_for_frong_page === false){
 $huge_data_for_frong_page = array();
 $sql = "SELECT * FROM hugetable WHERE timestamp >
lastweek ORDER BY timestamp ASC LIMIT 50000";
 $res = mysql_query($sql, $mysql_connection);
 while($rec = mysql_fetch_assoc($res)){
 $huge_data_for_frong_page[] = $rec;
 }
 // cache for 5 minutes
 $memcache->set("huge_data_for_frong_page",
$huge_data_for_frong_page, 600);
} [Moon] Brian Moon, This is a story of caching,

This may be enough for a small to medium size website. That scale
really changes many things is shown nicely by Paul Saab’s
discussion of adaptations made to memcached to make it perform
at Facebook. [Saab]. The author mentions e.g. that connection
buffer sizes became a problem eating gigabytes of RAM on
memcached machines and that they had to be made shareable.
Concurrent and asynchronous access by clients is another topic
here. But look at the numbers given by Saab after the changes were
applied:
Since we’ve made all these changes, we have been able to scale
memcached to handle 200,000 UDP requests per second with an
average latency of 173 microseconds. The total throughput
achieved is 300,000 UDP requests/s, but the latency at that request
rate is too high to be useful in our system. This is an amazing
increase from 50,000 UDP requests/s using the stock version of
Linux and memcached.[Saab]
To get an idea of what makes I/O really fast go to the chapter on
Asynchronous I/O below. Extensions to memcached:
Gear6 provides a number of enhancements to standard
memcached. These include:
1. Memory utilization: Removal of the 1MB object size limit,
finer grained block based memory allocation, and a cost based
eviction algorithm.
2. Density: We use a combination of DRAM and Flash
memory to lower the cost of the cache and increase the density of
our solution. Currently our largest cache is 384GB per 1U.
3. High Availability: We deploy our solution with two 1U units
in a cluster environment. The cluster enables two modes:
1. Continuous service availability: The cluster architecture
enables fail-over capabilities. This ensures that cache services are
not interrupted when failures occur.
2. Continuous data availability: The cluster replicates data
within the cluster. This replication ensures that all cache data is
always available in an alternate location, and continues to be
served to users without interruption or delay. Spikes in database
and application load are avoided.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 217 03/12/2010

3. In addition the Gear6 Web Cache requires no client-side
code modification and our cluster architecture enables disruption-
free software upgrades.
4. Reporting and Management: Gear6 Web Cache is fully
instrumented and equipped with intuitive interfaces that let you see
what’s happening at multiple levels within your Memcached tier.
We’ve made enhancements that automatically and continuously
scan both DRAM and flash memory for failures or failure
indicators. Users can drill-down on any level of their cache tier
and get reports on hot keys, clients and instances.
http://www.infoq.com/news/2009/07/webcache

Fragment Architecture and Processor
This section could or should have gone into the chapter on caching
because in all likelihood fragment handling will be done in the context of
caching. When I looked at some early twitter architecture diagrams or read
some papers I was surprised about the little use of caching they made. If I
remember correctly the API access branch had little caching and the web
part nothing at all.
This has changed obviously as the diagram below shows. It is taken from a
blog entry by >> who discussed the later architectural changes to Twitter.
[Weaver]

The diagram shows four levels of memcached. A fragment layer assembles
re-usable bits and pieces of information across users. And look at the
performance data below! The difference between uncached and fully
optimized caching is almost fifty! And it shows that further optimizations
like multiget or FNV <<describe>> still make a difference too.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 218 03/12/2010

From [Weaver]
So what is a fragment architecture and how do you build one? A fragment
architecture is basically a simple realization on your part. You have to
realize that pages or information containers delivered to clients might be
uniqe, customized etc. – that they still contain re-usable bits and pieces
which can be used to assemble pages or containers for other users. This is
sometimes not easy to realize because “personalization” in context with
security make things look so very unique. But this is wrong. If you
disregard the composability of pages you will learn some very hard facts
about multi-tier systems: that by going to the backends for each and every
bit of information will simply kill your application. This has been a core
lesson learned from building large portal sites and yours truly has made
that mistake once and hopefully only once.
Given your information architecture we can start to build a fragment
architecture that allows us to cache fragments of different granularity,
assemble them to bigger content units and at the same time guarantee that
cached items will be removed if a fragment within a larger unit gets
updated. For this purpose we need to capture dependencies from larger
pieces on smaller fragments in the information architecture. And we have
to build a runtime system that tracks the dependencies between parts,
much like e.g. a relationship service from CORBA would track the
deletion of embedded elements (relational integrity). Only that we would
invalidate inside out: a small fragment which becomes invalid causes all
its embedding “parents” to become invalid as well. Caches like
Webspheres Dynacache today allow this kind of invalidation even across
machines (edge cache).
This technique had been used by IBM Watson for the Olympic sites and
the architecture below has been an adaptation for a large financial
organization made by myself. See [Kriha] for a paper describing certain
scalability problems in building large portals).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 219 03/12/2010

Channel Access Layer

Aggregation layer

Datacache 1

Service Access layer

Storage manager

Normalized
Request Object

Object
Dependency

Graph

IL Fragment Cache

Profile Info

Personalization

Rule Engine

Authorization

Integration layer

Datacache 2

Storage manager

Fragment
Description

Instance

Fragment Request

notifies

invalidates

AL Fragment Cache

invalidates

Fragment Based Information Architecture

Goal: minimize backend access through fragment assembly
(extension of IBM Watson research)

Again, we don’t have to do this but if we don’t we will quickly learn the
number one performance rule of all websites, portals, community sites
etc.: In complexe multi-tier applications avoid unnecessary backend
requests like the plague. And the second one: Realize that all the
aggregation and processing of the content needs to be done within a
reasonable overall request time. Users don’t wait. This limits your options
for processing the content considerably and needs any kind of
preprocessing of fragments etc. that is possible at all.
The diagram above mentions a SAL layer – a Service Access Layer which
shields the application from unavailable or sluggishly responding
backends and services. If you can’t prevent the requests from your
customers to reach out to unavailable services you have no control of your
application. Your application will show strange behaviors depending on
the availability of important services. It will stall, block and in the worst
case crash due to resource exhaustion (threads, memory etc.). Controlling
threads and other resources is important, there is no doubt about. But just
like many other services (load balancing, IP failover service) also the
fragment processor finally relies on a failure detection service which we
will describe below.
Ideally your application and its different parts will form a kind of funnel
that restricts incoming requests and avoids overruns.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 220 03/12/2010

<<example of web-application funnel architecture>>
Queuing theory will help you construct the proper limits on the various
entries into your application parts. But all control does not help if the
threads simply block waiting for unavailable services. If you are interested
in the gory details of such problems take a look at my paper on Enterprise
Portal Architectures where those typical RAS issues are discussed and
solutions provided [Kriha02]. Surprisingly after all these years I frequently
come across brand new application designs where the same issues of
reliability, scalability and availability are being completely ignored –
initially…
<<portal caching architecture ,including IBM paper ref>>

Controller
Servlet News

Result
Bean cache

Research
Result

Bean cache

Quotes
Result

Bean cache

JSPs

Full-Page
Cache

Per user
Hand
lers

Domain
Object
Cache
(charts,
News,
Market

Data User
Etc.)

SAL

Market
data

Cache

Market
Data

service

Fully
processed

Page

Page
parts,

processed

Distributed
cache, raw

data

Service
Access
Layer

Portal
DB

Cache fragments, locations and dependencies (without
client and proxy side caches)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 221 03/12/2010

And if I may add a third one it has to do with availability and reliability.
Many content serving applications need to access different internal or
external services to get fragments. With Web2.0 mash-ups have become
extremely popular. Some of those are aggregated within a server
application (acting like a proxy for the browser). If you look at your
distribution architecture you will notice how much your application
depends on the availability of all the internal and external services it uses.

Compression
The next level of adaptation is the media content during transport and
storage. Compression has easy to use (e.g. via apache plug-ins) and the
current development of CPU power makes the trade-off between size and
time rather easy to decide. Besides browser compatibility there are no
issues with compression and we will skip it for this reason here. But there
is much more than compression that makes media fit for distribution:
Important considerations are size (e.g. page size in www), identification
(how to find the media), meta-data for better retrieval, round-the clock
availability (gamers never sleep around the world), fitness for different
delivery channels and formats (mobile phones vs. PC). These issues go
back to the design of the media themselves and need to be solved right at
the beginning. A typical example is the poor handling of images on many
web sites. They are frequently of bad quality and load slowly. But there
are also examples of sites with tons of pictures which are both of high
quality and load blindingly fast (see www.skatemag.de).
Even more interesting is the adaptation of content for distribution.
Examples are QoS considerations for portal content (does a homepage of a
financial institution need to provide absolute real-time quotes or can they
be cached for a certain period of time. 10 seconds can make a world of
difference as this can mean that thousands of backend requests can be
avoided if a cached version can be used. The slight degradation in QoS
makes the whole concept workable.
Another interesting case is to apply a divide and conquer approach on both
technological as well as content level. This is e.g. used in Massively
Multi-Player Online Games (MMOGs) where hundreds of thousands of
users play concurrently. No central server infrastructure would be able to
handle all those concurrent sessions. Therefore the game itself is divided
into so called worlds which then map to different server clusters. As a
player can only be in several worlds at the same time this means that the
workload can be split between different clusters. The guiding principle
here is that the content itself – here the game idea – supports the
requirements of a large scale distributed system.
<<storage compression, wikipedia>>

Local or predictive processing
Up to now most adaptations for media in distributed systems were targeted
at servers or intermediates. But the receiving client side truly becomes a
center of adaptations in the case of interactive applications like multi-
player online games (MMOGs) or collaborative environments like Croquet
(see www.opencroquet.com). The techniques used here separate local
processing time from network request time and allow for advance planning
of actions on remote machines, processing of different scenarios in parallel
or even distributed two phase commit. Advanced replication mechanisms

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 222 03/12/2010

are used as well which then again include a hierarchy of storage and
processing components to shorten response times.
<<diagram of croquet level architecture>>
These mechanisms will be discussed in the chapter on MMOGs and
Collaborative environments. Like porting an application to a parallel
processing platform like MP this approach requires a detailed analysis of
potential parallelism between clients and server code. This analysis must
also minimize communication load for synchronization and it is very
likely that even the game design and story elements will be selected in a
way to support potential independence.
Another client side adaptation has become very popular lately:
Asynchronous Javascript and XMl (short AJAX) has dramatically
increased client side processing. While much of this processing is done to
improve usability or to create new features, it is also possible to use it for a
different purpose e.g. to take load from servers. Instead of the server
rendering data completely the raw data will be loaded by the client and
formatted by the client processor.
<<AJAX emample of client side rendering>>

Search Engine Architecture and Integration
<<FAST example, wikipedia lucene use, separation of operation and
analysis, background, cluster>>
<<anatomy of search engine, scalability in several dimensions: number of
documents to index, index size, query numbers>>
Explain separation of OLTP and OLAP systems.
[Jayme…] Jayme , Scaling/Optimizing search on netlog

Special Web Servers (light-weight)
[Laird] Cameron Laird, Lightweight Web Servers.
Youtube and others use special purpose web servers. What are the
differences? Trade-offs?

Apache vs. Yaws (Erlang), from: A.Ghodsi,
http://www.sics.se/~joe/apachevsyaws.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 223 03/12/2010

This amazing diagram shows apache vs. yaws throughput. Apache dies at
around 4000 requests/sec. The interpretation by Joe Armstrong sees the
use of kernel processes and threads from Linux as the main limiting factor
of the apache performance. Erlang does not use system threads. But then
there must be a translation method to map those threads to different user
threads within the language.

A pull based Web Server Design?
Idea: do not push requests from a load balancer to web servers, let
the web servers pull the requests depending on their load. Is this
feasible? Trade-offs? Would this work without LB in front (e.g.
using whackamole, spread, backhand)?

What exactly is the queuing model behind the LB-WebServer
combination? I think it represents parallel queuing centers, not
parallel processors because each web servers has its own queue. If
– due to irregularities within the processing units some service
times are much longer the web server queue will be full with new
requests because the LB won’t be able to react quickly enough.
Hajunka does not work properly in this case. Idle web servers
cannot take requests from the queues of busy servers.

So either we reduce the wait queues to one within the LB and have
web servers poll or we could use a group communication protocol
between web servers that allows request stealing. I guess always
the next request should be taken. This would require some
communication to the LB as well because suddenly requests would
be answered by servers which did not receive those requests from
the LB.

Scheduler and parallel Processor
<<gearman etc.>>

High-availability failure detector
Whackamole (IP), group communication protocols?

and lock service
chubby http://www.jgroups.org/

Buffering and compensation for networked audio
Adaptation does not end at the network component level. Even at the
receiver side a lot of adaptation to the distribution of media content
happens. The well known browser cache is one example. Buffering of
audio/video input is another. Media-Players typically don’t start playing a
stream right away. Instead, for a configurable amount of time or data they
buffer content and start playing only when the buffer is full. Special
delivery protocols try to speed up this phase (see Microsoft Media Player
architecture) by starting a stream with a burst phase to fill the buffer and
then fall back to the regular streaming bit rate.
Buffering unfortunately comes with the problem of buffer over- and
underruns. This is finally caused by clock skew problems between sender
and receiver machines. Several solutions for this problem exist, some of
which still show visible or audible artifacts. One possible solution is to

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 224 03/12/2010

timestamp every content package and try to calculate the clock deviation
from those timestamps. Single content frames would then be added or
removed depending on whether the receiver was about to be overrun or
underrun. Other solutions try to scan the content for similar frames which
could be duplicated or removed without major affect. Unfortunately these
concepts still produce artifacts and sometimes require huge buffers. Stefan
Werner describes in his thesis a very interesting alternative: instead of
monitoring the clock skew he decided to change the playback speed in a
way that kept the buffer reasonably filled. Changing between two different
playback speeds provided a feedback loop that finally made the buffer
level adjust to the real clock skew between the machines evolved.
<<diagram skew compensation algorithm>>
This is by far not the end of adaptation on the receiver side. It goes as far
as the design of Application Programming Interfaces for video
applications in a way that allows the applications to individually handle
problems like lost frames or delayed content. Ideas to treat those in a
generic way and to relieve the applications from the complexity of dealing
with those problems have resulted in disastrous APIs which where both
cumbersome to use and slow. An excellent source for lessons learned in
the design of video APIs is the paper by Chris Pirazzi “Video I/O on
Linux, lessons learned from SGI” [Pirazzi]. The author also maintains
lurkertech.com, an excellent site for all kinds of information on video, e.g.
how to deal with video fields on computers.

Data Center Architecture
[ALV] Al-Fares, Loukissas, Vahdat, A Scalable, Commodity Date Center
Network Architecture (condo concept)
About routing etc. within date centers.
What are the pitfalls in multicast? For replication and caching? Performance and
throughput?
Microsoft research: data center design for the cloud with geo distribution: the
condo model vs. the big datacenter. Cost models etc.
Network cross-switch times (google FS paper). Multi-distribution.

Geographically Dispersed Data Centers and Topology
- Master/Slave sites
- DNS Round-trip-time calculations for short path and fast responses
(Schlossnagle)
- Anycast
- Licensing and financials
- Slow lines slowing down the application servers response
(Schlossnagle)
- [CDK] R.Cocchiara, H.Davis, D.Kinnaird, Data Center Topologies
for mission-critical
- Two/three site architectures, Disaster Recovery

[Cooper] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava,
Adam Silberstein,
Philip Bohannon, HansArno Jacobsen, Nick Puz, Daniel Weaver and
Ramana Yerneni, PNUTS: Yahoo!’s Hosted Data Serving Platform,

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 225 03/12/2010

http://highscalability.com/yahoo-s-pnuts-database-too-hot-too-cold-or-
just-right

Running an application in several datacenters across the world is
becoming normal for large sites. The reason to distribute is not the
physical proximity between clients and servers but the shortest/fastest
connection between them. Distributed data centers pose a lot of problems,
mostly related to replication and disaster recovery. Here I will only
mention two techniques for routing clients to the best server as described
in [Schlossnagle]. The first one is DNS Round-Trip-Time calculation in
clients which automatically leads to the fastest responding DNS server
becoming the “authoritative” one. Unfortunately changes in the Internet
can make that association problematic. The other solution “anycast” is
described in the diagram below. Here several local DNS servers in our
distributed installations run with the same IP address and are announced to
the networks. This way clients will automatically get routed to the
“nearest” DNS server which is available over the shortest path. There is a
chance that the next client request gets routed to a different DNS server
which makes connection oriented protocols like TCP problematic because
a different server did not see the initial parts of the connection and will
refuse the continuation (wrong sequence number e.g.). The solution is to
use UDP for DNS lookup and return the address of the local web server
who will be in the same network necessarily.

Map from:
landkartenindex.blogspot.com

DNS
1.2.3.4

DNS
1.2.3.4

DNS
1.2.3.4

DNS
1.2.3.4

DNS
1.2.3.4

Ws
1.2.3.5

Ws
1.2.3.6

Ws
1.2.3.7

Ws
1.2.3.8

Ws
1.2.3.9

Scale-out vs. Scale-up

[Atwood]
June 23, 2009
Scaling Up vs. Scaling Out: Hidden Costs

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 226 03/12/2010

In My Scaling Hero, I described the amazing scaling story of
plentyoffish.com. It's impressive by any measure, but also particularly
relevant to us because we're on the Microsoft stack, too. I was intrigued
when Markus posted this recent update:
Last monday we upgraded our core database server after a power outage
knocked the site offline. I haven't touched this machine since 2005 so it
was a major undertaking to do it last minute. We upgraded from a machine
with 64 GB of ram and 8 CPUs to a HP ProLiant DL785 with 512 GB of
ram and 32 CPUs ...
The HP ProLiant DL785 G5 starts at $16,999 -- and that's barebones, with
nothing inside. Fully configured, as Markus describes, it's kind of a
monster:
• 7U size (a typical server is 2U, and mainstream servers are often
1U)
• 8 CPU sockets
• 64 memory sockets
• 16 drive bays
• 11 expansion slots
• 6 power supplies
It's unclear if they bought it pre-configured, or added the disks, CPUs, and
memory themselves. The most expensive configuration shown on the HP
website is $37,398 and that includes only 4 processors, no drives, and a
paltry 32 GB memory. When topped out with ultra-expensive 8 GB
memory DIMMs, 8 high end Opterons, 10,000 RPM hard drives, and
everything else -- by my estimates, it probably cost closer to $100,000.
That might even be a lowball number, considering that the DL785
submitted to the TPC benchmark website (pdf) had a "system cost" of
$186,700. And that machine only had 256 GB of RAM. (But, to be fair,
that total included another major storage array, and a bunch of software.)
At any rate, let's assume $100,000 is a reasonable ballpark for the monster
server Markus purchased. It is the very definition of scaling up -- a
seriously big iron single server.
But what if you scaled out, instead -- Hadoop or MapReduce style, across
lots and lots of inexpensive servers? After some initial configuration
bumps, I've been happy with the inexpensive Lenovo ThinkServer RS110
servers we use. They're no match for that DL785 -- but they aren't exactly
chopped liver, either:

Lenovo ThinkServer RS110 barebones $600

8 GB RAM $100

2 x eBay drive brackets $50

2 x 500 GB SATA hard drives, mirrored $100

Intel Xeon X3360 2.83 GHz quad-core CPU $300
Grand total of $1,150 per server. Plus another 10 percent for tax, shipping,
and so forth. I replace the bundled CPU and memory that the server ships
with, and then resell the salvaged parts on eBay for about $100 -- so let's
call the total price per server $1,200.
Now, assuming a fixed spend of $100,000, we could build 83 of those 1U
servers. Let's compare what we end up with for our money:

 Scaling Up Scaling Out
CPUs 32 332

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 227 03/12/2010

RAM 512 GB 664 GB

Disk 4 TB 40.5 TB
Now which approach makes more sense?
(These numbers are a bit skewed because that DL785 is at the absolute
extreme end of the big iron spectrum. You pay a hefty premium for fully
maxxing out. It is possible to build a slightly less powerful server with far
better bang for the buck.)
But there's something else to consider: software licensing.

 Scaling Up Scaling Out
OS $2,310 $33,200*

SQL $8,318 $49,800*
(If you're using all open source software, then of course these costs will be
very close to zero. We're assuming a Microsoft shop here, with the
necessary licenses for Windows Server 2008 and SQL Server 2008.)
Now which approach makes more sense?
What about the power costs? Electricity and rack space isn't free.

 Scaling Up Scaling Out
Peak Watts 1,200w 16,600w

Power Cost / Year $1,577 $21,815
Now which approach makes more sense?
I'm not picking favorites. This is presented as food for thought. There are
at least a dozen other factors you'd want to consider depending on the
particulars of your situation. Scaling up and scaling out are both viable
solutions, depending on what problem you're trying to solve, and what
resources (financial, software, and otherwise) you have at hand.
That said, I think it's fair to conclude that scaling out is only frictionless
when you use open source software. Otherwise, you're in a bit of a
conundrum: scaling up means paying less for licenses and a lot more for
hardware, while scaling out means paying less for the hardware, and a
whole lot more for licenses.
* I have no idea if these are the right prices for Windows Server 2008 and SQL Server
2008, because reading about the licensing models makes my brain hurt. If anything, it
could be substantially more.

Data Stores
Social sites inevitably need to deal with multi-media data in large proportions.
This content needs to be read, written, searched, backed-up and delivered in
different qualities (resolution, thumbnails) to different clients. The same goes for
the archives of broadcast companies. And it is not only multi-media content that is
needed. Sites need structured and semi-structured data to handle users, relations
etc.
Until lately the answer to those requirements would have been either an RDBMS
or a traditional file system. But with the trend to ever larger sites like
amazon.com, google.com and others new forms of data stores have been invented:
semi-structured column stores like Google’s bigtable, key-value stores like
Amazon’s Dynamo and distributed filesystems like GoogleFS, ClusterFS,
Frangipani, storage grids and last but not least distributed block-level stores. What
is different in those architectures? Basically it is the relaxation of traditional
properties of stores as we know them since many years. Posix compatibility for

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 228 03/12/2010

file systems, transactional capabilities and strong consistency in relational
databases and so on. But those large sites have discovered that they may not need
all those features and the associated price in performance and throughput. They
discovered that by dropping certain assumptions and store properties they could
get a better performing store and they were willing to pay the price, e.g. by letting
applications deal with conflicts in the store. It is the classic pattern of dropping
requirements, relaxing unnecessary quality rules and pushing decisions higher up
towards application semantics.

Let’s start with some terminology and a collection of store criteria which define
the different store types:

Requirements and Criteria

- memory store or persistent
- standard posix or SQL interfaces, REST or non-standard APIs
- unstructured data (files, key/value), semi-structured (bigtable),
structured (RDBMS)
- read oriented vs. write oriented or neutral
- sequential access vs. random access
- large data sets vs. small data sets
- latency vs. bandwidth
- ACID or relaxed consistency (eventually consistent)
- Conflict resolution when (read/write) and where (store/application)
- Replicated data vs. non-replicated
- Customizable store properties vs. fixed properties
- Flat or hierarchical namespaces
- Consistency vs. availability (CAP behaviour)
- Behavior in case of extension, scaling
- Caching vs. non-caching
- Data integrity and security
- Multi-hop lookup vs. zero-hop
- Central meta-data vs. distributed meta-data
- Symmetric vs. Asymmetric design
- Failure detection and behavior
- Simple Search vs. structured search
- Many requests or few requests
- Heterogeneous hardware or standardized hardware
- Commodity hardware or special
- Load-balancing and availability guarantees
- Capacity requirements
- Programming models
<<categorization of store technologies and requirements, use dynamo
paper for a start>>

The big storage categories that we know about: databases, filesystems,
key/value stores and column stores, memory databases are finally made of
combinations of those properties. Some of the properties can be shared,
some seem to be very typical – category shaping – properties like the
ability to work on highly structured data for an RDBMS.
<<terminology>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 229 03/12/2010

virtualized storage:
 Einig sind sich Hoff und Shackelford auch bei ihrer Kritik an den
führenden Herstellern von Hypervisoren. Denn diese stellen laut
Shackleford immer noch keine Dokumente bereit, die den Umgang
mit virtualisierten Storage- und Netzwerkkomponenten erklären.
Selbst der ebenfalls an der Diskussion beteiligte VMware-Verteter
mochte nicht widersprechen und gab zu, dass es noch keine
Unterlagen hierzu gebe. Dabei sind diese Themen unter Umständen
ungleich komplexer als die Virtualisierung von Servern, so dass
Best-Practice-Dokumente nötiger sind denn je.
Insbesondere die ständig größer werdende Anzahl von virtuellen
Netzwerkkomponenten sieht vor allem Hoff mit Sorge: Neben dem
virtuellen Switch des Hypervisors finden sich in virtualisierten
Umgebungen demnächst noch physikalische Netzwerkkarten, die
selbst virtualisieren können, virtuelle Switches von Drittherstellern,
Netzwerkinfrastruktur, die wie Ciscos Nexus selbst virtualisiert
und nicht zuletzt der Direktzugriff der VMs auf die eigentliche
Netzwerkhardware des Servers.
http://www.heise.de/newsticker/Sichere-Virtualisierung-Viel-
Laerm-um-beinahe-nichts--/meldung/136612

External Storage Sub-Systems
Block-level, NAS, Properties of SAN, virtualized SAN etc. for scalable
storage. ISILON Systems, The clustered storage revolution.
- server independent storage with multiple access paths to data
- hidden reliability mechanism by RAID levels
- transparent for client software
- scale with respect to capacity but not with concurrent access to
several files [Bacher]. Why not?
<<FOB>>
[EMC] Storage Systems Fundamentals to Performance and Availability
http://germany.emc.com/collateral/hardware/white-papers/h1049-emc-
clariion-fibre-chnl-wp-ldv.pdf
GPFS, [Schmuck]

Grid-Storage/Distributed File Systems

GoogleFS is a typical representative of highly-specialized data stores for
sites with huge un- or semi-structured bases of information. Key to
understanding its architecture are the observations from google engineers
on workload, processing etc. They discovered that:
- most files were read and written sequentially
- appending writes were frequent, random writes almost non-existent
- files sizes were huge
- only google controlles applications would use it and could be
therefore co-developed. No strict Posix-compatibility needed
- 1000s of storage nodes should be supported
- Bandwidth much more important than latency
- Some inconsistencies tolerable
- No data loss allowed
- No extra caching needed

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 230 03/12/2010

- Only commodity hardware available

This lead to a special storage-grid like architecture which is depicted in the
diagram below. (taken from [Ghemawat] et.al. and extended)

Hashed filenames to allow millions in
directory. Leases to chunks.

Non-Posix API
Log and snapshots for
recovery. Copy-on-
write.

Chunk server control replication
and upload chunk locations to
master

Clients use serial
processing and atomic
append, no cached data.
High bandwidth design.

Huge chunks
to reduce
meta-data

Clients who want to read a file need to contact the master server first. It
controls all meta-data like filenames and the mapping to chunks. Chunks
are the basic unit of storage. They are huge compared to other filesystems
(64MB) and they map to regular Linux files on so called chunk servers.
The huge size of chunks keeps meta-data small. The separation of meta-
data server and data server is a well known design pattern and is found in
p2p systems like Napster as well.

To achieve reliability and availability each chunk can get replicated across
several (typically three) chunk servers and in case one of those servers
crashes a new one can be built up using replicas from other machines.

The master server maintains the name space for the file system. At start-up
it collects chunk locations from the chunk servers and holds all mapping
information in memory. Special hash functions allow millions of files
within a directory. To achieve reliability and availability the master server
runs a log which is replicated to a backup server. At regular intervals
snapshots are taken and the log is compacted. Copy-on-write technology
makes creating snapshots a fast and easy process.

Google says they have separated control and data path to achieve higher
throughput and bandwidth. This means the master server has meta-data on
network configurations and will make sure that chunks are distributed in a
way that makes writing the three replicated chunks fast. The client writes
data to those replicas and then selects a primary from the three chunk
servers holding chunk replicas. The primary orders client commands and
this order is then repeated at all replicas leading to a logically identical

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 231 03/12/2010

replica at each node involved. Logically because errors during this process
can lead to padding data added within chunks. This means chunks have an
internal meta-data structure as well and they need not be physically
identical with their replicas.

GoogleFS does not offer extra caching of chunks at the clients or servers.
No cache invalidation is needed therefore. As most clients process a file
sequentially anyway, caching would be futile. If the bandwidth to a file is
too small, the number of replica chunks can be increased.

What kind of consistency guarantees does GoogleFS provide? A client
who wants to write to chunks needs a lease from the master server. The
master can control who writes to files. Most writes are appends and for
those the GoogleFS provides special support: appending is an atomic
operation. There is no guarantee to clients that their atomic append
operation will happen at exactly the position they thought they were inside
the chunk. The primary chunk server creates an order between append
operations but makes sure that the individual append is atomic. Google
applications are written in a way to expect changes in order and deal with
them. Google applications according to [Ghemawat] also use the atomic
appends as a substitute for an atomic queue for data exchange: one
application writes and the other one follows reading. This allows also the
implementation of many-way-merging (de-multiplexing).
The principle that clients need to deal with the idiosyncrasies of GoogleFS
is visible also in the handling of stale replica chunks. Clients are allowed
to cache chunk locations and handles but there is no guarantee that no
concurrent update process is happening and the replica chosen is stale. As
most writes are atomic appends in the worst case the replica will end
prematurely and applications can go back to the master to get up-to-date
chunk locations.

The master server can lock chunks on servers e.g. during critical
operations on files. Chunk servers are responsible for data integrity and
calculate checksums for each chunk. Silent data corruption happens much
more often than expected and this process ensures correct replicas.

Isn’t the master a natural bottleneck in this architecture? It may look like
this but the data given by Google engineering says something else: the
amount of meta-data held by masters (due to the huge chunk size and the
small number of files) is rather small. Many hundreds of client requests
seem to be no problem. The hard work is anway done by the chunk
servers.

The googleFS architecture based on commodity hardware and software is
a very important building block of the google processing stack. Bigtable
e.g. maps to it and many other components. The whole approach looks so
appealing compared to regular drive arrays that other vendors have started
to build their storage solutions also in a grid-like mannor with master and
slave servers running on standard blades. We will discuss one such
approach for video storage, the Avid Unity Isis, below. It supports non-
linear editing of HDTV video and has some different requirements

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 232 03/12/2010

compared to googleFS, most notably the need for realtime data at high-
throughput rates. Here replication is used as well but for a different
purpose.

While traditional SAN or NAS storage subsystems typically present a
single access point to data for clients the new grid-storage based systems
use a well known pattern from peer-to-peer architectures: A split system
with meta-data servers (directors) and active processors which manipulate
and serve data.

Meta-data server

Meta-data server

Processor blade

Processor blade

Processor blade

client
client

client
client

client

The diagram shows a typical storage-grid architecture (also called “active
storage”) with two redundant meta-data servers and several processor
blades connected by two switched networks (switches not shown).
Peer-to-peer systems are famous for their scalability and storage grid
vendors claim “infinite scalability” of their architectures. Every processor
blade that gets added to the grid increases bandwidth and processing
capacities within the grid.
A closer look at the architecture reveals that it is not a pure p2p system due
to the meta-data servers used. They are needed as a means to improve e.g.
lookup performance by providing a central meta-data store – something
that pure p2p systems have a problem to guarantee. Napster used a similar
architecture to allow fast lookup of meta-data (where certain files are) and
at the same time to delegate the raw data traffic to peers.

The storage grid excels in bandwidth, latency and redundancy as well as
recovery time after a disk crash. As parts of files are distributed across the
blades access to data can be parallel. A replication level of three (three
copies per data unit) leads to a highly redundant system which – in case of
a drive failure – starts to duplicate blocks across the whole storage cluster
in parallel. This is much faster than the necessarily sequential access to a
new disk in a RAID.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 233 03/12/2010

The downside of this architecture is exactly what causes the excellent
bandwidth and latency in the first place: the loss of transparency between
clients and data processors. Only during an initial phase are the meta-data
servers contacted. Later clients and blades communicate directly and
clients learn about data locations. If at a later time bottlenecks in the
distribution of data show up special client software is needed to e.g. use
alternate locations.
With respect to scalability the meta-data server presents a possible
serialization point as well as the switches used to connect the components
and the clients.

A special feature of storage grids is the ability to perform processing of
media data within the grid. Transcoding e.g. can be performed on the
processor blades. The effectiveness of those transformations probably
depends on how localized processing can be done: if the processing can be
done without access to further data units stored on other blades then only
the costs for synchronization and control between transformation agents
need to be paid. If on the other hand processing cannot only be done based
on local information – as is the case in some forms of image renderings,
see the example of distributed rendering with 3DSMAX, the costs of
processing are comparable with the case where it is performed by the
clients themselves.

<<
MogileFS http://www.danga.com/mogilefs/
S3: grid with focus on latency
The role of data copying and de-normalization in scalable systems: [Hoff]
on using lots of disk space to de-normalize data in the context of e.g.
Google Bigtable [Chang et.al.] datastores. Tips on how to use BigTable
and data duplication.>>
<<Lustre>>

Distributed Clustered Storage
Isilon Systems sells a storage system for unstructured information
that looks rather similar to a distributed file system like GoogleFS
except for one thing: The company claims that the system does not
use central meta-data servers. Instead, all nodes within the common
namespace have all meta data and all nodes can accept reades and
writes for every file. And they recommend Infiniband as a high-
speed network layer. According to the company papers
[Isilon2006] Isilon Systems, Absolute Zuverlässigkeit durch
Clustered Storage and [Isilon2006] Isilon Systems, Die Revolutioin
des Clustered Storage the system scales linearly up to 88 nodes
with an overall storage capacity of 500 Terabyte with a redundancy
factor between 2 and 8.

Unfortunately the company does not say which distributed
algorithm is used. The claims are interesting for a couple of
reasons: First, common experience with distributed systems shows

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 234 03/12/2010

that totally distributed systems suffer from performance and
latency problems. Information can be quickly located when meta-
data are everywhere but what happens when we need to write? Run
a distributed lock manager as the company says? This means we
need to update x machines in a consistent way using a locking
algorithm.

Distributed locking can be done synchronously or asynchronously
(relaxed). Synchronous locking is rather expensive and the
alternative suffers from consistency problems. With respect to the
distributed locking algorithm Inifinband could make a difference
due to rather short latencies (which reduces the gap between
necessary wait-times and actions necessary in case of node
failures) and high availability of the network.

Multicast solutions will probably not scale up to 88 nodes. The
company papers also claim a performance problem with separate
meta-data servers due to overload. This has not been the case e.g.
with GoogleFS because the meta-data machines do not server
regular data. Most architectures which separate meta-data from
data serving show little problems with the meta-data servers.

The Isilon architecture looks very interesting even though it runs
contrary to many other distributed architectures which usually
distribute a namespace across machines using either an algorithm
(e.g. Distributed hashtables) or a mapping list (meta-data server).
On the other hand: algorithms which involve up to 88 machines (or
a majority of those) might have some serious problems with
progress making in case of special failures..This needs furher
investigation. (The fact that Isilons “OneFS” is patented does not
give me a warm feeling either – who would invest in a technology
that is proprietary but presents one of the most important interfaces
for a company?)

ZFS
Logical volume manager integrated
Silent data corrupton
Disk, raid and memory!
Managemt for resize etc.
Files per directory
Fixed file size (subversion: small, video:big)
Problem: FS nicht im kernel, dumme interfaces
Disk scrubbing
No overwriting of blocks, always new block and new version
Versioning with snapshots

Database Partitioning and Sharding
One of the best introductions to sharding and partitioning that I found is
made by
Jurriaan Persyn of Netlog. “Database Sharding at Netlog” is a presentation
held at Fosdem 2009

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 235 03/12/2010

http://www.jurriaanpersyn.com/archives/2009/02/12/database-sharding-at-
netlog-with-mysql-and-php/ [Persyn] and covers the basic sharding
principles as well as the rationale behind breaking up your database.
Interestingly the reasons also include maintenance of tables and not only
performance problems.
The roadmap described by Persyn mirrors the one of Myspace to a certain
degree:
1. One server running application code and database
2. Split servers with one running the application and a separate server
for the database
3. More application servers added which turns the database slowly
into a bottleneck
4. Decide whether to scale-up the database server (e.g. going to a
huge multicore, multicpu machine with 64bit architecture and 20 or more
gigabyte of RAM. Or to disassemble the database into smaller units and
stick with cheaper but more hardware.

At Netlog they were hitting the database with 3000+ requests/sec. during
peak hours which caused performance and stability problems. They
decided to go with cheaper but more hardware and started to disassemble
the database. A database can be split along several dimensions, ranging
from use criteria to categorical and growth criteria.

0002

0001

messagesphotosfriendsprofileUser

Reads vs. Writes OLTP vs. Analytics (OLAP)

Topic 1Topic 2

partitioning along columns

Group 1

Group 2

partitioning along rows

Cheap vs. expensive

Perhaps the easiest and most common way to get some relief for the
database is to separate read from write traffic. Assuming a rather high
read/write ratio (100:1 in many cases, for social sites 10:1 seems to be a
better value) we can scale out read traffic across a number of read-only
replica servers (“read slaves”). Write traffic gets indirectly scaled by
relieving the single write master from doing most of the reads.

<<diagram of read slaves>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 236 03/12/2010

Write
master

Write requests from app.
servers

App.
server

Switching

App.
server

Switching

Read
Slave

Read
Slave

read requests from app.
servers

Updates to
slaves via
command
log or data
replication

Partitioning a database according to its use (here read/write ratio) has been
very common with large scale websites (wikipedia e.g. used such a set-up
successfully for a while). Today this architecture has seen increasing
criticism and we are going to investigate some of the reasons. First, the
number of slaves is actually quite limited. Every read slave needs to be in
sync with the master and with a growing number of slaves synchronization
gets harder and harder. Second, we do not really scale the writes by
introducing read slaves. We are actually replicating/duplicating writes
across our system and thereby increasing the work that needs to be done
for writes. Third, to keep the split maintainable we need a switching logic
within the application servers that will transparently route reads and writes
differently. Perhaps hidden in a database class which has separate
instances for reads and writes. Dynamic system management should
update available read slaves to achieve at least read availability. We do not
improve write availability at all.

One interesting example in this context is the discussion around the
read/write ratio of large sites. From looking at presentations about those
sites we know that this ratio seems to be a critical factor for performance
and scalability. But which r/w ratio do we actually mean? The one before
introducing a caching layer in front of the DB? Or the one after? Let’s
assume we have a 10:1 ratio before which might be quite typical for a
Web2.0 application. This led to the decision of separating read/write
traffic by using a write master and several read slaves. After introduction
of a caching layer this ratio might drop to 1,4:1. In the light of this change,
was our DB optimization really useful? With this ratio we are no
replicating almost every second request across our read-slaves! And with
the overall requests reduced considerably by the cache – do we really need
database partitioning at all? All these additional slave servers will cause
maintenance problems due to hardware/software problems. They will lag
behind in replication and cause inconsistent reads. And finally: do not

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 237 03/12/2010

forget that these read servers will have to carry an increasing write traffic
due to updates as well! We could easily end up with read slaves carrying a
much higher load than the write master (who does only those reads which
MUST be consistent – another ugly switch in our application logic) and
becoming a bottleneck for the system.

Premature optimization without looking at the overall architecture (and
request flow) might lead to suboptimal resource allocation.

Read/write separation is not the only way to partition a database according
to its use. A very important distinction can be made between regular traffic
which results from operating the system (usually called OLTP) and
analytically oriented use (usually called OLAP). Of course the borders
between the two are not set in stone but are design decisions. And here a
very important design decision could be to absolutely keep analytics away
from the operational databases. This means no complicated queries or
joins whatsoever are allowed. In this architecture an asynchronous push or
pull mechanism feeds data into a separate database which is then used for
long running statistical analysis. Synchronization is less of an issue here.
Typical use could be to calculate hits, top scores etc. in the background
and post those data in regular periods. Never try to do those calculations in
request time or against the operational databases.

A slightly different partitioning is along the complexity of requests. Not
only queries and joins can cause a lot of load within a database. Even
simple ordering commands or sorting does have a price. Some sites (e.g.
lavabit) decided to minimize the load caused by sorting and put this
responsibility at the application code. Yes, this has been a no-no! Do not
do in application space what is the databases job. And certainly the
database can do those things much more effective. But so what: the
application tier scales much more easily than the database tier and scaling
out via more application servers is cheap but scaling up the database server
is expensive and hard.

Talk about being expensive: stored procedures in masses are a sure way to
cause database scalability problems. What was said about ordering or
sorting is true also in case of stored procedures: try to avoid them to keep
the database healthy and push the functions as much as possible into the
application tier. One of the few things I would NOT push onto the
developer is maintaining timestamps for optimistic locking purposes. And
perhaps some relational integrity rules, but just some.

Finally, search engines can cause similar overhead and should be treated
just like analytical programs by getting a separate replica of the database
which is not tied into regular operations. Spidering or extracting data via
connectors puts a lot of load on a database or application and needs a
different path to data therefore. (See Jayme@netlog.eu for a presentation
on scaling and optimizing search).

Up till now we have not really done any scaling on the write requests. The
next partitioning scheme tries to separate write traffic according to topics.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 238 03/12/2010

It is called vertical partitioning and what it does is splitting the master
table into several tables using the columns as a discriminator. In the
example below “friends” and “photos” are now in separate databases and
tables and hopefully there won’t be any joins needed involving those
tables. But just in case joins become necessary there is a common pattern
available that helps: replicating certain tables used for joins across
databases allows complex selects and joins again. At the price of an
increased synchronization effort or perhaps a sometimes inconsistent data
tier.

Of course read slaves can be used to further offload read traffic in a
vertically partitioned system. And it should be clear that vertical
partitioning makes the switching code in our application logic even harder.
Application access to several shards at once does also suffer from
serialization costs. We will discuss ways to solve this problem when we
present scheduling algorithms for parallel requests.

master

Write requests from app.
servers

App.
server

Switching

App.
server

Switching

Friends master

read requests from app.
servers

User table
replicated
from
master for
joins

Friends
table

User
table

Photo master

photo
table

User
table

Not shown: read slaves per master

The last partitioning concept we are going to discuss is horizontal
partitioning. It is needed once a tables number of rows grows extremely
and causes problems along two dimensions: the sheer size of the table can
cause maintenance problems when replicas need to be created or re-
synchronized, during backup procedures and schema changes (alter table
e.g.). And the number of connections can exceed database limits
(assuming that the number of rows within a table reflects a growing use of
the table as well, e.g. due to increasing numbers of users).
The number of connections is quite database specific and finally depends
on how those connections are implemented. Oracle connections are well
known heavy-weight resources which are not only costly to created but
limited in their numbers as well. An Oracle connections is mostly mapped
to an operating system process which is itself a heavy-weight resource.
MySql connections seem to be thread based which sounds much cheaper
than an operating system process. But once we get into the hundreds of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 239 03/12/2010

threads we will experience serious memory allocation and context
switching costs. This is discussed in depth in the chapter on I/O models.
Ideally the databases would be able to separate connections from threads
and dynamically assign both to each other. Such a concept of multiplexing
requests across threads has been successfully used as asynchronous I/O
within telecommunication equipment.

Persyn discusses other option like master-master replication or cluster set-
ups [Persyn]. He points out that those architectures are geared towards
better availability and single request performance, not scalability. In the
case of master-master replication this is quite obvious:
As every master has to send his write requests also to the other master the
number of writes per master does not get reduced.

<<master-master replication diagram>>

Master Master

client

Write
request

Synchronous
replication of
write request

Confirm
write

return

It is less clear in the case of cluster solutions, especially those which could
work with tables across machines

<<check mysql cluster>>
The concept of horizontal partitions or shards has been used in MMOGs
since many years. Everquest or World-of-Warcraft put their users into
different copies of world-pieces called shards, effectively splitting the user
table along the rows. This has some unfortunate consequences like friends
not being able to play together when they got assigned to different shards
and a new generation of game software (see Darkstar below) tries to avoid
sharding at all, e.g. by further reducing the granularity of resource
allocations and assignments.

So how is horizontal sharding done? First two decisions are needed
according to Persyn: which column should be the key for the shards and
how should the keys be grouped into shards (the shard partitioning

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 240 03/12/2010

scheme) [Persyn]. Both decisions are dependent on your application, your
data and finally require that you come up with a navigation scheme as
well: how do you want to reach which data along which path? But again,
also with horizontal shards duplication of other data might help to reduce
navigation costs. <<check feasibility>>

A typical key is e.g. the userID given to your customers. Several
algorithms can be applied to this key to create different groups (shards).
- A numerical range (users 0-100000, 100001-200000 etc.)
- A time range (1970-80, 81-90, 91-2000 etc.)
- hash and modulo calculation
- directory based mapping (arbitrary mapping from key to shard driven by
meta-data table)

All methods are rather easy to apply but differ vastly with respect to their
maintenance costs and effectivity. Effectivity is determined mostly by two
factors: the first being how equal keys are distributed across shards to
generate equal load, and second how equal the keys behave with respect to
load. Numerical ranges seem to be safe with respect to distribution: we can
simply define equally large ranges, or? The problem lies in changes over
time: who says that after some time all keys are still alive and in use? It
could be the case that ranges which were filled early in the lifecycle of a
site are by now rather empty because users quit after some time. And who
says that all those keys are still active? Older ones could be almost
dormant and cause little load while the later ranges include many power
users. The same arguments go for time ranges: distribution and activity
can change dramatically leaving some shards idle and others very busy.
Hashing a column value and applying the modulo operation will do a time-
independent distribution of keys across shards and will probably also
distribute power users equally. But what happens if a shard gets too big
and needs to be split again? Using a naïve hashing/modulo algorithm will
suddenly invalidate all our shard keys. Using a consistent hashing
algorithm (see below the chapter on scale agnostic algorithms) will at least
leave the majority of keys valid. Ideally one should know the final number
of shards up-front <<check virtual shards>> which is never a good
requirement.
Changes in the number or time ranges are not quite as dramatic but will
require application changes in the mapping of ranges to shards.
The most flexible solution with respect to growth and behavioural changes
as well as maintenance problems is the directory or meta-data approach.
Here a special table holds keys and their mapping to shards. We pay the
price of one indirection as every application first has to lookup the shard
but it allows us to change the location of keys within shards arbitrarily,
e.g. by distributing power users equally across shards.
This meta-data pattern is well known and used in many architectures, e.g.
the media grid active storage systems for HDTV multi-media content.
Persyn lists requirements for a sharding scheme and implementation:
- allow flexible addition of possibly heterogeneous hardware to
balance growth
- keep application code stable even in case of sharding changes.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 241 03/12/2010

- Allow mapping between application view and sharding view (e.g.
using shard API against a non-sharded database)
- Allow several sharding keys
- Make sharding as transparent as possible to the application
developer by using an API.

At Netlog they decided to go with a directory based sharding strategy.

Now we need to discuss the consequences of a sharding strategy and how
they can be made less painful. Two important techniques need to be
presented in this context: support through a caching layer and how it
works with shards and parallelizing requests against separate data sources.

Let’s start with the consequences as mentioned by Persyn. The first
problem that comes to mind is that there are no cross-shard queries
anymore. This is something your architecture has to accept and
compensate for by avoiding the need for those queries – which requires
careful planning. Do not separate tables which need to be contacted during
regular queries. One way to achieve this is to de-normalize data by
keeping separate copies of tables in different shards. Persyn mentions the
table of messages posted which could be stored both in the posters shard
as well as in the shard of the receivers. What is the limiting factor in de-
normalization? It is the need to keep the copies in sync which gets harder
with the number of copies as many replication concepts had to learn the
hard way.

Another – brute force approach – is to parallelize the requests for tables in
different shards. While certainly possible e.g. with the use of distributed
fork techniques like Gearman (by Danga.com) its limiting factor is the
increase in network traffic to all servers that it causes. The beauty of
shards lies in routing certain queries only to certain servers and not in
creating a multicast-like scenario where all shard servers are kept busy by
one request which is split and parallelized.

<<duplicated tables, parallelized queries>>

Parallel reads can lower multi-shard access costs by reducing the latency.
But are they inherently bad due to increased load distribution? Why can
memcached do so many requests per sec.and DBs only so few? Is this a
result of the threading model used within databases?

Data consistency and referential integrity are now the applications job.
Because one logical table is now split into several different instances in
different databases it is not possible to use globally unique foreign keys
and globally unique auto-increment mechanisms. It is now clear why
many system architects of large scale sites warn against the use of auto-
increment: it does not work in the context of sharded tables in different
databases because it is a database local mechanism. So are regular
transactions which can guarantee data consistency in the presence of
concurrency. The alternative lies in using distributed transactions which
are definitely a no-no given the high load of large scale sites.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 242 03/12/2010

Which again puts the responsibility for consistency at the application. It
needs to use compensating actions in case some update to some shard went
ok and others went wrong but they belonged to the same higher level unit
of work.

Balancing shards is actually a second order scalability problem: You have
successfully split your data into independent pieces in different databases
across different servers to maximise requests per shard. And suddenly you
realize that the original splitting schema does no longer give the intended
results (equally distributed workload) because by some coincidence some
shards concentrate power users or older shards lose users due to
cancellation of membership etc. This problem is rather easily solved if you
are using a directory based partitioning scheme – in other words some
form of virtualization – which lets you move users (shard keys) in
arbitrary ways between partitions. The meta-data based approach of
directories works well also in the context of heterogeneous hardware
which needs to be balanced across users.

Persyn mentions two other important side-effects of sharding: network
load increases due to several independent requests to several databases and
the number of database connections available might become a limiting
factor. It is essential that your application does NOT keep connections
open during the whole request. Otherwise the limited number of database
connections will not suffice to serve the high number of requests due to
the split. This may be different across databases but is generally certainly a
good advice.

It should have become clear that partitioning and sharding are far from
being transparent to applications. They need to understand the ways data
have been split and they need to understand how to integrate data across
shards without causing too much traffic or overhead. A central role in this
architecture plays the distributed cache in front of the databases and its use
has to be covered by special APIs.

Cache concepts with shards and partitions
- cache as a join-replacement
- cache complex objects, not only rows
- use separate queries to allow targeted invalidations of cache
content

At Netlog they store cross shard data as complex objects in
memcached which basically works like a distributed database
integration layer in this case. This also explains the various
comments from site architects that memcached should not (only)
be used to cache row data (meaning single shard data) but to keep
the joined data across shards in the cache because joins are rather
expensive with many single database shards. This rationale may
even result in a query strategy which seems to be less optimal from
a database point of view, e.g. because opportunities to combine
different queries are not used.
The following query example from Netlog shows the architectural
dependencies between sharding and caching:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 243 03/12/2010

Query: Give me the blog messages from author with id 26.

 1. Where is user 26?
 The result of this query is almost always available in
memcached.
 2. On shard 5; Give me all the $blogIDs ($itemIDs) of user 26.
 The result of this query is found in cache if it has been
requested before since the last time an update to the BLOGS-table
for user 26 was done.
 3. On shard 5; Give me all details about the items
array(10,12,30) of user 26.
 The results for this query are almost always found in cache
because of the big hit-ratio for this type of cache. When fetching
multiple items we make sure to do a multi-get request to optimize
traffic from and to Memcached.

Because of this caching strategy the two separate queries (list
query + details query) which seemed a stupid idea at first, result in
better performance. If we hadn't split this up into two queries and
cached the list of items with all their details (message + title + ...)
in Memcached, we'd store much more copies of the record's
properties.

There is an interesting performance tweak we added to the "list"
caches is that. Let's say we request a first page of comments (1-20),
we actually query for the first 100 items, store that list of 100 in
cache and then only return the requested slice of that result. A
likely, following call to the second page (21-40) will then always be
fetched from cache. So the window we ask from the database is
different then the window requested by the app.

For features where caching race conditions might be a problem for
data consistency, or for use cases where caching each record
separately would be overhead (eg. because the records are only
inserted and selected and used for 1 type of query), or for use cases
where we do JOIN and more advance SQL-queries, we use
different caching modes and/or different API-calls.

This whole API requires quite some php processing we are now
doing on application level, where previously this was all handled
and optimized by the MySQL server itself. Memory usage and
processing time on php-level scale alot better then databases
though, so this is less of an issue. [Persyn]

The mechanism of using release numbers as part of the keys is also
quite nice:
 * Each $userID to $shardID call is cached. This cache has a hit
ratio of about 100% because every time this mapping changes we
can update the cache with the new value and store it in the cache
without a TTL (Time To Live).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 244 03/12/2010

 * Each record in sharded tables can be cached as an array. The
key of the cache is typically tablename + $userID + $itemID.
Everytime we update or insert an "item" we can also store the
given values into the caching layer, making for a theoretical hit-
ratio of again 100%.
 * The results of "list" and "count" queries in the sharding system
are cached as arrays of $itemIDs or numbers with the key of the
cache being the tablename + $userID (+ WHERE/ORDER/LIMIT-
clauses) and a revision number.

The revision numbers for the "list" and "count" caches are itself
cached numbers that are unique for each tablename + $userID
combination. These numbers are then used in the keys of "list" and
"count" caches, and are bumped whenever a write query for that
tablename + $userID combination is executed. The revisionnumber
is in fact a timestamp that is set to "time()" when updated or when
it wasn't found in cache. This way we can ensure all data fetched
from cache will always be the correct results since the latest
update.
Cache invalidation by new keys is a clever way to perform those
invalidations without resorting to crude mechanisms like timeouts
which can lead to huge traffic spikes (see caching strategies).

Next to memcaching sharded data Netlog uses parallel processing
and a separate search engine to separate analytical processing from
regular operations. Parallel processing means in this case splitting
larger requests (e.g. to find the friends of friends for a user which
has hundreds of friends (or followers)) into smaller tasks. While
sounding unreasonable it seems to be true that the overhead caused
by splitting a big task into many smaller ones can lead to a much
faster execution of the overall request. But this must not always be
true as we will discuss in the section on queuing theory where we
show an example that benefits extremely from combining several
requests into a larger one. <<add to algorithm section as well, can
we explain the effect using queuing theory? E.g. that smaller
requests of equal service time lead to better throughput?>>

Why Sharding is Bad

But there are also critical voices against sharding and partitioning
of the DB. Bernhard Scheffold posed the following hypothesis
(after reading the article from Zuckerberg on Facebook’s
architecture): Much of sharding and partitioning of the DB is
simply premature optimization. Developers do not understand the
set-theoretical basis of DBs and try a functional approach instead.
Bad db-models create scalability problems. The DB would scale
way longer than the typical developer suspects, given a decent data
model.

And about the database connections: If 1024 connections to a DB
are not enough it could be a problem with connection use, e.g.
applications holding on to one connection for too long.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 245 03/12/2010

Social data examples and modeling:
most popular,
friends notification
presence indication
How scalable is the data model in opensocial.org?
<<task: evaluate scalability of opensocial schema>>

Partitioning concepts and consequences

- master/master, master/slaves, read vs. write partitioning
(wikipedia)
- Scalability Strategies Primer: Database Sharding by Max
Indelicato [Indelicato]
- MySQL Scale-Out by application partitioning. [Sennhauser
(Various partitioning methods for data, e.g range, characteristics.
Load, hash/modulo. Application aware partitioning)
- Partitioning and caching
- Database table key organization for scalability [Indelicato]
- Hscale, MySQL proxy LUA module (www.hscale.org) with
some interesting numbers on DB limits discussed [Optivo]
- Vertical, horizontal, partitioned, dimensional partitioning,
main lookup,

Some sites might be approaching 1 billion users in the future
(skype article on PostgresSQL to scale to 1 Billion users). Netlog is
using beyond 4000 shards on 80 servers. They report better
maintenance of data as well due to the smaller size of shards. There
is now a whole layer between application and shards which
encapsulates the knowledge necessary to access the right shards
from within the application. Again, sharding is way from being
transparent for applications but it can be put into a special layer and
therefore hidden mostly from the application. The problem lies also
in the proper ways to partition your data up-front which is really
hard to do.

The hardest part about implementing sharding, has been to
(re)structure and (re)design the application so that for every
access to your data layer, you know the relevant "shard key". If you
query details about a blog message, and blog messages are
sharded on the author's userid, you have to know that userid before
you can access/edit the blog's title. [Persyn]

And like other site architects the Netlog people report a much
better scalability of the application (server) layer than the database
layer.

Data Grids and their rules of usage

Billy Newports blog:
http://www.devwebsphere.com/devwebsphere/websphere_extreme
_scale/

February 06, 2009

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 246 03/12/2010

Best practises on building data models for elastic scaling
I just read an excellent summary of the principles of doing this at
this
site
http://highscalability.com/how-i-learned-stop-worrying-and-love-
using-lo
t-disk-space-scale. The points especially relevant to achieving this
for
WebSphere eXtreme Scale are the following.

Duplicate data, don't normalize it
Here, this is how common data is handled. The comments are a
great
example. Duplicate the comments in to each partition and the
partition
is then keyed by the main key. This allows logic for the main key
to be
handled within a single partition without having to talk with other
partitions which are almost 100% going to involve network IOs.

Group data for concurrent reads
Here, group related data needed for the partitioned entity
underneath
this object. WXS provides a tree schema for each partitionable
entity.
Placing all needed data linked to this tree keeps it all local and
eliminates network hops to fetch it. This is really an amplification
of
the "Duplicate data" rule.

Structure data around how it will be used
Model the data in a form compatible with the business logic to be
executed on it. This makes writing the logic fast and keeps the data
close the to logic. This avoids joins.

Compute attributes at write time
Add extra attributes with commonly calculated values, don't use
queries
to calculate them, update the total attribute when something
changes and
just query it. Assuming the queries are more frequent than the
updates
then this saves a lot of time.

Create large entities with optional fields
This again is to avoid the small entities created when using a fully
normalized model. Normalizing means joins and joins are
expensive so try
to avoid them if at all possible.

Define schemas in models

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 247 03/12/2010

The framework like WXS can't manage these denormalized models
automatically for you. You'll need a model which knows how to do
this
and does it automatically when changes are written to the model.
This
model can run inside the grid collocated with the data so it's going
to
run fast.

Place a many-to-many relation in the entity with the fewest number
of
elements
This basically says that rather than having a model which has a
Company
has a collection of employees, have a model with companies and
employees
with a list of companys. The list in the latter case is MUCH smaller
than the other way.

Avoid unbounded queries
This is kind of dangerously obvious but if you have a tera byte of
data
in a grid, don't ask for a sorted list of all records and send it back
to my client app. The app will die. Bound it to the top 10 or 20
items.

Avoid contention on datastore entities
This kind of goes without saying. If you use a single record in the
grid
all the time then it's going to bottleneck there so try to avoid or
rather don't do this.

Summary

The linked article is pretty cool and summarizes much of what we
already
knew about the best practises on designing for DataGrids. So, here
it
is, enjoy.

Bernhard Scheffold:
Offenbar mißbraucht er eine relationale Datenbank als DataStore.
Diese Fehlsicht scheint ja leider weit verbreitet zu sein, aber allein
schon das Statment ' Structure data around how it will be used'
weist ganz stark darauf hin. In einer relationalen Datenbank geht
es eben darum, Daten auf alle möglichen Weisen zu verbinden und
so Aussagen über das Modell zu gewinnen. Wenn er lediglich
Datensätze möglichst flott "retrieven" will, dann sollte er vielleicht
eher auf einen DataStore oder ein ODBMS setzen?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 248 03/12/2010

Ein anderes Leckerli ist 'Compute attributes at write time'. Das
dahinterstehende Problem der wiederholten Berechnungen läßt
sich doch weit eleganter und sicherer mit Memoization lösen.

'Duplicate data, don't normalize it': Offebar will er wirklich nur
lesen und nichts aktualisieren. Das ist doch der Alptraum jeder
Datenpflege!

Database based Message Queues
- Database queues for replication (Schlossnagle)

Read Replication
- Death of read replication: Brian Aker on Replication,
caching and partitioning (does not like caching very much, prefers
partitioning). See also Todd Hoff on using memcached and
MySQL better together and the remarks of Francois Schiettecatte.

Non-SQL Stores

Toby Negrin, Notes from the NoSQL Meetup,
http://developer.yahoo.net/blog/archives/2009/06/nosql_meetup.html

Todd Lipcon, Design Patterns for Distributed Non-Relational Databases,
http://www.slideshare.net/guestdfd1ec/design-patterns-for-distributed-
nonrelational-databases?type=presentation

Martin Fowler gave his blog entry the title “DatabaseThaw” and compared
the past years with the “nuclear winter” in languages caused by Java
[Fowler]. There seems to be a flood of new data storage technologies
beyond (or besides) regular RDBMS. This raises the question of why this
is happening? Isn’t the relational model good enough?

Im remember discussions with Frank Falkenberg on the value of in-
memory databases. I was not convinced of their value because the
argument of keeping data in memory for faster access did not really
convince me: every decent RDBMS will do effective caching. What I
didn’t see at that time was that the real value of different storage
technology might lie in what it leaves OUT. See the following comment
from the memcached homepage:
“Shouldn't the database do this?
Regardless of what database you use (MS-SQL, Oracle, Postgres, MySQL-
InnoDB, etc..), there's a lot of overhead in implementing ACID properties
in a RDBMS, especially when disks are involved, which means queries are
going to block. For databases that aren't ACID-compliant (like MySQL-
MyISAM), that overhead doesn't exist, but reading threads block on the
writing threads. memcached never blocks”[
http://www.danga.com/memcached/]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 249 03/12/2010

We all know that by leaving out certain features new products can be
much more nimble. We also know (after reading “Innovators Dilemma)
that most products suffer from feature bloat due to competition and trying
to reach the high-cost/high price quadrant.

I don’t want to overuse the term “disruptive” here because I do not believe
that the new technologies are going to replace RDBMS in a general way.
But it pays to ask the critical four questions when comparing a disruptive
product with the newcomer:
a) what can the newcomer NOT do (but the established technology can –
this is hint about either currently or generally impossible goals, markets
etc. and shows us where the new technology might have saved its strength)
b) what can the newcomer do just about as well as the established
technology? This gives us hints on general acceptability of the new
technology by users of the established technology.
c) what can the newcomer do that the established technology cannot do as
well for technical or financial reasons? There won’t be many items in this
bucket but they can be the deciding ones. We might find here connections
to the things that were left out in a)
d) what of the much touted features mentioned under a) are becoming less
important or are outright useless in certain contexts. This is a corollary to
c) and both show us the future market of the new technology.

The last point of course is especially important. If we can find some trend
that requires exactly those features where the new technology excels, then
we can possibly do predictions about the success of the new technology.

One of the biggest drivers of new technology trends was certainly the
Web2.0 movement with cloud computing in its wake and the development
of super-large-scale search engines and application platforms like google,
yahoo and perhaps the success of large scale Massively Multiplayer-
Online Games (MMOGs) like World of Warcraft or their non-game
versions (Secondlive, OpenSimulator)
1. These platforms do a lot of multimedia processing (storage,
delivers, inspection)
2. that is not necessarily or only partially transactional and
3. requires the handling of large blobs (files).
4. High-availabilty and huge storage areas are needed.
5. Frequently a simple key-value store and retrieval will do, the power
of SQL is not needed
6. They typically use multi-datacenter approaches with centers
distributed across the world.
7. They frequently need to present the “single image” or “single
machine” illusion where all users meet on one platform to communicate.
This requires extremely efficient replication or ultra-huge clusters.
8. Those Web2.0 applications also tend to grow extremely fast which
puts a lot of strain on administration and scalability. Replication and cheap
administration are not exactly those areas where RDBMS really shine.
9. Integration between different applications is not frequently done
over http/web-services and not via a common database. Mash-ups work in
a federated way and do not require the creation of one big data store.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 250 03/12/2010

Fowler calls this the move from Integration Data Stores to Application
Data Stores where applications are free to store their data any way they
want.

Behind the success of Flickr or Youtube a rather big storage problem is
hidden: The storage of digital media at home. Digital content is growing at
an alarming rate due to digital video and high-res digital pictures and to
some degree audio (which is different as few people create their own audio
content). Few home users know how to spell backup much less are able to
implement a multi-tier backup strategy which provides safety and
reasonably fast and easy access to older media. This problem is not only
solved with a couple of external discs and some discipline: There are very
hard and also costly problems of digital content involved: At least one of
the backup discs should be at a different location for reasons of disaster
recovery. That makes it less accessible and also hard to use as an archive.
And then there is the question of aging formats, file systems and operating
systems with unknown lifetimes.

Companies like Google will present themselves as the archive of the
world. They have the distributed data centers to store content in large
quantities and in a reliable way. Looking at how users currently deal with
the storage problem I suspect that those services will be paid for in the
near future. Of course this will raise huge concerns with respect to data
security and privacy.
Another option would be to use a Peer-To-Peer protocol to turn the
internet into this archive. It requires a lot of replication and defensive
strategies against attacks on P2P systems like virtual subnets, re-routing
requests to attackers or simply throwing away content while declaring
oneself as a storage server. We will discuss those ideas a bit more in the
section on advanced architectures and technologies.

Kresten Krab Thorup covered various projects or products at Qcon and I
have added some more:

• Distributed DB,
• CouchDB, (Document centric database written in Erlang with a
REST interface. Supports optimistic locking, crash-only consistency mode
and “read operations use a Multi-Version Concurrency Control (MVCC)
model where each client sees a consistent snapshot of the database from
the beginning to the end of the read operation” (from the technical
overview, [CouchDB]). Views operate in a map-reduce fashion taking the
documents and functions as parameters. Replication is bi-directional and
peer-based supporting disconnected operation and later incremental
replication. Schema-free so clearly not a regular relational database or OO
mapper.
• Scalaris, (distributed, transactional key-value store on P2P base
with self-managing features and excellent request-scalability,programmed
in Erlang. (see below)
• Drizzle, (Lightweight version of MySql see:
http://drizzle.org/wiki/Drizzle_Features comes without stored procedures,

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 251 03/12/2010

prepared statements, Views, Triggers, Query Cache and fewer field types
but has a plug-in architecture for extension. Optimized for multi-
core/multi-CPU architectures and lots of parallel requests.
• RDDB, Restful Ruby Document DataBase, modelled after
CouchDB with the following features (from [http://rddb.rubyforge.org/]:
Documents are simply collections of name/value pairs. Views can be
defined with Ruby code, mapping from a document to any other data
structure, such as a String, Array or Hash. A reduce block can be defined
to reduce the initial mapped data from a view. Views can be materialized
to improve query performance. Datastores, Viewstores and Materialization
stores are pluggable. Current implementations are RAM, file system and
Amazon S3.). Clearly not a regular SQL DB.
• BigTable, HBase,
• Hypertable,
• memcached,
• Dynamo ,Amazon.com, highly available key/value store.
[DeCandia et.al.]
They are document-oriented, distributed, REST-accesible, and/or schema-
free. They seem to be fallout from major large-scale Web2.0 projects (like
memcaches that was written for LiveJournal.com. They certainly cannot
do all the SQL magic of a full-blown RDBMS. Sometimes they go after
“eventual consistency” instead of permanent consistency [Vogels].
I cannot discuss all of them but will concentrate on Scalaris because of its
interesting P2P architecture and extreme scalability and on memcached
due to its importance in the JEE environment for clustering.

Key/Value Stores
Semi-structured Databases

Bigtable and HBase are examples of a new type of data store. Confused by
the use of “table” and “base” I found the short explanation of the store
structure in [Wilson] - which made it clear that Bigtable-like stores are
neither real tables nor SQL-capable databases. He cites the following
definition of Bigtable: “A sparse, distributed, persistent multidimensional
sorted map” and explains each term.
 “Distributed, Persistent” means that the data are stored persistently across
several machines. Typically a distributed file system like GoogleFS or
Hadoop Distributed File System is used to hold the data. “The concept of a
“multidimensional, sorted map” is best explained with a diagram:
.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 252 03/12/2010

{ // HBase : sparse, distributed, persistent multidimensional sorted map

"aaaaa" : {

"A" : {

"foo" : { <t2>:"y„, <t1>:“x“},

"bar" : { <t2>:“f“, <t1>:„d" },

"B" : {

"" : { <t3>:„w", <t2>…} },

"aaaab" : {

"A" : {

"foo" : { <t3>:„ world ", <t1>… } ,

"bar" : { <t2>:"domination„, <t1>:“emperor“ }

}, "B" : {

"" : {<t1>:"ocean" } },

// ... }

Loosely after: [Wilson]

The diagram shows a map with keys. The first level keys are called “row
keys” or simply “rows”. They are ordered lexicagraphically has a severe
impact on the way keys need to be organized. The next level within the
map is a set of keys called “column-families”. There are certain processing
characteristics tied to these families like compression or indexing. Finally
inside each family is an arbitrary number of column/value pairs which
explains the term “sparse” used in the definition. It is possible to associate
a timestamp with each value change and in this case a column/value pair is
actually a list of pairs going back in time. How far is configurable. The
diagram below shows the terms and the associated structure of such a map.

"aaaaa" : {

"A" : {

"foo" : { <t2>:"y„, <t1>:“x“},

"bar" : { <t2>:“f“, <t1>:„d" },

"B" : {

"" : { <t3>:„w", <t2>…} },

Loosely after: [Wilson]

„row key“ in sort in
lex. sort order

Column family
(sorted?)

Any number of
columns (sorted?)

Timestamp per change

Old values

Current value

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 253 03/12/2010

How about performance and best practices for such semi-structured data
stores? Wilson mentions a number of important things, the most important
one probably being the organization of the row keys: com.company.www
is a good way to write a key because in that case com.company.mail,
com.company.someservice etc. all will be in close proximity to each other
and an application will be able to retrieve them with just one access.
To get all the available columns within such a map requires a full table
scan. This situation can be improved for some columns if the data is put
into column-families which provide certain indexes for faster lookup.
Compression is an important topic as well and one can choose between
intra-row compression and row-spanning compression. For details see
[Wilson].
Forget about joins, SQL etc. and try to minimize the number of access in
such an architecture. You might decide to copy and duplicate data just to
minimize cross-machine data requests and a powerful memory cache
holding joined data as objects is probably also a necessity. We will talk
more about the use of such stores and their APIs in the chapter on cloud
computing below.

Scalaris

Scalaris is a distributed key/value store (a dictionary) with
transactional properties. It does not implement full SQL but does
provide range queries.

There are even more reasons to take a close look at this technology:
It is derived from an EU research projects called Selfman
[Selfman] where a number of excellent distributed computing
specialists are involved (amongst them Peter van Roy and Seif
Haridi), it is written in Erlang, and it intends to solve two nasty
problems: Tying scalable and flexible P2P architecture with the
need for transactional safety with thousands of requests per second
and creating a system with self-healing features to cut down on
administration costs. And finally the Scalaris developers won the
IEEE Scale Challenge 2008 with simulating wikipedia on their
architecture.

The follwing is based on a the presentation of Thorsten Schütt and
others [Schütt et.al], Scalable Wikipedia with Erlang,
documentation from the company onscale.de etc.

Let’s start with the wikipedia architecture and some load numbers.
Today it is not uncommon for large social community sites to
receive 50000 requests per second or more. (Jürgen Dunkel et.al.
mention 40000/sec concurrent hits against the Flickr cache with an
overall number of 35 million pictures in Squid cache and two
millions in ram cache, see [Dunkel et.al], page 261) The diagram
below shows the typical evolution of such a site with respect to
scalability.

<<wikipedia evolution>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 254 03/12/2010

In numbers , this architecture works because by far the biggest part
of all requests goes to cached data. According to [Schütt et.al] this
is 95% of all requests. Only around 2000 requests per second go to
the database(s). This is still critical enough to cause some
architectural changes especially in the storage area as we have
seen. Clustering databases is sometimes not enough and the site is
forced to create another partitioning at the top of the existing
storage architecture as is shown in the next diagram:

<<wikipedia with partitioned DB>>

And then there is the problem of multi-site data centers which
means replication of data across many machines to create the
illusion of a single system.

<<mapping of tables to key values>>

DHT design: routing and transactions
Greedy routing (O(log n)), qualities of service, quorum (Paxos)
Churn resistance?

A new database architecture
Is it really time for a complete re-write of database technology?
Stonebraker, Hachem and Helland argue for such a re-write. Interesting
usage scenarios. According to [Stonebraker] all modern databases can be
beaten easily with specialized engines with self-managing features.

Also see the discussion on Lambda the ultimate on this topic:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 255 03/12/2010

Part V: Algorithms for Scalability

I/O Models

Almost every system architect agrees with the statement that I/O is one of the
most critical areas in system design and responsible for performance, latency and
throughput. But there is surprisingly little consensus about the proper architecture
for handling incoming and outgoing data. It begins with the question of how many
threads should be used? This immediately leads over to the next problem: Kernel
threads or green (non-preemptive) threads? The question of blocking vs. non-
blocking adds to the threading problems: the costs are different between different
types of threads. Asynchronous, event-driven architectures bring a new
programming model with them and they handle network and disk I/O differently
in many cases. Do threads have specific tasks or should they all perform the same
tasks? And finally: are threads or events better?

We will discuss some of the concepts and try to answer the following architectural
topics:

- Connections: how many? Lifetime? Cost for Construction and as a
resource? Spoon Feeding Effects
- Threads – how many? Different functions or all the same? Kernel or green
threads?
- Data handling and copying
- Memory consumption
- CPU usage and context switching/queue problems
- Resource tracking (connection free etc.)
- Threading Models for I/O
- Nio and how to model IO processing and how to properly read/write data
- Synchronization problems with select-type interfaces
- None-blocking I/O (epoll)
- Asynchronous I/O (linux interface)
- Is a staged/pipeline architecture better? (SEDA)
- Events vs. Threads
- I/O Programming Models in general and on multi-core architectures

But before we delve into the specifics of I/O processing we need to define some
technical terms which will be used frequently on the next pages.

Definitions:
A context switch means a full context change from user to kernel, saving all of the
previous task state and establishing the state of the newly selected task. It does not
matter whether processes or kernel threads are switched. The operation is
expensive and wastes cycles that could be used within a server to process
requests.

Blocking means that a kernel thread or process cannot continue and needs to give
up the CPU. This will be done by doing a context switch and the thread will be in

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 256 03/12/2010

state waiting for either I/O or condition variables afterwards. A blocked thread
does not compete for CPU. Blocking is like a context switch rather detriment to
server performance

Non-Blocking I/O means that a system call returns an error (E_WOULDBLOCK)
if an I/O request made by the application would lead to blocking because the
kernel cannot complete the request immediately. The application can then perform
other tasks while waiting for the situation to improve. This is effectively a sort of
polling done by the application. Because polling is costly and ineffective non-
blocking I/O typically also provides a way for the application to synchronously
wait for a larger number of channels to offer data (read) or accept data (write). A
typical example is the “select” system call.

Synchronous processing means call and return style processing. The calling code
waits for a response and continues only after the response has been received. If
the called code takes longer to supply the response the caller is blocked.
Synchronous is defined semantically as to require a direct response. The fact that
a caller will be blocked while waiting for the response is not essential.

Asynchronous processing in a strict, semantic definition means that the calling
code does not expect a direct response. The asynchronous call done by the caller
may cause some action later but it would not be a response. The caller ideally will
not keep state about the asynchronously requested action. In its purest form
asynchronous processing leads to an event-driven architecture without a
sequential call/return mechanism.

Asynchronous I/O: Not so pure forms of asynchrony send and receive events
within the same layer of software as is done for I/O processing typically. This has
to do with the fact that most I/O follows some request/resonse pattern which
means a request enters the system at one point and the response leaves the system
at the same point. Very popular and effective are combinations of synchronous
and asynchronous processing steps as can be seen in the way Starbucks takes
coffee orders synchronously while the barristas brew coffee asynchronously in the
background with the customer waiting for the synchronous order/payment step in
the foreground [Hohpe]

Thread denotes a virtual CPU, an associated function to be performed and a stack
allocated. The stack allocation is mostly done in a static way which leads to
memory under- or overallocation. Threads can be kernel threads, visible to the
underlying operating system and its pre-emptive scheduler or they can be “green”
or user level threads which are realized in a non-preemptive or collaborative way
in the user space. Locking mechanisms are only needed in case of kernel threads
as user level threads are not pre-empted. They are under control of a user level
scheduler and the application. While most applications can only use a small
number of kernel threads concurrently the number of user level threads easily
goes into the hundreds of thousands. User level thread packages have once been
popular, fell from grace when systems with multiple CPUs (and now cores) were
built and are now getting popular again due to the realization that the locking
primitives needed with kernel threads and shared state are exceedingly complex
and on top of that a performance problem due to increased context switching and
contention. It is important to distinguish the concept of concurrent kernel threads

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 257 03/12/2010

from user level threads mapped to one kernel thread. User level threads allow the
organization of processing into individual tasks without having to pay the price
for concurrency control. User level thread packages need to do their own
scheduling of user level threads and they cannot allow calls to block the one
kernel thread. Erlang, E and other languages use this concept extensively for
application code and show extreme performance by doing so. This is because the
one and only kernel thread does not block unnecessarily. Instead it just continues
with another available user level thread after initiating an action.

What happens if an application or server code needs to use more CPUs or cores?
In other words more kernel threads? Here the answer depends on whether the
code uses shared state. If it does either locking mechanism have to be used or – in
case of user level threads – a second runtime needs to be started which runs in a
different process. Both architectures are not perfect in every case. Currently the
growing use of multi-core CPUs has raised considerable interest in solutions
which make the use of multiple kernel threads possible but transparent for
application code. We will discuss those approaches in the section on concurrency
below, using Erlang and transaction memory as examples.

I/O Concepts and Terminology
A canonical representation of I/O might look like this:

Net
Stack

OS sockets

T1
T1

T1
T1

T1
T1

T1
Thread

Code
Code

Code
Code

Code
Code

Connections:
how many,
resource
weight, DOS,
slow,
permanent?

Which socket
has read/write
options? How
many sockets
exist?

Which thread will
go after socket?
How many
threads?

Which
code gets
executed?
Parallel?

Blocking,
non-blocking
or asynch?
Signaling
mechanism?

data data data

DB

FS

Blocking?

Blocking?

Let’s discuss the critical components from left to right.

Connections
Connections used to be a hard limit in server design. Operating
Systems did not allow arbitrary numbers due to the fact that each
connection needs state within the system to be held. Operating

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 258 03/12/2010

Systems had to be changed to support larger numbers of
connections.
A special problem is the question of permanent connections. Http
was originally designed to close connections after every request,
with http1.1 the “keepalive” option allowed a client to request
several resources from a server using the same connection. From
the literature it is absolutely not clear whether this is a good thing
to do or not but we will give some hints below.
Slow connections force the server to respond slowly by “spoon
feeding “ the result to the client. This can severely impact
throughput as it binds precious resources within the server and
causes lots of unnecessary context switches.
The operating system typically receives data via interrupts.
Network data arrive fast and need to be stored quickly. But how
will an application read those data? Reading as much as possible in
one go or doing partial reads? And why is this such an important
question? Given a fast network and few clients not reading all
available data in one go might lead to extra stalls on the network
layer which prevents the network from running at full speed.
Actually it will run WAY below speed as re-synchronization takes
a lot of time (see the example the NIO section below)

The Asynchronous Web
When you look at the Web today, it's pretty much based on
a synchronous interaction model: The user interacts with
the application, and the application responds with some
updates. When you move into the asynchronous Web, you
have the ability for the application to deliver state changes
to the client, without the user necessarily having to initiate
those updates. In effect, you can push updates to the client
running inside the browser.

Asynchronous push provides information to the user
instantaneously, without waiting for the user to request that
information. An early, and simple, example is stock quotes
that continuously change. Using asynchronous Web
technologies can keep a user updated of those changes.

When you take that concept and look at it from a
collaborative perspective, you can have one user of an
application interact with the app, and cause changes that
others will see. Instant messaging and chat applications are
examples of that.

If you apply that concept to an even broader category of
Web applications, you can create very sophisticated user
interactions. That's especially the case in the context of
social networking applications. Some social network sites
now provide photo sharing that goes beyond simple posting
of photos. These applications let you sit down with your
friends, however far apart you may be physically, and take
them through your slides, give them a slide show over the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 259 03/12/2010

Web. That's the kind of capability the asynchronous Web
can deliver.[Maryka]

The Keep-Alive Problem

What could be wrong with keeping a – potentially
expensive - connection open, waiting for more requests?
Theo Schlossnagle calls it “a blessing and a curse” and
points out where the problem really is. It is not only the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 260 03/12/2010

memory consumption of a connection which had been a
problem in the past. Nor the slow algorithms dealing with
event management and notification (e.g. select()). It is the
threads being blocked and waiting for communication on
this connection. The number of connections and whether
they are kept open does not matter once you switch to an
asynchronous handling of it: Do not block a thread waiting
for more requests which might come some time later. You
are starving your system for important resources.
[Schlossnagle] (paper on backhand).

Actually this is a very common anti-pattern for throughput
and performance. It also shows up in the handling of
database connections. If a connection gets assigned to a
request automatically and kept for the whole service time of
the request this is very convenient for developers. But at the
limitied number of database connections available e.g. in
Oracle doing so means severely restricting the number of
requests which can be concurrently handled to the number
of database connections. You need to acquire and release
connections dynamically and only when and as long they
are really needed.

I/O Processing Models Overview

Adapted from: T.Jones Boost application performance us ing asynchronous I/O

Why is this
asynchronous?

Doesn‘t this
block as well for
completion
notifications?

Thread per Connection Model
In this model the number of sockets corresponds to the number of
connections. Some of these sockets might have data to be read,
some might be able to accept data to write (send). Applications
have different options to find out about these sockets. The simplest

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 261 03/12/2010

way was to just tie one thread to each socket. The thread would try
to read or write and block if the socket had no data or in the write
case could not accept more data. This method was used by Java up
to version 1.3 and was heavily criticized.

From: [Jones]

The reasons where fourfold and had to do with exactly those
threads. From a resource point of view threads show three
problematic properties. First, they require a large amount of
memory in the virtual machine. This memory is needed for the
thread’s stack and is usually fixed at startup. Many threads can
easily drive a VM towards memory limits. The second problem of
threads is scheduling. Scheduling is automatic in this model and
not under application control. Scheduling also means context
switches and those are expensive if we use kernel threads. And
third as we have seen in the modelling chapter: the more threads
are used, the longer the response time becomes due to contention
and coherence reasons. This is especially true if those threads are
mostly runnable and contend for a time-slice of the CPU. The
fourth reason finally is blocking: making server code block due to
data not being available again causes context switches which
simply cut down on the cycles available for the application code.
In the end this means that after a certain number of threads is tied
to connections the system will spend most of its time with garbage
collection and context switching. The “Thread-per-Connection”
Model really puts us between a rock and a hard place: we want
more threads to be able to service more concurrent requests. And at
the same time the related overhead will diminish our ability to
service those requests quickly.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 262 03/12/2010

To be fair we need to acknowledge that the problems with this
model come from specific implementations of it and are not
necessarily intrinsic properties of the model. We will discuss an
approach that tries to prove the effectivity of the thread-per-
connection model by fixing some of the implementation deficits
[vanBehren].

The good side of this model clearly lies in the architectural
simplicity of using threads for handling I/O: the thread
encapsulates all the connection related state, stores important meta-
data like security information per requests and flows it across the
server functions and keeps the simple, sequential programming
paradigm.

What are the alternatives to threads per connection?

Non-Blocking I/O Model
Let’s assume for a moment that we have got only one thread for all
connections plus the application functions. Clearly this thread
cannot block on one specific connection waiting for data or buffer
space. A very simple form of this model would have the thread poll
all connections, disks etc. in a round robin fashion and process all
input and output that would not make it block.

Adapted from: [Jones]. Allows alternating I/O and
other app. processing

Application is polling!

Application is polling!

Application is polling!

While conceptually simple the programming turns out to be quite
ugly because the application code needs to do its own scheduling
of tasks (we will discuss better schemes below, e.g. the use of user
level threads in Erlang that keep the programming simple). It also
needs to manage the state of connections and requests explicitely

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 263 03/12/2010

because there is not a one thread/one connection relation where the
state of a request is kept on the thread stack.

And it is not a very efficient scheme either because it can take quite
a long time for the thread to react on an input source becoming
available. That is why polling on non-blocking sources and sinks is
usually avoided. Most systems that offer polling also offer a way to
wait for a range of I/O devices within one system call (select),
thereby realizing a synchronous notification model.

All non-blocking or asynchronous I/O processing shares one
additional problem: partial read or write requests are possible at
any time forcing the application to deal with them. This can lead to
subtle errors when e.g. an application assumes that the bytes
received can easily be transformed into a string of wide characters.
What if the last character has only been transmitted in half? <<add
code and author>>

Synchronous Notification (Multiplexing) Model

<<semantics behind interest setting and signals? Race conditions?
>>

There are ways to build efficient I/O processing with only one
thread. One example is to have it wait for ANY connection. This is
called non-blocking I/O with synchronous notification and has
been around since Unix server programming started.

From: [Jones]

It is unclear whether we should call this model an asynchronous
one at all. If reads and writes happen they are performed
synchronously and there is no overlapping of normal and I/O

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 264 03/12/2010

processing within the application code. The application needs to
wait synchronously for reads or writes to become possible and then
needs to perform the actual reads or writes.
The system call for this features was called “select” and it allowed
one thread to check concurrently on a whole array of connections
represented by their file descriptors. Unfortunately for select the
limit of connections was set to 32. Nowadays system calls like
epoll in Linux have roughly the same functionality but deal with
more connections albeit at the price of slow administration code in
the kernel if the number gets really high. Other implementations
even avoid this problem (see the C10k article below in “designing
fast servers”)

The code for a one thread solution would look roughly like this:
While (true)
Try to read non-blocking;
Try to write non-blocking
Do wait for specific socket event() with read or write signalling on
On event == read X
 Turn off read signalling for socket X
 Read from specific socket X until enodata is signaled
Done
On event == write X
 Turn off write signalling for socket X
 Get data to write
 Write to socket X till ewouldblock is signalled
 Store the data that could not be written yet.
Done

This non-blocking code is rather clear and avoids any
synchronization problems. It needs to deal with different possible
tasks though (reading or writing) which means explicit state
management. The bad news is that the code cannot use multiple
CPUs to improve throughput and that lengthy operations could
starve other connections because the thread that deals with
connections also has to perform other chores. And we are limited in
the number of channels we can observe with select/epoll.

Just about the worst case would be if the thread has to block on
either the database or the file system during the processing of a
request. It turns out that not all operating systems are able to
combine disk and other interfaces under the non-blocking API. If
this is not possible we need to use another thread that runs in the
background and accepts tasks from our thread which handles the
connections, possibly via a buffered queue. Then our thread does
only write into the queue and there is no danger of it blocking on
some backend system. Instead, it can immediately turn back to
waiting on the network. To make this work we would use two
rather common patterns in non-blocking processing scenarios: The
first one is to simulate non-blocking operations with blocking

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 265 03/12/2010

background threads which simply accept tasks issued by the non-
blocking foreground thread. Notifications are then delivered to the
non-blocking thread either through a local channel which is part of
the select range observed by the non-blocking thread. Or –
assuming that the non-blocking thread comes by frequently
because it waits in select with a short timeout specified – the results
are placed somewhere to be picked up later. These patterns can also
be used to relieve the foreground non-blocking thread from other
tedious work once the channel management gets more involved.

But what happens if we want to use our multiprocessor better or
there are some threads which have to block and we have no clever
runtime that secretly simulates non-blocking behaviour.

There are basically three szenarios possible:
- several I/O handling threads which are responsible for
different channels. They can run within the same process (which
either requires explicit concurrency control by the application) or
in separate processes (which would be the simplest solution)
- one I/O handling thread which delegates further processing
to other worker threads.
- A combination of both with a common threadpool of
worker threads.
These options are the same for asynchronous processing btw.

Two small questions arise in this context: what happens when a
read or write just goes through without raising an
E_WOULDBLOCK error? The answer in the case of non-blocking
I/O mode is simple: Nothing special. The I/O gets performed
synchronously and if requested, select will signal the availability of
the channel at a later time.
This will be very different in the case of asynchronous I/O because
here the caller does not expect the call to get through immediately.
If it does though we have a problem: the completion notification
will then be handled in the context of the caller and if the
completion handling code just starts the next transaction we could
finally blow up our stack with recursively called completion
handler code. On the other hand it looks not very efficient to just
forbid the caller of an asynchronous I/O function to perform the
operation if it is possible without blocking. We will discuss
optimizations for this case later.
The other question is about the behaviour of I/O handling threads.
The answer simply is that they are not supposed to block at all.

Now we have to decide which thread is going to handle the
channel(s) via select or epoll. Just one thread all the time? Any one
thread at a time? All threads at the same time?
The answer pretty much depends on our operating system and its
implementation of non-blocking I/O. Most of these are not able to
be handled by several threads concurrently – they are not safe for

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 266 03/12/2010

multithreading. If e.g. two threads try to change signalling
behaviour concurrently, an exception will be thrown. (See the
additional complexity for synchronizing channel management in
[Santos]). This means we have to chose either just one permanent
thread or synchronize between all threads so that just one will be
the owner of the select at any time. Or assign channels statically to
threads which are then solely responsible for managing them.

How does processing look in the case of all threads alternating in
select management? A thread would acquire a lock for select entry
and start waiting for events. Alternatively it would get suspended
waiting for the lock to become available. On wakeup from select
the thread will do whatever needs to be done while another thread
wakes up from lock-wait and starts waiting in the select call.

With two of the three szenarios from above we have introduced the
concept of worker threads. How many threads are we talking here?
Not as many as we would use in a thread per connection scenario
but more than two. Some authors suggest to use 2n where n is the
number of cores available. But we surely do not want to pay large
context switching costs so we keep the number small.

How does the scheme with worker threads compare to the ones
where the threads handling the channel will also do the processing
of the requests? With the “all-in-one” threads we have a clear
control of the select call semantics because it is done by one thread
only and – in case we share channels - we have a suspension point
for all threads waiting for access to channel management. And this
means context switches! How bad are those context switches really
(how frequently do they happen) and could they be replaced with a
short spin-lock (busy wait)?
The frequency of context switches will probably depend on the
distribution and frequency of incoming and outgoing data and their
associated events. With only a few events happening most threads
will probably wait for socket access. With many events happening
most threads will be busy serving those and there are chances that a
returning thread can go directly to the next socket without wait. As
the wait-time is hard to calculate a spin-lock with busy waiting is
probably too dangerous but we could think about a compromise: do
a short but limited spin-lock to test if socket becomes available. If
not, go into wait/sleep. We could perhaps even adjust the spin-lock
time depending on the frequency of events on the socket but this
sounds a bit theoretical for my taste. And the read/write behaviour
of threads becomes extremely critical. We would probably restrict
reading and writing to a certain amount of data per event to ensure
equal and calculable read/write times per thread.

Alternatively in our concept with worker threads we could propose
that only one thread deals with connections at all. This thread loops
between waiting in the select and either reading from a socket and
writing the data into some buffered queue or getting some data

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 267 03/12/2010

from a buffered queue and writing them into the socket that
became available. All other threads would read from the queue and
write into it. The thread that handles the connection needs to be fast
enough to keep the other threads busy and prevent unnecessary
context switches due to waits on those buffers.
Instead of contention for channel access we now have permanent
hand-over costs between the I/O thread and the worker threads.
Ideally the channels could be dedicated to specific threads which
share a common threadpool of worker threads for delegation of
requests. This would avoid contention at the channel level.

Both architectures – the one with all threads sharing the channels
through a mutex or the one where only one thread does connection
handling and uses worker threads for delegation – could work well.
There is a tummy feeling that both could exhibit the following
behaviour:
- at low load levels the processing is inefficient but tolerable
- a little bit higher the processing is really rough and stumbles
along
- at even higher levels the processing runs very smoothly
with almost no unnecessary context switches. The receiving worker
threads would not block because there is always a request pending
in the queue. The I/O thread does not block much because there is
always a request pending at the channel level.
- at extremely high request levels the single I/O thread is
perhaps unable to keep the workers busy. It will also be unable to
administrate large numbers of channels effectively (old select and
epoll problem). We would like to give our I/O thread more CPU
time but his is not easy when the kernel does the scheduling.
Splitting channels and adding cores will help some.
- The concept of all-in-one threads with each one being
responsible for a certain number of channels might be better in the
case of extremely high request levels because the threads do not
need to wait often for new requests. More CPUs or cores will help
but not increasing the number of threads.

Can we run a simulation to prove this gut feeling? Or should we try
to program it and measure the results under load? What kind of
instrumentation will we need for this? How self-controlling could
the algorithms be? Wait-time and context switches are also
dependent on the number of threads used. Should we try to adjust
those at runtime? Should we take over scheduling in our
application?
Using buffers to synchronize between threads is quite dangerous
for performance: it can cause high numbers of context switches.
The same is true for naive active object implementations.
Scheduling of threads needs to be under the control of the server
code. This means user level threads, just as required by Erlang
actors.

Digression: API is UI or "Why API matters"

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 268 03/12/2010

The cryptic title stands for an important but frequently
overlooked aspect of API design: an API is a user interface
for programmers. True, its design should be stable, perhaps
extensible etc. But finally programmers will have to live
with it and its quality - or the lack of it.

Christophe Gevaudan pointed me to an article by Michi
Hennig (I know him from the former disobj mailing list) in
the queue magazine of ACM on the importance of APIs.
The author used a simple but striking example: the select
system call API in .NET as a thin wrapper on top of the
native W32 API. The way the select call was designed had
already its problems but the port to windows made it worse.
The author lists a couple of API defects that finally resulted
in more than 100 lines of additional code in the application
using it. Code that was rather complicated and error prone
and that could have been avoided easily with a better
interface specification of the select API.

For the non-Unix people out there: The select system call
lets one thread watch over a whole group of file descriptors
(read input/output/error sources). Once a file descriptor
changes its state, e.g. because of data that arrived, the thread
is notified by returning from the select call. The select call
also allows the thread to set a timeout in case no file
descriptor shows any activity.

What are the problems of the select API? The first one
according to the author is that the lists of filedescriptors that
need to be monitored are clobbered by the select system call
every time it is called. This means that the variables
containing the file descriptors are used by the system call to
report new activities - thereby destroying the callers settings
who must again and again set the file descriptors it is
interested in. The list of error file descriptors btw. seems to
be rather unnecessary as most callers are only interested in
errors on those sources they are really watching for input or
output. To provide an error list of file descriptors to watch
should not be a default.

But it gets worse: The timeout value is specified in
microseconds which leads to a whopping 32 minute
maximum timeout value for a server calling select. This is
definitely not enough for some servers and now callers are
forced to program code that catches the short timeout and
transparently repeat the select call until a resonable value
for a timeout is reached. Of course - on every return from
the select caused by a timeout the callers data variables are
desroyed. And on top of this: the select call does not tell the
caller e.g. via a return call, whether it returned due to a

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 269 03/12/2010

timeout or a regular activity on one of the observed file
descriptors. Forcing the client to go through the lists of
descriptors again and again.

The author found a couple of anti-patterns in API design,
one of them being the "pass the buck" pattern: The API
does not want to make a decision and pushes it to the caller.
Or the API does not want to carry a certain responsibility
and pushed it to the client as well. A typical example in
C/C++ programs is of course memory allocation. To avoid
clobbering the callers variables the API could allocated
memory for the notifications containing file descriptors
which showed some activity. While this certainly IS ugly in
those languages as it raises the question who will release
that memory finally it can easily be avoided by forcing the
client to allocate also those notification variables when he
calls select.

But passing the buck can be more subtle: An API that does
not allocate something definitely is faster. But you have to
do an end-to-end calculation: somebody then HAS TO
ALLOCATE memory and the performance hit will simply
happen at this moment. So while the API may test faster, it
does not lead to a faster solution overall.

Similiar problems show up when there is the question of
what a function should return. Lets say a function returns a
string. Should it return NULL or an empty string in case of
no data? Does the API REALLY need to express the
semantic difference between NULL and an empty string?
Or is it just lazyness on the side of the API designer? How
does the decision relate to the good advice to program for
the "good case" and let the bad case handle by an
exception?

API design is difficult as it can substantially decrease the
options of clients. But avoiding decisions does not help
either. The select example really is striking as it shows how
much ugly code needs to be written to deal with a bad API -
again and again and again...

Finally, another subtle point: The select API uses the .NET
list class to keep the file descriptors. First: this class is NOT
cloneable - meaning that the client can always iterate over
the whole collection to copy an existing list. A mistake in a
different API is causing problems here. And second: A list
is NOT A SET. But select PROBABLY needs set semantics
for the file descriptors - or does it make sense to have one
and the same file descriptor several times in the list for
input or output? This hardly makes sense but - being
pragmatic - it might work. The client programmer does a

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 270 03/12/2010

quick test with duplicate FDs and voila - it works! The only
question is: for how long? The behavior of select with
duplicate FDs is NOT specified anywhere and the
implementors are free to change their mind at any time, lets
say by throwing an exception if duplicates are found?
Suddenly your code crashes without a bit of a change on
your side. Usiing a set type in the API would have made the
semantics clear. Ambiguous interfaces and one side slowly
tightening the screws causes a lot of extra activities in
development projects. I have seen it: A losely defined XML
RPC interface between a portal and a financial data server.
And suddenly the server people decided to be more strict in
their schemas...

All in all an excellent article on API design. Read it and
realize that API design really is human interface design as
well. It also shows you how to strike a balance between
generic APIs on lower levels and specific APIs, perhaps
overloaded with convenience functions, closer to
applications. Method creep, parameter creep etc. are also
discussed.

Asynchronous I/O Model

(Solaris Example vs. JDK example: kernel vs. vm). Clarify internal
threads. Hand-off costs. Stack management due to immediate
completion of I/O.
<<completion instead of notification, problem of synchronous
calls, system thread notification, concurrency problems and race
conditions, run to completion problem, programming models>>
<<interplay between app.processing and io completion: pre-
emptive, parallel, polling (waiting)>>
What is the difference between non-blocking I/O with synchronous
notification and true asynchronous I/O as it is depicted in the
sequence diagram of Linux AIO below?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 271 03/12/2010

From: [Jones]. How are data moved? Is application proce ssing
interrupted? When is completion signaled? Does applicat ion wait
for completion signals?

?

The first noticeable difference is the behaviour during
initialization. Asynchronous I/O as it is frequently implemented
does not assume that a call might directly go through. Typically the
calling code assumes a fast return after initializing the I/O. If
indeed the request could be fulfilled immediately it will create a
dilemma for the calling code: should it call the completion code
right away or still schedule the I/O for completion at a later time.
We will discuss the problem of continuations below.

The second noticeable difference is the true overlapping of I/O
processing with other applications code: while the kernel is
processing the asynchronous request the application is free to
process some other code.
And the third noticeable difference lies in the way notifications are
handled. In the non-blocking case with synchronous notification it
means that when the blocked select call returns some I/O action(s)
on some channel(s) have become possible without leading to a
blocked read or write call. In the true asynchronous case there is
also a form of notification but it is called completion. It means that
the I/O request has already been processed and the data have
moved from kernel to user space or vice versa.

What is left is to inform the application about completed requests.
This “completion handling” can e.g. immediately start a new
asynchronous request. Or it can detect an error condition and repeat
the previous request or abort it.
By looking at the sequence diagram we notice that there are a
number of open questions regarding this handling of completed I/O
requests: Who calls the completion handler? How and when does
the application learn about completed requests? Does application

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 272 03/12/2010

code run in parallel to completion handling or is it pre-empted by
the completion handler?

What would be the ideal solution with respect to throughput and
performance? Sureley it would be necessary to do the completion
notification as quick as possible to allow the next request to be
started. By looking at the AIO API calls below we see that there
are system calls which allow the application to learn about the
status of a request either by polling or by waiting for a notification.
But both seem to be rather inefficient. And waiting for a
completion notification does not sound much different from
waiting for a notification about a possible I/O request with non-
blocking operations and synchronous notification. If on the other
hand we allow the asynchronous completion handling to interrupt
application code we might create race conditions e.g. if the
application code was just about to prepare new data for
transmission. Does this mean we have to synchronize access
between completion handler and application code? This could lead
to the completion handler needing to block waiting for the release
of a lock. Or we settle for a solution where completion events are
only sent by the kernel when the application has entered kernel
state (most likely due to performing a system call). In this case we
just assume that there is no chance for a race condition but we pay
for it by having a non-deterministic time span between end of I/O
processing and the notification of the application. This is btw. the
solution used by signals.

API
function

Description

aio_read Request an asynchronous read operation
aio_error Check the status of an asynchronous request
aio_return Get the return status of a completed asynchronous request
aio_write Request an asynchronous operation

aio_suspend Suspend the calling process until one or more asynchronous requests have
completed (or failed)

aio_cancel Cancel an asynchronous I/O request
lio_listio Initiate a list of I/O operations

From: Tim Jones, Boosting… [Jones]
The code pieces of asynchronous I/O found in the literature seem
to prove those difficulties. When asynchronous I/O uses the
suspend system call the difference to non-blocking I/O with
synchronous notification becomes irrelevant: we have one system
call for initialization, one for notification and one for checking the
result. And we have also three system calls albeit in different order
and function in the other case.

Let’s look at an example using Suns AIO API together with a
threadpool [Sun]:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 273 03/12/2010

Client requests

Main thread

queue

Thread
Thread

Thread
Thread

Thread

Thread

threadpool

request

AIO result
object

request or
result object

Aioread()

Aiowrite()

kernel

Return to
thread pool

clients

request

Result final?

Aiowrite()

Poll Thread

kernel

Aiosuspend()

In this example the main thread receives client requests and
forwards them into a queue. At the other end of the queue threads
from a threadpool extract the requests and start processing. This
typically involves asynchronous I/O to some other data source. The
worker threads return to the threadpool and wait for new requests
to arrive in the queue. A poll thread performs a blocking wait for
results from asynchronous I/O and puts the result structures also
into the queue. Like the original requests those structures are later
extracted by worker threads which check for the status. If the
request has been completed the worker thread will return the data
to the clients, otherwise a new cycle of AIO read/write is started.

Raw I/O throughput in this design is also dependent on the polling
thread reading the results of the AIO operations quickly and on the
context switching costs of the worker threads. Sun suggests other
means of notifications like signals and doors but it is unclear
whether they would provide better performance.

We can compare this mechanism with the way a typical kernel
handles writes to a serial device in an asynchronous way: An
application writes data to a UART device. The kernel copies the
data into a driver buffer, puts the application on the blocked
scheduler queue and writes the first byte into the output port of the
device. Once this byte is serialized and put on the wire the UART
device will cause an interrupt which will extract the next character
from the buffer and write it into the output port as well. Once the
last byte has been consumed the interrupt code will cause a change
in the state of the blocked application which becomes runnable
again and returns to the user level.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 274 03/12/2010

Theoretically the application could just dump the data into the
kernel buffer and return immediately to continue some processing
in the user level. Via some wait() or suspend() system call the
application could learn about the outcome of the previous write.

Java Asynchronous NIO
[Roth] Gregor Roth, Architecture of a Highly Scalable NIIO-Based Server
Reactor/Proactor Patterns, framework integration,

[Santos] Nuno Santos, Building Highly Scalable Servers with Java
NIO09/01/2004 http://www.onjava.com/lpt/a/5127

Handler State Machine

From Nuno Santos (see Resources). The state machines showsclearly the influence of
non-blocking on the design of the handler which needs to maintain device or input state
by itself. A regular thread would just handle one request and as long as input data are
incomplete just sleep (context switch)

[Naccarato] Giuseppe Naccarato Introducing Nonblocking Sockets
09/04/2002 http://www.onjava.com/lpt/a/2672

[Hitchens] Ron Hitchens, How to build a scalable multiplexed server with
NIO, Javaone Conference 2006,
http://developers.sun.com/learning/javaoneonline/2006/coreplatform/TS-
1315.pdf

[OpenJDK] Notes on the Asynchronous I/O implementation, Nov. 2008

Virtual Machine Level Asynchronous I/O

The following is taken from the paper on asynchronous I/O
implementation [OpenJDK] and describes various ways to
supply threadpools to the async. event generator. The first
concept involves a thread pool where threads extract
completion events from ports of an asynchronous channel
group and dispatch them to user completion handlers. When
the handlers finish, the threads returns to waiting on ports.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 275 03/12/2010

The design requires that handlers to not block indefinitely
as this would finally lead to events being no longer handled.
It is of course also important to set the number of threads
correctly to avoid large context switching times.

The second case shows the use of two thread pools. One of
them is used only internally by the event extraction logic.
Those threads are not allowed to block. They will hand-off
events to threads from the user supplied thread pool. Those
threads in turn can block during completion handling but
the threadpool itself needs to support unbounded queuing to
avoid blocking the internal threads.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 276 03/12/2010

The paper also discusses what happens when an I/O
operation can finish immediately. While this is rather nice
from a performance point of view it means that the calling
thread (if one from the thread pool) can start completion
handling code immediately as well. And this code in turn
can cause another read or write which theoretically can also
finish immediately again causing the completion handler to
be run and so on – until the thread stack explodes.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 277 03/12/2010

The implementation tries to allow several completion
handler frames on the stack for performance reasons but
limits its number to 16.

In “beautiful architecture” Michael Nygard describes the
development of an image processing application used
throughout hundreds of stores in the US where regular
people can bring in their pictures and have them printed in
various forms and formats [Nygard]. Here the main
problem was that the main operators of the system were
non-technical and in some cases even customers. For me the
most interesting bit was when he described using Java NIO
for image transport between store workstations and store
servers. Image transport had to be highly reliable and very
fast too. Nygard mentioned that this part of the project took
rather long and showed the highest complexity within the
project. Just matching the NIO features with high-speed
networks and huge amounts of data was critical. He said
that e.g. using one thread for event dispatch and
manipulation of selector state is safe but can lead to
performance problems. The thread used to only read a small
amount of data from one channel, distribute it and go to the
next channel. The high-speed network was able to deliver
data so fast that this scheduling approach led to severe stalls
on the network layer. They had to change the scheduling so
that the receiving thread now reads data from one channel
as long as there are data available. But of course this is only
possible with few clients pushing files to your server. With
more clients this can stall those clients considerably. Not to
forget the problem of denial-of-service attacks when clients
realize the way you are scheduling reads... Staged Event-Driven Architecture (SEDA)

Handover problems for individual threadpools
Call/response semantics?

We have already talked about the deficits of the request/wait cycle
in multi-tier architectures. Performance or throughput problems in
one tier can lead to many blocked requests upstream and finally
large residence times for requests.

SEDA tries to break the request/wait cycle (which is simply a
call/return pattern) by using asynchronous events between
processing stages. Each so called stage runs its own thread-pool.
Ideally a request enters the system at one end and leaves it at the
other end without leaving any state information or allocated
resources in the layers between. The diagram below shos this
architecture.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 278 03/12/2010

Realistically there needs to be some connection between the start
and end of the pipeline because a request typically needs to leave
the system through the same connection that has been used to
deliver it in the first place. The diagram below shows how this is
handled via a so called correlation ID which allows the association
between a result and a connection. The only place where a
synchronous I/O processing is done is right at the entrance of the
system: clients wait synchronously for the response. In between
stages issue requests asynchronously to the next stage downstream
and do not wait for a response. Sometimes events are delivered to
the same layer but in the opposite direction. This should not be
confused with a simulated synchronous call semantic because the
calling part in that layer does not wait for the response.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 279 03/12/2010

SEDA architectures claim much better performance than
synchronous request/wait semantics. [Faler]. One critique
frequently voiced concerns the way events are sent from queue to
queue across different thread pools: this can lead to lots of context
switches due to the necessary hand-over.

Building Maintainable and Efficient Servers
In this chapter we are going to discuss the ingredients of high-performance
servers and the programming models in use to make those servers also
maintainable and understandable.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 280 03/12/2010

Let’s start with some general effects on the performance of large sites or as
Jeff Darcy calls it in his “Notes on high-performance server design”: “the
Four Horseman of Poor Performance” [Darcy]:
1. Data copies
2. Context switches
3. Memory allocation
4. Lock contention

Zero-Copy

Probably the weakest point in this list is the first one: data copies.
While even Java acknowledged the need for faster data containers
by offering direct, OS-provided buffers for I/O in its laters releases
it is unclear how big the effect of data copies or equivalent
functions like hashing really is. Using references (pointers) and
length variables instead of complete buffers works well for a while
but can create considerable headache later.
After all, Erlang is a functional language which keeps a separate
heap per thread and forces inter-thread communication to copy data
across message ports. And it does not look like Erlang suffers a
performance hit by doing so. Quite contrary it is famous for the
large numbers of requests it can handle. One advantage of forced
copies is that both parties need not worry about concurrent access
issues. I guess that many copie made in non-memory-safe
languages like C and C++ are simply a result of concurrency or
deallocation worries resulting from missing garbage collection and
shared state multi-threading.

Avoiding kernel/user copies of large data certainly is a good idea
though. Dan Kegel gives an example of sendfile() use to achieve a
zero copy semantics. Sendfile() lets you send parts of files directly
over the network. [Kegel]. The various data path’s through an
operating system are described here << zero copy techniques >>

Context-Switching Costs

We have been talking about the negative effects of context
switches already. They take away processing time from functions
and add overhead.But how do we avoid context switches?
The amazing thing is that, at one level, it's totally obvious what
causes excessive context switching. The #1 cause of context
switches is having more active threads than you have processors.
As the ratio of active threads to processors increases, the number
of context switches also increases - linearly if you're lucky, but
often exponentially. This very simple fact explains why multi-
threaded designs that have one thread per connection scale very
poorly. The only realistic alternative for a scalable system is to
limit the number of active threads so it's (usually) less than or
equal to the number of processors. One popular variant of this
approach is to use only one thread, ever; while such an approach
does avoid context thrashing, and avoids the need for locking as

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 281 03/12/2010

well, it is also incapable of achieving more than one processor's
worth of total throughput and thus remains beneath contempt
unless the program will be non-CPU-bound (usually network-I/O-
bound) anyway. [Darcy]

Some of these statements need further clarification. Why does the
number of context switches increase with the number of threads?
Given a fixed time slice per thread the number of content switches
should be the same with more threads – it’s just that different
threads are involved. If the time slice is reduced with increasing
numbers of threads we would see an increase in context switches
but run into the danger of thrashing between threads without any
work done. Do current systems reduce the time slice?

It is also unclear why we should se an exponential increase in
context switches with more threads? Let’s take a look at two other
reasons for context switches besides pre-emption in the presence of
more threads: blocking on I/O or condition variables. If we assume
that there is a rather equal distribution of those across threads then
we cannot explain the supposed exponential increase. But it sheds
some light on context switch reasons in general: blocking need not
lead to a context switch! It is a question of architecture (e.g.
asynchronous I/O) and user level scheduling to avoid blocking for
I/O or condition variables. And: blocked threads are not a problem
for context switch overhead. Darcy talks about “active” threads,
meaning threads in state runnable contending for the CPU. These
will cause overhead.

Less active threads than processing units? This seems to be
unefficient because it leaves cores idle.

What are the lessons learned with respect to avoidance of context
switching? The one thread with non-blocking I/O and user level
scheduling seems to be the most effective for server applications.
Instead of short time slices which allow I/O intensive processes to
jump in, do their requests and block again quickly we want
asynchronous I/O for interleaving of I/O requests and regular
processing to reduce latency. This is very different e.g. to windows
desktop OS configurations which emphasize interactivity instead of
throughput. If we need or want to use more than one processor we
should try to evolve the single-threaded non-blocking model by
partitioning threads across either connections, processes or stages.
By doing so we should avoid unnecessary context switches again.
How should do this is explained by Darcy:

The simplest conceptual model of a multi-threaded event-
driven server has a queue at its center; requests are read by
one or more "listener" threads and put on queues, from which
one or more "worker" threads will remove and process them.
Conceptually, this is a good model, but all too often people
actually implement their code this way. Why is this wrong?

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 282 03/12/2010

Because the #2 cause of context switches is transferring work
from one thread to another. Some people even compound the
error by requiring that the response to a request be sent by
the original thread - guaranteeing not one but two context
switches per request. It's very important to use a "symmetric"
approach in which a given thread can go from being a
listener to a worker to a listener again without ever changing
context. Whether this involves partitioning connections
between threads or having all threads take turns being
listener for the entire set of connections seems to matter a lot
less.
[Darcy]

Here we learn what most database administrators had to learn the
hard way a long time ago: a good logical model is not a good
physical model in most cases. While the queue/stage architecture is
conceptually very simple and nice it would cause excessive context
switches if one thread can only work in one stage and needs to
hand-over the results to other threads.

The following architecture avoids the overhead costs of frequent
handover and lets one thread handle a request across all stages.
Requests can be put on hold within a stage but this does not cause
the thread to block and context switch. It will simply pick a new
request or stage function to process.

Stage A

Stage B

Stage E

Stage F

Stage C

Stage D

Thread
Thread

Thread
Thread

Thread

Thread

Req.

One thread processes a request across all stages with ev ery stage
controlling dispatch via return codes. Requests can be p ut on hold within
stages but this does not block the thread.

System Entry Point

System Exit Point

Compare this to a naïve implementation of stages in a SEDA
model where each stage has its own thread pool (even though the
threads might migrate over time between stages):

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 283 03/12/2010

Stage A Stage B Stage C

Thread
Thread

Thread
Thread

Thread

Req.

There is considerable context switching due to hand-over b etween stages
and associated threads. A fully symmetric thread design where each
thread can run every stage (also consecutively) is much be tter.

System Entry Point

System Exit Point

Thread
Thread

Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread

Interestingly, Darcy also suggests to dynamically control the
number of active threads to prevent too many threads contenting
for CPU. In his example he used a counting semaphore to restrict
the number of threads allowed to run. He claims that this technique
works well when you don’t know how when requests come in or
maintenance tasks wake up. While causing additional context
switches this technique again emphasizes the importance of thread
reduction. We will deal more with dynamically manipulating
threads in the next chapter on concurrency when we talk about the
best way to deal with threads once they have acquired a lock: Pre-
empt as usual or let them run longer to shorten the serialized
region?

Memory Allocation/De-Allocation

Darcy also mentions a couple of memory allocation issues.
Memory allocation does have an impact on server performance in
two dimensions: allocation /deallocation in under
contention/locking and paging costs. Pre-allocation of memory
does reduce allocation costs, especially under contention but might
have a negative impact on paging. What is important is to measure
your allocation costs across several allocation sizes and under
multithreaded conditions – you might be in for a (bad)
surprise.This trick that is frequently used when data structures like
collections need to optimized for concurrent use: lock and swap
complete sub-trees, branches or generations in one go and later –
without holding a lock – deallocate the now isolated structure.
Lookaside lists (basically pooled objects) are also useful in
reducing allocation costs. If you are using a virtual machine with
garbage collection make sure you understand the pro’s and con’s of

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 284 03/12/2010

the different collection strategies. Generational GC e.g. can
allocate memory very quickly but suffers from long lasting
references. More on this topic in the chapter on concurrency. For
I/O optimization it is important that your virtual machine runtime is
small enough so that you can run several instances on one machine.
This allows efficient partitioning of connections without an
increase in contention within processes (assuming that you got
enough processors for your VMs).

Locking Strategies

We will discuss locking strategies etc. in the next chapter in detail
but Darcy emphasizes the effect locking does have on architecture
and suggests a way to structure your code and associated locks:

Stage A

Stage B

Stage C

Stage D

The system should be designed so that contention can only ex ist if two
requests meet within the same dataset AND the same stage. [Darcy]

System Entry Point

System Exit Point

dataset 1 dataset 2

contention
R1

R2

R3/4

Structuring your application for minimum contention is at the
architecture level. But there are many smaller things that can be
done to achieve high-performance servers. [Darcy] and [Kegel]
mention e.g.
- use of scatter/gather
- request size measurements and optimizations
- Network optimization to batch small writes
- Page size alignments for disk and memory
- Input connection throttling when server is overloaded
- Increase default system limits (handles etc.)
- Thread memory reductions
- Putting server functions into the kernel

I/O Strategies and Programming Models

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 285 03/12/2010

In this last chapter on high-performance I/O we will try to answer
two questions:
- Are threads or events a better architecture (and which
asynchronous model)?
- How much asynchronous, event-based processing should be
exposed to programmers?

In “The C10K problem” Dan Kegel did a comparison of various
non-blocking and asynchronous I/O system APIs (e.g. epoll()) .
[Kegel]. The results were that older API implementations
sometimes have a problem dealing with large numbers of
connections but the newer ones like epoll() and kqueue() are able
to server tens of thousands of connections at the same time, or as
Darcy says: it does not matter which of the non-blocking or
asynchronous strategies one chooses – they are all largely
equivalent once context switches etc are controlled.

The group of doubters with respect to asynchronous programming
models starts with van Behren et.al. and their defense of threads as
the superior programming model. They do not so much question
the performance of event-based I/O but its ease of programming.
Almost no server architecture they looked at used more than the
usual control flow paradigms (call/return, parallel call, pipelines).
And they show that they can achieve much the same performance
and throughput with threads. Their core points are [vanBehren]:
- use user level thread packages (they recognize the context
switch costs)
- be asynchronous under the hood only
- let threads allocate stack memory dynamicall (to avoid
memory issue with VMs)
- change thread related algorithms to perform better than
O(N) in the number of threads

This list confirms what we have said in the above sections on I/O
in general.
Greg Wilkins in “Asynchronous I/O is hard” [Wilkins] worries
about the latest asynchronous API additions to the servlet API and
gives interesting examples of the difficulties involved:
<<example of partial read error >>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 286 03/12/2010

if (event.getEventType() == CometEvent.EventType.READ) {
InputStream is = request.getInputStream();
byte[] buf = new byte[512];
do {

int n = is.read(buf); //can throw an IOException
if (n > 0) {

log("Read "+n+" bytes: " + new String(buf, 0, n)
+" for session: "+request.getSession(true).getId());

} ...
} while (is.available() > 0);

}

From: [Wilkins]. The code does not take partially read cha racters into
account and might generate an exception when converting b ytes
received to strings

Wilkins gives more examples e.g. writers not checking for the
current I/O mode selected and concludes with the following
statement:
Tomcat has good asynchronous IO buffers, dispatching and thread
pooling built inside the container, yet when the experienced
developers that wrote tomcat came to write a simple example of
using their IO API, they include some significant bugs (or
completely over-simplified the real work that needs to be done).
Asynchronous IO is hard and it is harder to make efficient. It is
simply not something that we want application or framework
developers having to deal with, as if the container developers can't
get it right, what chance do other developers not versed in the
complexities have?! An extensible asynchronous IO API is a good
thing to have in a container, but I think it is the wrong API to solve
the use-cases of Comet, Ajax push or any other asynchronous
scheduling concerns that a framework developer may need to deal
with. [Wilkins]

So the right answer is to put AIO into the container? A very good
demonstration of the complexities of pure AIO programming has
been given by Ulf Wiger of Erlang fame in his presentation
“Structured network programming - FiFo run-to-completion event-
based programming considered harmful” [Wiger]. He uses a POTS
(Plain Ordinary Telephony System) design to demonstrate the
increase in complexity when first asynchronous programming with
some blocking still allowed is used and later pure non-blocking
AIO. The resulting code is absolutely non-understandable which is
not a real surprise: pure, non-blocking AIO where some event loop
handles all kinds of events by calling into handler routines. Those
routines cannot block and therefore need to express every branch of
an action as a new state. Continuations are used as well. This leads

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 287 03/12/2010

to manual programming of complex finite state machines –
something that is probably best done with the help of an explicit
grammer and a compiler construction tool like ANTLR or
advanced simulation tools. While it seems to be easy to build a fast,
simple event-based prototype the programming model degenerates
quickly when the project size increases.

It is probably a good idea to take a look at the code examples from
Wiger at this point. To save some space here only the state-event
matrix of the POTS is shown here.

From: [Wiger]

Wiger emphasizes the use of blocking AIO as it is done via select()
or epoll(). Here processes can block for exactly those events that fit
to their current state. Ideally the processes or threads can use
“inline selective receive” – a locally (logically) blocking API call
which does pattern matching on events and delivers only the one
that is expected, everything else is buffered for later reception by
the process. In this case the process need not maintain a separate
call stack as an additional bonus.

Libevent – an example event-notification library
www.libevent.org
<<what is it built with it?>>

Node.js – a new async. lib

Concurrency
http://www.software-dev-blog.de/

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 288 03/12/2010

Just like in I/O processing the best way to use and deal with concurrency is a
hotly debated topic. The growing number of cores within CPUs has added some
additional fuel to the discussion. The trenches go along the following questions:
- what kind of and how much concurrency needs to be exposed to
applications?
- what is the best way to deal with concurrency: shared state, message
passing, declarative etc.
- what are the results of shared-state concurrency for the composability and
stability of systems?

We will start with a short discussion on the effects of concurrency on the
scalability of large-scale sites and continue with a look on various forms of
concurrency in game development. Afterwards we are going into details on those
concurrency forms.

Are we going to reduce latency by using concurrency techniques? The portal
example from above and our discussion on latency have shown some potential
here. We can take a typical request and dissect it into independent parts which can
run in parallel easily. But it is not very likely that we will go very much into a
fine-grained algorithmic analysis. We are looking for coarse grained units to be
run concurrently. This can be requests for several backend services as in the portal
example. Or it can be iterations across large document bases using one function as
in the map-reduce case discussed below in the chapter on scale-agnostic
algorithms.
Parallelizing I/O can theoretically reduce the overall runtime to the runtime of the
longest running sub-request instead of the sum of all sub-requests. But – and this
shows the various faces of concurreny: we do not have to use several cores to
achieve latency reduction in I/O – non-blocking operations allow us to overlap
I/O operations just as well (perhaps even better when we think about context
switching costs). The parallel iteration and processing on the other hand really
needs more cores to be effective. So concurrency can man simply doing several
things at the same logical time (but physically in sequence) or it can mean truly
processing several things at the same physical time using more cores.

And while the examples mentioned certainly are make-or-break conditions for
sites the most common use of concurrency is probably to increase the number of
client requests which can be served by using more processing cores (assuming
that we can somehow scale storage as well, which we will discuss later).

Tim Sweeney wrote an interesting paper on future programming languages from
his perspective as a game developer (unreal engine). He discovered three areas for
the use of concurrency in a game engine: shading, numeric computation and game
simulation (game play logic). [Sweeney]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 289 03/12/2010

Three Kinds of (concurrent) Code

Data flowSide-effect free
functions/closures,
implicit thread
parallelism

Software
Transactional
Memory

Concurrency
Mechanisms

Data parallel
(embarrass.)

FunctionalShared stateConcurrency Type

5000 visible at 30
frames/sec.

Scene graph trav.
Physics simulation,
collision detection,
path, sound

10000‘s to update
with 5-10 inter
object touches and
60 frames/sec

Objects

500 GFLOPS5 GFLOPS0.5 GFLOPSFPU Usage

10,000250,000250,000Lines of Code

n/a90%10%CPU Budget

CG, HLSLC++C++, ScriptingLanguages

ShadingNumeric
Computation

Game Simulation

Adapted from [Sweeney]

Sweeney makes a few important statements from the development of the unreal
engine: shared state concurrency is a big pain. They try to avoid it or keep it as
transparent to the developers as possible by running one heavyweight rendering
thread, a pool of 4-6 helper threads which are dynamically allocated to simple
tasks (symmetric approach to threads) and by a very careful approach to
programming [Sweeney]. And it is still a huge productivity burden. The idea is to
use a new form of concurrency control fo game play logic with its huge number of
objects with shared state and some dependencies: Software transactional memory.
And for the numeric computations to use a purely functional approach with side-
effect free functions which can be run by threads in parallel. Due to the data flow
characteristics shader processing is anyway “embarrassingly parallel” and no
longer a problem. We will discuss STM below but start with the “classic” shared
state concurrency first.

Classic shared state
This approach to concurrency is called “classic” because it has been used
inside of operating systems, database engines and other system software
for ages. Those systems have the interesting property of concentrating
concurrency control mechanism within themselves and creating a
sequential, isolated processing illusion to their clients. Operating systems
do this via virtual memory management and process isolation and
databases use the concept of transactions to serialize data changes.

Sharing state means that two or more processes/threads/execution flows
will potentially have access to the same data either at the same time or
interleaved. While one can easily imagine why same-time access to data
can cause havoc (especially lost updates and wrong analysis failure types)
the interleaved access thing needs an explanation: What can go wrong if
data is accessed by two threads? When the first thread is done, the second
can do its stuff. Where is the problem? The problem is exactly in the term
“done”: When the first thread is done there is really no problem giving

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 290 03/12/2010

access to the second thread. The only problem now is to determine when
the first thread is truly done. In a single core system that can’t be a real
problem: it is when the thread relinquishes control (yields) and gets
context switched. But what if the first thread involuntarily needs to give up
the core? In other words, if it gets pre-empted due to a time-slice or other
scheduling policy. Then the second thread might access incomplete data.
Or its updates might get lost when later on the first thread gets control
again and overwrites the changes the second thread made.

We learn from this that even a single core can cause concurrency problems
when shared data is used in the context of pre-emption. One core with pre-
emption is as bad ad two cores running in parallel.In multi-core systems
we do not need the latter ingredient pre-emption: just shared data will
suffice to cause all kinds of problems. The problems are mostly either:
- consistency failures
- suffering performance
- liveness defects (deadlock, lifelock) and finally
- software composition and engineering problems.

And the answer to those problems in the shared state model of
concurrency is always to use some kind of locking – i.e. mutual exclusion
– technique to prevent concurrency for a short time. And this “cure” in
turn is again responsible for some to the problems mentioned above as we
will see.

For the following discussion two papers by “classic” system engineers are
used extensively: They are “Real-World Concurrency” by Bryan Cantrill
and Jeff Bonwick, two Sun kernel-engineers defending the shared-state
multithreading approach using locks etc. [Cantrill] and “”Scalability By
Design – Coding For Systems With Large CPU Counts” by Richard Smith
of the MySQL team at Sun, also a system engineer deeply involved in
concurrency issues [Smith].

Consistency Failures
This class of errors should theoretically no longer exist in the
shared state concurrency model: locks prevent concurrent use and
corruption of data structures.

- lost update by overwriting previous changes
- wrong analysis by handing out intermediate, temporary
(non-committed) values
- endless loops due to corrupted data structures
- race conditions and non-deterministic results due to timing
differences in threads

Unfortunately performance issues force us to use locks in a rather
fine-grained way (see below) which leaves ample opportunities for
missing protection around some data structures. The real problem
behind is actually the lack of a systematic way to prove the
correctness of our locks. We are going to discuss this somewhat
more below in the section on engineering issues with concurrency.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 291 03/12/2010

Just remember that those problems where the ones we went out to
fix via locks originally.

Performance Failures

There is a rather simple relation between locks and performance:
the more coarse grained locks are used the safer the concurrent
system becomes due to even longer serialized, non-concurrent
sections and the slower it will be. And the more fine-grained locks
are used we will see better performance and throughput at the price
of more deadlocks, lifelocks and consistency problems. Remember
that our original goal in using concurrency was not so much to
speed up the individual function but to increase the number of
requests being processed. The following problems have a negative
effect exactly on our ability to run more requests by forcing the
requests to wait for one request within a locked, serialized section.

- coarse grain locking of top-level functions or data structures
- pre-emption with locks held
- broadcast vs. signal handling: thundering herds
- false sharing

coarse grain locking of top-level functions or data
structures

But what does “coarse-grained” mean in this context? It
simply means locking the entry to a frequently used, entry-
level function which lets only one process or thread get into
the system and do useful work while all others have to wait
at the entry. And the same effect can be achieved with
locking large data structures like e.g. a complete table in a
database. With a table lock no other thread can work with
rows in that table even if the threads would use completely
different and independent rows each. “Lock breakup” (this
does NOT mean to take away a granted exclusive access by
force!) discussed below is a strategy to break coarse grained
locks up into much finer sections of serialized processing.

The following table (taken from [Goetz] gives a good idea
how coarse grained locking affects performance. It
compares the throughput of the classic Java HashTable
(top-level synchronized) with ConcurrentHashMap and its
fine grained locking.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 292 03/12/2010

From: [Goetz], Java theory and practice: Concurrent collections classes
- ConcurrentHashMap and CopyOnWriteArrayList offer thr ead safety
and improved scalability

In large-scale systems such numbers are hard to ignore and
warrant the effort to break up coarse grained locks.

pre-emption with locks held
In the chapter on I/O processing we have already learned
that a high volume of context switches is a sure
performance killer, mostly caused by too many threads.
And from our queuing theory section we know that more
threads means longer individual request service times as
well. Now we can top those negative effects by allowing
threads which hold locks to be pre-empted. This is about as
bad as it can get for throughput. More interesting are the
concepts needed to work around that problem, e.g. by
letting the kernel know about the locks (see below).

thundering herd problems
“Scheduler thrashing. This can happen under Unix when
you have a number of processes that are waiting on a single
event. When that event (a connection to the web server, say)
happens, every process which could possibly handle the
event is awakened. In the end, only one of those processes
will actually be able to do the work, but, in the meantime,
all the others wake up and contend for CPU time before
being put back to sleep. Thus the system thrashes briefly
while a herd of processes thunders through. If this starts to
happen many times per second, the performance impact can
be significant.” [JargonFile]
Generations of Jave developers have learned to use the
broadcast mechanism of “notifyAll()” instead of the signal
mechanism “notify()” on grounds of improved software
stability. As notifyAll() wakes up all threads waiting on a

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 293 03/12/2010

mutex it does not matter if some of those threads actually
wait for something else to happen: All are woken up, all
will have to check their special condition before accessing
the resource (“guarded wait”) and all except one will fall
back to waiting for the resource to become available again.
Slight mistakes in the notification algorithms are
inconsequential in this case.

I think that even the original argument based on robustness
of the code is wrong: it actually hides a software bug in the
notification algorithm used which should be fixed instead of
covered up. And just think about the consequences for
system performance: a possibly large number of threads
wakes up (context switch) to do a short check on the
condition variable and go back to sleep (context switch).
This is far from effective and should be avoided like hell. If
you are not sure about your locks and who is going to wait
for what you need to build a model or lock-graph and
perhaps track your locking solution with a model checker
(see the SPIN/Promela section in our modelling chapter).

False Sharing
[Cantrell] mentions a rather tricky complication of local
cache synchronization in multi-CPU systems which
depends on the synchronization granularity, i.e. the width of
a cached line. If elements of an array are used as locks there
might be a situation where two of those data elements show
up in one cache line. It can happen now that two CPUs are
in contention for different elements of the same cache line.
The solution proposed by Cantrell et.al. is to pad array
elements so that two cannot show up in the same cache line.

Liveness Failures
The next list of failures all deals with the application no longer
making progress. The best known and most feared reason for this is
the so called deadlock. A situation where two threads each hold a
resource which the other thread tries to lock next. This is not
possible of course as the resource is already held. A deadly cross-
over of requests for resources who’s importance seems to be
largely determined by the specialty of the respective persons:
theoreticians tend to emphasize the non-deterministic character of
such deadlocks which turns them into a permanent threat without a
safe model or theoretical concept for prevention. Practicioners also
do not like deadlocks but do not hate them so much as the reasons
for a deadlock are easily determined from the stacks of the
involved threads and can therefore be fixed easily.
- reader/writer lock problems
- deadlock
- livelock

Reader/Writer problems are a bit more subtle to see They are
caused by the rule that once a writing request is made no more read

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 294 03/12/2010

requests are accepted. This means that a currently active read
request which tries to do a recursive read request (i.e. to acquire the
read lock again will be blocked – still holding the same lock
already and thus preventing the write request from ever getting the
lock and without being able to make progress itself. But again the
situation is easily fixed post mortem.
Livelocks usually happen more on the higher levels of architecture
or in the context of lock-free synchronization (see below).

Software Composition/Engineering Failures
This section deals with general concurrency problems and their
impact on software. The first topic, visible locks, seems not so
important but has a major impact on debugging and scheduling
abilities. The next questioin is about composable systems using
locks and the answer as in many cases depends on ones
perspective, just like with deadlocks. A short discussion on the
performance impact of lock-free techniques follows and the
section ends with some remarks on provable correctness.

Visible lock owners: mutex vs. semaphore use
The question is: who knows that thread A has acquired a
lock on some resource? If a mutex is used then the kernel
usually knows the lock owners identity and if it is not freed
in time it is rather easy to find the culprit. If – like with
semaphores or some condition variables – nobody knows
about lock owners explicitly, lock failures and problems are
very hard to track and the reasons for poor performance are
hard to find. The lock graph and overview of a system are
still very important problem solving utilities.

And there is another reason for making lock owner visible:
If the scheduler knows that a certain thread has acquired a
lock it can try to prevent this thread from being pre-empted.
This is similar to the situation in real-time systems with
priority scheduling and a low priority process holding a
lock to a resource. If a high priority resource is blocked
waiting for the lock to become available it makes sense to
give the lock holding low priority thread the higher priority
as long as it hold the look. This shortens the time until the
high priority thread has to wait for the lock to become
available. Remember: we do NOT break locks by taking
them away from their owners by force!
Both reasons are discussed in detail in [Cantrell].

composable systems in spite of shared state
concurrency with locks?

Does the use of locks and shared state concurrency
automatically lead to non-composable systems? It probably
depends on your idea of composability. Let’s try an analog
problem first: Does the lack of garbage collection in C/C++
lead to non-composable systems? Theoretically the answer

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 295 03/12/2010

is yes because in many cases the responsibility for heap
memory allocated via malloc/free or new/delete is unclear
and requires the assembler of a system to take a look at the
source code of those components to figure out the
responsibilities for freeing the memory. Practically those
systems are assembled every day and the composability
problems are not seen as major. The same is true for locks
and shared state concurrency as has been shown e.g in
[Miller]. And of course Cantrell et.al. are right in saying
that despite those problems components using locks are
successfully assembled every day. You just don’t know
whether some problem might show up at runtime.

Performance impact of test-and swap with lock-
free synchronization

We will discuss lock-free synchronization below but just a
short statement on performance costs. These are estimated
to run from 2-4 times the costs of traditional locking
techniques [Jäger], [Smith]. But practicioners responsible
for large scale system design find this to be a good trade-off
against cumbersome locking problems at runtime and
complicated code to maintain [Sweeney].

Provable correctness?
<<CSP, SPIN, Promela>>

Classic Techniques and Methods to deal with shared
state concurrency

This section discusses some well-known techniques and idioms to
prevent the negative impact of locking on performance. Spin-locks
are a way to avoid context switching overhead. There is no doubt
that the secret to better performance lies in fine-granular locking.
The concept of lock-breaking can either be used to reduce lock
granularity either in a temporal or a spatial way. Very interesting
techniques involve different generations of data which are either
swapped under a short lock or simply retired with the option of still
being available in case someone needs them. Finally, the most
important technique is probably a clever architecture which
separates hot paths from cold paths and uses lock breaking only
where it is really needed.

Fighting Context-Switch Overhead: Spin-locks
I started using spin-locks (also called busy-wait) when Unix
started running on multi-processor machines. Suddenly it
was no longer enough just to block interrupts from
intervening with critical work in the kernel. It was now
necessary to prevent other CPUs from doing the same. In
the I/O section we have discussed the costs of context
switching caused by too many runnable threads. Here we
are talking about context switches caused by too many
CPUs fighting for a resource or condition. Using a regular
sleep/wakeup idiom which puts the losing thread on a wait

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 296 03/12/2010

queue is just too expensive due to the context switch
involved.

The golden rule here is to let a thread busy wait for a
resource of condition becoming available. This works of
course only when the algorithms involved guarantee that the
lock will never be held for a long time. This excludes e.g.
I/O from being done by the lock holder.
<<how is this used within Java VMs in connection with
synchronized??>>

lock breaking in time: generation lock and swap,
memory retiring

The time spent under a lock does always have a serious
impact on throughput. Keeping that time short is of
paramount importance. To achieve this we can try to move
all non-critical parts of an algorithm outside of the lock (e.g.
not synchronizing a complete Java method but using
synchronized blocks within the method). Or we need to
make sure that we do not set a lock too high within a data
structure if the modifications will only affect small parts
within (table lock vs. row lock).
But what if the algorithm has to work on a large data-
structure under lock? Here the generational-swap idiom can
help a lot: We allocate a new data-structure, lock the
existing one and swap references from the old one to the
new one and release the lock. Now we can clean up the old
data structure taking our time to do so because we are not
holding a lock. An idea related to this idiom has been
described by [Cantrell] et.al. using the lock breakup of
hashtables as an example. Hash-tables need to be re-
organized frequently to scale access time in case of growing
data. This would imply reorganizations of large amounts of
data, copying them over to new containers. Instead of copy-
and-destroy we are using memory retiring in this case: We
keep the old data containers and when a request comes we
check whether it is for the old or new containers. This check
of course is done under a short time lock.

lock breaking in space: per CPU locking
Besides keeping the lock time short we can try to decrease
the number of cores getting hit by the lock. If we manage to
partition a resource across the number of CPUs available
we can set partial locks which will only affect one CPU
instead of all. This partitioning of course is highly
application dependent but it can pay off a lot to assign
events, data-structures etc. to certain CPUs.

lock breaking by calling frequency: hot path/cold
path

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 297 03/12/2010

But before we do major code restructuring to achieve lock
breaking and a smaller lock granularity it is very important
to find out where we should put our efforts to get the most
bang for our bucks. A calling frequency analysis with the
help of a profiler will quickly show the hot and cold paths
in our software. We do not want to use fine-grained locking
in code that is only run once – as is typical for initialization
or shutdown code. Here we can safely use coarse grained
high-level locks which will protect large parts of our code.
In frequently called code though we need to use the
different kinds of lock breaking techniques explained
above.
Making code perform better by making locks more granular
is a tedious activity which has a major impact on the overall
architecture. Sometimes it cannot be avoided but if you are
in the lucky position to start a new project you might want
to go back to the I/O section and take a new look at [Darcy]
and his proposed structuring of a parallel architecture. Or
you might want to take a closer look at the next sections on
alternative architectures which avoid locks as much as they
can.

threading problem detection with postmortem
debug

Two tools will help you find threading/locking problems in
your code. In case of a deadlock a system dump will allow
you – with the help of your debugger – to recreate thread
states and discover the deadly crossover of resource
allocation that caused the deadlock.
But frequently your major concern will be poor
performance which is probably caused by threads not really
running parallel but contending for some resources most of
the time. A so called thread analyzer traces all threads and
the functions called and shows the blocking graph of your
software. If you detect frequent cases of a group of threads
waiting for one condition or lock you know where to start
re-organizing your code.

Transactional Memory and Lock-free techniques
Still within the shared state concurrency paradigm but trying to overcome
the performance of liveness problems are a couple of technologies which
try to reduce or eradicate one of the core problems: locking on a level that
is visible to programmers. The basic approach behind those techniques is
well established: Transactions separate different processing flows without
bothering the programmer with locking tables or rows. They do this
essentially be creating a “shadow world” for each processing flow and no
write in this world becomes visible till the transaction (and iff) completes.
While mostly transparent to programmers (which only have to mark the
beginning and end of a unit of work) transactional protection tends to lock
resources and thereby prevents more concurrent use and in the worst case
can lead to a deadlock.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 298 03/12/2010

A special version of transactions uses so called “optimistic” locking. In
this case locks are held only at two points in time: when variables are read
and when the transactions commits and variables are written back. During
write-back the transaction system checks whether one of the variables that
have been read has changed (by some other process flow). We say the read
set has changed and presumably the results – the write set – are now
invalid because they depend on what was read before. There are many
possible ways to detect the change: Sometimes a timestamp is used which
is taken when a variable is read and compared to the timestamp value at
the time of write-back. One could also store copies of the variables read or
create a versioning system for all changes (see MVCC below). If there was
a conflicting change in the read set we need to abort/rollback the
transaction and start from fresh.

It is easy to see the appeal behind optimist locking in transactions: we just
go ahead at full speed and do all the reads and modifications necessary and
at the end we check for possible conflicts. The trade-off is clear: we have
much shorter serialized sections in our processing because the resources
mostly stay in an unlocked state. This means we are using concurrency
much better. But this gain in concurrency can easily be lost by larger
numbers of transactions with conflicts and rollbacks. <<formula??>As the
number of conflicts will probably increase over time and the number of
processes involved (the more processes work on the same data and the
longer they do it the more likely we will end with conflicting read set
changes) systems using optimistic locking strongly advise against longer
running transactions.

“Shadow world” (transactional) approaches do have some drawbacks as
well: They require all participating resources to be able to “roll back” in
case of a conflict. This means they are not allowed to create external side-
effects which are not revokeable through roll back. The other drawback is
that in case of a conflict and roll back user provided input nees to be re-
acquired because the new situation might necessitate a different input.

Looking back at the beginning of the chapter on concurrency we realize
that we can now add transaction monitors to operating systems and
databases. They all relieve programmers from the need to explicitly deal
with concurrency and locks. As the need to use concurrency and locking
explicitly is probably tied to high-throughput processing it comes as no
surprise that transactional technologies have been a focus of mid-range
and mainframe systems till now.

But this is about to change drastically and the change is driven by
hardware: Because the CPUs have pretty much reached the end in cycle
speed (already a signal cannot reach all places within a die before the next
signal is issued) hardware vendors are taking a different route to increase
performance and throughput even further. Instead of bumping up the CPU
clock frequency the number of cores present within a CPU is increased.
We will soon be talking 80 core CPUs. This won’t be a big issue for server
side developers used to build application servers, runtime containers and

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 299 03/12/2010

virtual machines. But it will have a major impact on everybody else. Your
desktop application will need to use those additional cores just to keep up
its current speed because a single core will no longer run at such extreme
clock frequencies. This means application developers will have to look for
places in their code to use concurrency.
“Finding parallelism” by Kai Jäger describes the forces behind this
development as well as the technologies proposed [Jäger]. The first one is
so called “Software Transactional Memory” and it is basically an
implementation of optimistic transactions in memory.

How would programmers use this? Below pseudo-code is given which
shows that programmers only have to put brackets around the code pieces
which should be handled atomically by STM. Here the keyword “atomic”
is used.

Pseudo-Code for software transactional memory
(STM), from Kai Jäger, Finding Parallelism [Jäger]

What is happening under the hood? Here STM needs to compare read-sets
and write-sets of transactions effictiently to figure out whether one has to
fail:
Put differently, a transaction fails when there is an intersection between its
read set and the write set of another transaction that commits before it.
STM imple-mentations can use this fact to validate a transaction’s read set
very quickly and without having to actually compare memory contents.
This however means that transactions are only atomic with respect to
other transactions. When shared-data is accessed outside of transaction,
race conditions may still occur.[Jäger] pg. 20.

We do not compare memory contents, all it takes is to compare change
states. And it is clear that this comparison needs to be atomic and
uninterrupted as well or we will have inconsistent data.
So what are our core requirements for committing STM transactions?
- efficient
- atomic

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 300 03/12/2010

- lock-free
- wait-free
-
 Jäger mentions STM implementations that use regular locking techniques
for commit but this just makes deadlocks possible again and might have
performance problems. Something like this is done in conventional
transactions systems with optimistic locking.

When we say efficient atomic comparisons we mean some form of
“compare and swap” technology (CAS) with hardware support. In CAS
we can compare a word or double word of memory with an expected value
and atomically update the memory word with a new value if our expected
value is still the current value of the memory cell as it is shown in the code
below:

Use of CAS. Value represents memory location, expected
represents the originally read value and new the new value t o be
set in case expected==value from Kai Jäger, Finding Paral lelism
[Jäger]

Using this approach we get two additional benefits: it is lock-free and
wait-free. Wait-free simply means we will not be context-switched and put
on some wait-queue till a lock becomes available.
Lock-free is much more interesting. It means we do not exclude any other
thread from working (except for the atomic CAS instruction itself which
would prevent other threads from accessing the same memory cell in that
instant of time).

Lock breaking revisitited:
But more importantly, we do not hold a lock and continue modifying some
shared, critical data structure until we release the lock. This has a big
advantage with respect to system stability and consistency: We have
touched on this above in the discussion on “lock breaking”. Lock breaking
NEVER means killing a thread and releasing the associated lock by force.
This would simply lead to unclear and potentially inconsistent data
because nobody knows what the thread had been doing when it was killed

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 301 03/12/2010

and the lock released. Lock breaking always only means to reduce the
granularity of locks. It gets even worse: if we are not allowed to kill a
thread holding a lock, what about crashed threads? Using this model we
are not allowed to have a thread terminate AT ALL within a critical
section. How would we guarantee this? (see the talk by Joe Armstrong on
Erlang concurrency, [Armstrong].

Here we do not lock at all and therefore have no deadlocks or
inconsistencies to expect. And this is more important event than the gain
in concurrency.

What if our goal is not to finish our transaction (make our shadow copy
the valid one) but to wait for a certain condition to become true? Condition
variables are used for this purpose and if a thread finds a condition to be
false it needs to be blocked and go on a wait queue if it cannot expect the
condition to become available within a very short period of time (busy
waiting). Just using the STM mechanism for waiting on conditioin
variables would simply mean we are always busy waiting for the variable
to become available. The automatic roll-back mechanism of transactions
would force us back to start every time. Is there a way the STM
mechanism can figure out that the thread should be blocked instead? And
how should STM know when to wake it up again? Again the answer is in
watching the read-set of the thread waiting for a condition variable to get a
certain value: Once the check was done and the value was wrong for the
thread it makes no sense to let the thread run until a write set of another set
shows a change in the read set of the blocked value. The pseudo code
below shows a thread blocking on a condition variable and STM used to
control access.

A thread waiting for a condition variable, implemented lock-free
and with automatic change detection from Kai Jäger, Find ing
Parallelism [Jäger]

How can the system detect changes in the read set? From looking at the
code above we see that changes need to be tracked even through function
calls (GetBalance()). This looks harder than it really is: A Java VM e.g.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 302 03/12/2010

can use the load and store instructions in combination with a flag for
atomic sections to define and track read/write sets quickly (perhaps even
replacing the regular load/store interpretation with one for atomic sections
to avoid tracking the flag).

The use of STM and lock-free synchronization primitives is not
undisputed.
Use wait- and lock-free structures only if you absolutely must. Over our
careers, we have each implemented wait- and lock-free data structures in
production code, but we did this only in contexts in which locks could not
be acquired for reasons of correctness. Examples include the
implementation of the locking system itself, the subsystems that span
interrupt levels, and dynamic instrumentation facilities. These constrained
contexts are the exception, not the rule; in normal contexts, wait- and
lock-free data structures are to be avoided as their failure modes are
brutal (livelock is much nastier to debug than deadlock), their effect on
complexity and the maintenance burden is significant, and their benefit in
terms of performance is usually nil.[Cantrill] pg. 24ff.

I would like to add the scalability problems with any kind of optimistic
synchronization method: The more objects or resources are involved
within one atomic operation and the longer the operation will take the
higher the likelihood of a conflict and a forced rollback. In this case the
effects on throughput and performance will clearly be negative. The fact
that STM is up to four times slower than traditional locking on the other
hand may not really be a problem for most applications if they gain in
consistency and ease-of-programming by using STM.

Generational Techniques
We have seen the use of locks to prevent clients from seeing inconsistent
data. The other solution for the shared state concurrency problem was to
compare the read-set of an operation against other write sets and detect
changes. This prevents inconsistencies at the moment of an attempted
synchronization (i.e. when a client tries to make her read-set the valid
one).
To get this to work an idea of history of processes is already required: We
need to remember what the client had seen (read) originally to be able to
compare it to the current situation. We can extend this notion of history
and discover that versioning is an alternative to shared state concurrency:
we get rid of the shared state by never updating any value. Instead we
always create a new version after a change. Now we only need to keep
track of who has been working with which version. This seems to be the
idea behind Multi-version concurrency control (MVCC). The following
uses the explanation of MVCC by Roman Rokytskyy in [Rokytskyy].

The goal of MVCC is to allow most transactions to go through without
locking, assuming that real conflicts will be rare – in other words it is an
optimistic concept as well. Every transactions gets assigned a unique,
increasing ID when it starts. On every write to a record that ID is written
into the latest version of this record which becomes the current one. The
previous version is stored as a diff to the current one (as is done in source

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 303 03/12/2010

code control systems as well). Doing so allows the system to reconstruct
older values if necessary (even though the hope is that this won’t be
necessary in most cases).
On a read to a record the IDs of the transaction and the currently saved ID
are compared and the system checks whether the ID stored with the record
belongs to a transaction that was completed before the reading transaction
started. In this case there is no conflict at all and the current value is the
valid one.
If the transaction ID stored with the value is younger than the reading
transaction there are several choices: If the stored transaction ID is still
running we cannot assume that the stored value is valid: the transaction
might abort and we get a dirty read failure if we use the value nevertheless.
If the writing transaction committed during the lifetime of our transaction
it depends on the serialization level we want to achieve: In strict mode we
cannot use the current value and need to reconstruct the value at the time
our transaction was started. This guarantees that whatever our transaction
sees comes from one consistent moment in time. But it does not mean the
value read is really the most current one if the writing transaction
committed in the mean time.

We might be able to accept a lower level of isolation though by accepting
something like “read committed”: rows added later to a table e.g. might
not affect our business logic. Re-reading a value might give a different
albeit committed result.

The following diagram shows exactly this problem using the example of
oversold airline seats:

From [Rokytskyy]

For an even better explanation on MVCC see [Harrison].

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 304 03/12/2010

Finally a short note on the consequences to applications written against
systems with different locking rules: As large-scale sites use major
refactorings and changes in technology quite frequently this might be
helpful. Rokytskyy cites an IBM/Oracle dispute on the possibility of
deadlocks when porting applications written for Oracle to DB2:
“As a result of different concurrency controls in Oracle and DB2 UDB, an
application ported directly from Oracle to DB2 UDB may experience
deadlocks that it did not have previously. As DB2 UDB acquires a share
lock for readers, updaters may be blocked where that was not the case
using Oracle. A deadlock occurs when two or more applications are
waiting for each other but neither can proceed because each has locks that
are required by others. The only way to resolve a deadlock is to roll back
one of the applications.”[Rokytskyy]

If have chosen this quote because it nicely contradicts the claim in [Cantrill] that
lock-based systems like OSs and DBs can be made composable. Here at least
source code changes are actually necessary to make it work.

There are also more traditional uses of generations or versions, e.g. as
generation counters during re-acquisition of locks.
“When reacquiring locks, consider using generation counts to detect state
change. When lock ordering becomes complicated, at times one will need
to drop one lock, acquire another, and then reacquire the first. This can be
tricky, as state protected by the first lock may have changed during the
time that the lock was dropped—and reverifying this state may be
exhausting, inefficient, or even impossible. In these cases, consider
associating a generation count with the data structure; when a change is
made to the data structure, a generation count is bumped. The logic that
drops and reacquires the lock must cache the generation before dropping
the lock, and then check the generation upon reacquisition: if the counts
are the same, the data structure is as it was when the lock was dropped
and the logic may proceed; if the count is different, the state has changed
and the logic may react accordingly (for example, by reattempting the
larger operation)”.[Cantrill] et.al.

Task vs. Data Parallelism
<<about decomposition techniques and the real parallel distributed
monsters, infiniband and 10Gb influence on architecture?>>
Introduction to parallelism
Introduce the problem

Traditionally, Computer system consists of Processor, Memory system,
and the other subsystem. The processor takes the instructions sequential
one after one. Also the traditionally software has been written for serial
computation.
Of course, we still get fast computer, and from time to time the processor
frequency and the transistors count into the microprocessor get doubled.
But suddenly the scientists discovered that we are near to reach processor
frequency limitation. Then they try to discover new methods to improve the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 305 03/12/2010

processor performance, such as: put many low frequency and power
consuming cores together, specialized cores, 3D transistor, etc.
Now Multi-Core processors become the fashion of our industry. Now you
can found in the market Dual-Core, Quad-Core, Octal-Core, and more
will comes. Actually the scientist discover that adding more cores into the
processor will provide more performance without suffering tries increases
the processor frequency.
By nurture the Multi-Core processors have the ability to process the tasks
in parallel and provide more performance. But there are two problems:

 * Most of current software did not designed to support parallelism i.e.
to scale with the count of the processors.
 * The Parallelism is not east for most developers.

Introduce the parallelism

parallelism is form of computation in which many calculations are carried
out simultaneously, operating on the principle that large problems can
often be divided into smaller ones, which are then solved concurrently (”in
parallel”).
Simply, the Parallel is all about decomposing one task to enable
concurrent execution.
Parallelism vs. Multi-Threading, you can have multithreading on a single
core machine, but you can only have parallelism on a multi processor
machine. Create threads will not change your application architecture and
make it a parallel enabled application. The good mainstream developers
are comfortable with multi-threading and they use it in three scenarios:
1- Background work for better UI response.
2- Asynchronization I/O operation.
3- Event-Based asynchronization pattern.

Parallelism vs. Concurrent, you can refer to multiple running threads by
concurrency but parallelism no. concurrent often used in servers that
operate multiple threads to processing the requests. But parallelism like I
said it’s about decomposing one task to enable concurrent execution.

Parallelism vs. Distributed, Distributed is form of parallel computing but
in distributed computing a program is split up into parts that run
simultaneously on multiple computers communicating over a network, by
nurture the distributed programs must deal with heterogeneous
environments, network links of varying latencies, and unpredictable
failures in the network and the computers.
Parallelism in depth:
Parallelism Types:

There are two primary types of the parallelism:

 * Task Parallelism
 * Data Parallelism (A.K.A. Loop-Level parallelism)

Task Parallelism:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 306 03/12/2010

A group of tasks that can be executed simultaneously by multiple
processors. Task parallelism is achieved when each processor executes
different threads on the same or different data. The threads may execute
the same or different code. For example: Imagine that you have four tasks
you don’t care which one will finish first. These tasks could be: Open an
image file and process it and then save it.
Data Parallelism:

Data Parallelism usually manipulates a shared data that can be accessed
by multi-threads in safety way. Data parallelism also knows as loop-level
parallelism and it’s seems like SIMD, MIMD. For example: Imagine that
you have a huge array of data (such as: bitmap Image, text file) and you
want process this array/huge data in parallel.

There are two kind of data parallel, fist: Explicitly Data Parallel, and
Implicitly Data Parallel. In explicitly data parallel you just write a loop
that executed in parallel as I mentioned. But In implicitly data parallel you
just call some method that manipulates the data and the infrastructure is
the responsible to parallelize this work. .NET platform provide LINQ
(Language Integrated Query) that allow you to use the extension methods,
and lambda expressions to manipulate the data like the dynamic
languages. See the next figure to know the implicitly data manipulation
and the parallelism in the implicitly data manipulation (implicitly data
parallelism):

Task Parallelism vs. Data Parallelism

Bingo, if you really understand the previous sections, so you may ask who
is better task parallelism or data parallelism? But unfortunately there is
no standard answer for this question, usually the answer depend on the
situation.

For example: if you want process many large files (i.e. folder content
many large files). This question is: Do I should process the file contents in
parallel (Data Parallel) or the independent files in parallels (Task
Parallel)? Even this question don’t have standard answer, to get the right
answer for this question you should ask yourself the following questions:

 * Is the files content large data, or just a few megabytes.

 * Is the file data processing will be forward only (such as: Fixing,
Counting), or the data processing depends on themselves (such as:
Sorting).

 * If you will choice data parallel (process the file contents in parallel),
so how do you will manage the reading and the processing operation, and
the required synchronization.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 307 03/12/2010

Before I answer this question, I would like to say: The parallel
programming is hard, because in parallel world the code behavior tend to
be nondeterministic.

In our situation, I think processing the file contents in parallel will be
better, because the HDD usually is slow and don’t provide better support
to concurrent reading or writing, so make many concurrent reading
request to such slow device will be help. But if we make the loaded data
processing in parallel this will be better, See the next table. Beside this we
can perform per-fetch in our data parallel algorithm to load the next
chunk of data while the loaded data process to keep the HDD busy and
this will improve the performance.

Parallelism in real-world

Before I start speak about the parallelism in mainstream, I should speak
about the mainly current parallelism applications.
Servers have long been the main commercially successful type of parallel
and concurrent system. Their main workload consists of mostly
independent requests that require little or no coordination and share little
data. As such, it is relatively easy to build a parallel Web server
application, since the programming model treats each request as a
sequential computation. Building a Web site that scales well is an art;
scale comes from replicating machines, which breaks the sequential
abstraction, exposes parallelism, and requires coordinating and
communicating across machine boundaries.
High-Performance Computing followed a different path that used parallel
hardware, and optimized parallel software because there was no
alternative with comparable performance, not because scientific and
technical computations are especially well suited to parallel solution.
Parallel hardware is a tool for solving problems.

Today the popular programming models-MPI and OpenMP—are
performance focused, error-prone abstractions that most of developers
find it difficult to use. In game programming, the developers emerged as
another realm of high-performance computing, with the same attributes of
talented, highly motivated programmers spending great effort and time to
squeeze the last bit of performance from complex hardware.
So what about the mainstream applications and developers?
In spite of the fact that said the parallel computing is hard, today there are
big trend to make the parallel computing more deterministic, and easy.
Today you can found many easy parallelism frameworks, and debugging
tools, such as:

 * Intel Parallel Studio

 * Microsoft CCR and DSS

 * MS PPL - Microsoft Parallel Pattern Library (will released in 2009
Q4)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 308 03/12/2010

 * MS .NET 4 - Microsoft .NET Framework 4 (will released in 2009 Q4)

 * Java 7 (will release in 2009)

 * PRL - Parallel Runtime Library (Beta released in June 2009)

In next table you can see a comparison between the above frameworks.

The previous offered features could changes in the produce final release.
Your choice for the parallel framework should depend on your platform,
and your application. For example Parallel Runtime Library designed to
work will with high performance computing in first place. But Microsoft
.NET Framework 4.0 parallelism API designed to support extensibility,
and wide applications.
http://www.hfadeel.com/Blog/?p=136

If you want to be serious about parallelism, perhaps you should also talk
about the kind of parallelism used by the largest systems in the world -
Blue Gene, Roadrunner, Jaguar, et al. - and not just the parallelism within
a single relatively weak system. These big machines are distributed
systems in the sense that they do not have shared memory, but they are
not generally characterized by heterogeneity, long/unpredictable
latency etc. as you claim distributed systems are by nature. The most
common programming model/library is MPI, though shmem and UPC also
have their fans and new alternatives appear all the time.

These “esoteric” systems and approaches are becoming more common, as
just about anyone can afford a rack full of PCs and an Infiniband or
10GbE switch. They also bear some significant resemblance to the large
systems put together by folks like Google, Amazon, or (increasingly) MS.

By Jeff Darcy on Jun 1, 2009

Java Concurrency
http://www.infoq.com/presentations/brian-goetz-concurrent-
parallel

Active Objects

The following is based on a talk by Andy Weiß on the active object pattern
[Weiß]. This pattern is e.g. used by Symbian servers to provide fast
services without the need for explicit locking and interprocess or intertask
synchronization methods. While Symbian servers typically use only one
real thread other runtimes can use multi-core architectures efficiently as
well.
The secret of active objects is the guarantee that at any time there will be
only one thread active inside an active object and that calling a method of
an active object is done asynchronously. If you consider calling methods
as sending messages (like Smalltalk does) there is very little difference
between active objects and the actor concept of Erlang which is explained
in the next chapter. The biggest difference exists in the use of “future”

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 309 03/12/2010

objects in active objects which allows the calling party to synchronously
wait for a return value if it wants to do so. In purely asynchronous
processing there won’t be a return value of the call at all: answers will also
be delivered via an asynchronous callback to the caller. To programmers
active objects present the typical “method call” paradigm of OO languages
with a pseudo synchronous return option..

The diagram below shows a Java like implementation of an active object
system. Different languages which e.g. control or manipulate method
dispatch are of course able to implement it in a much more elegant way
(they don’t need the proxy classes etc.).

Here a client wants to call method m1() of a certain object. Instead of
calling m1() directly the method call is intercepted by a proxy of the object
and delegated to the internal – application level - scheduler. The method
call is put into a so called activation list which acts much like a regular
run-queue only with methods or functions instead of threads. After
registering its wish to call m1() and the registration in the activation list
the client who tried to call m1() returns immediately and continues
processing. The method call to m1() is therefore an asynchronous call.
As we have seen in the I/O section all asynchronous calls need some way
to get back to the caller later. This can be via some callback function or as
in this case via the use of a correlation ID or object. Here “futures” play
the role of correlation objects (in the language “E” they are called
“promises”. A future or promise is a handle to the results of an
asynchronous call. The handle can be used in several ways. One way is to
use it as a parameter in other calls (remember: the processing which is
represented by the handle is for from being done yet). The handles can be
stores in collections, handed over etc. But if a caller tries to get to the
result of the asynchronous processing two things can happen: The result is
not there yet and the caller will be suspended (here: returns to the
scheduler so that a different function or method can be processed). Or the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 310 03/12/2010

result is already there and will be returned to the caller immediately which
continues processing.
The use of futures or promises is an extremely elegant way to avoid
dealing with threads and asynchronous processing explicitely. Complexity
of concurrent processing is reduced significantly. Even remote objects can
be treated as futures as is done e.g. in “E” which allows some really
surprising optimizations by avoiding unnecessary roundtrips.

Remote Pipes with Promises

B represents a promise to a future result and is already forwarded to
X – this saves a roundtrip from VatL to get the result from Y and
formward it to X

To make this work in the remote case a promise does not contain a value
once it is calculated. It functions as a function proxy only. <<check>>

What is happening behind the scene in an active object system? At one
time the scheduler will pick the registrated call to m1() in the activation
list, wrap it into a method call object and execute the call. The call itself
will end in the so called servant which contains the real m1() call. Here the
call will be executed, the the result filled into the future object. If the client
now tries to get the value from its future it will succeed in doing so. After
the asynchronous execution the call will return to the scheduler and the
next method will be selected for execution. The scheduler will make sure
that there are never two concurrent calls to methods within one object
executed.

The diagram below shows the sequence of calls for one asynchronous
execution of a method m1():

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 311 03/12/2010

The active object pattern allows many specializations, e.g. ways do
determine when it makes sense to execute an asynchronous call (it might
depend on some condition) and whether only one thread is used or several.
The use of only one thread is highly efficient because it never blocks as
long as executable method calls are registered and the context switching is
really only exchanging user level functions. If more threads are used, e.g.
on a multi-core platform, we have to make sure that we avoid thread
numbers higher than the number of cores. And also fewer registered
methods than available threads which would then only be put to sleep by
the kernel (context switches).
How is pre-emption handled in the active object pattern? From a user level
all method calls are non-preemptive: At the end of a method or function
call is the return to the user level scheduler. Everything else is non-
blocking and asynchronous. From the kernel point of view the thread
executing a method (or the threads) is pre-empted. But due to the fact that
the user level scheduler will not allow another thread to enter an object
while one method of this object is executed there are no shared data and
therefore no consistency problems and no locks needed.
An active object implementation which uses only one thread – as in the
Symbian servers e.g. – will have some impact on application architecture:
method calls need to be rather short to avoid an unresponsive system. The
clients can use yield() methods to return back to the scheduler and allow
other methods to be executed.

<<how would we implement something like transactions in a multi-core
environment?>>

The Erlang Way
Lately Erlang has become a very popular language, albeit in special areas
as it seems. Distributed key-value stores (Scalaris), messaging systems
(ejabberd, RabbitMQ), databases (CloudDB) and even Raytracers have
been built <<Ref. to Bader/Stiegler>>. In his talk on Functions +

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 312 03/12/2010

Messages + Concurrency = Erlang Joe Armstong mentions e.g scalability
and error recovery as well as reliability as core properties of the language.
Interstingly he insists that availability, stability, concurrency and recovery
are all intertwined and mutually dependent things.
What makes Erlang well suited for large scale, extremely reliable systems
with up to 9 nines of availability? And why e.g. is thread switching in
Erlang so much faster? (Stack small due to continuations and short tasks?)
Certainly a core feature of Erlang is its actor model of processing and
concurrency.
Miller lists the key principles of the actor model in Erlang: [Miller]
- no shared state
- lightweight processes , not tied directly to kernel threads, not OS
processes but fast to create, cheap and in large numbers available.
Scheduled in user space controls pause and resume.
- Asynchronous message passing (with delayed receive?)
- Mailboxes to buffer incoming messages
- Message retrieval with pattern matching
And the list from Ulf Wiger’s blog looks quite similar. His key properties
for Erlang style concurrency are:
• Fast process creation/destruction
• Ability to support >> 10 000 concurrent processes with largely
unchanged characteristics.
• Fast asynchronous message passing.
• Copying message-passing semantics (share-nothing concurrency).
• Process monitoring.
• Selective message reception.

If there is any single defining characteristic of Erlang-style Concurrency,
it is that you should be able to model your application after the natural
concurrency patterns present in your problem.(Wiger Blog entry, 6 Feb.
2008)

Wiger claims that Erlang can theoretically support 120 million processes
and that he saw consistent performance up to 20 Mio. Processes with
creation times around 4 micro seconds. Those numbers make me think
again about the three concurrency models used by Sweeney for the unreal
engine. He wants to use Software Transactional Memory to update 10000+
objects containing the game logic. Could he use Erlang processes instead?

Unlike Wiger to me Erlang is ideally suited for concurrency because
functions are stateless and side-effect free (also called “referentially
transparent”) and variables can be assigned a value only once a read does
not need protection from concurrent access. Messages are copies of data
and immutable as well.
Wiger claims that the asynchronous message passing style of Erlang does
not fit well to massive data parallelism but many current application
architectures seem to be covered quite well by it.
Lets take a look at some code:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 313 03/12/2010

temperatureConverter() ->
receive {From, {toF, C}} ->
From ! {self(), 32+C*9/5}, temperatureConverter(); . ..etc

start() -> spawn(fun() -> temperatureConverter() en d).

convert(Pid, Request) ->
Pid ! {self(), Request},
receive {Pid, Response} -> Response end.

The start() function spawns the converter process and ret urns its
process identifier. The convert function uses the process identifier
to call the converter process, sending the current identi fier as the
source, then blocks in a receive waiting for a response o n the
current's process mailbox, which is subsequently returne d.

Actor/Process use in Erlang,
From [Miller]

And how does scheduling work in Erlang? According to Wiger in multi-
core Erlang scheduling of threads is preemptive from the user perspective.
The following slides from Wiger show implementations of multi-core
support and a very interesting benchmark.
The first slide shows several scheduler instances working on one run
queue. How can this be? What about share-nothing? Here schedulers
compete for access to the queue and locking/ mutex mechanisms (no
matter how “soft”) will have to used to prevent corruption. The slides
shows nicely that – while for applications the shared nothing approach is
certainly kept up – the Erlang runtime system internally needs to deal with
shared state in various forms.

From: U. Wiger

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 314 03/12/2010

And of course the typical shared state problems with concurrency also
show up: bad performance e.g. due to locking or exclusive access. The
next slide shows a better approach where each scheduler controls a subset
of tasks. Access to the individual run queues is now no longer shared and
needs no synchronization. On top of that the lessons from queuing theory
are applied as well: multiple wait-queues are problematic because if one is
empty a busy one cannot offload easily. Here task migration is used to
avoid the problem.

From: U. Wiger

Internal shared state problems do not only show up with run-queue
handling. Memory allocation is another typical problem zone. While on
the application level all Erlang processes have their own, separate heap,
this is not the case within the runtime memory allocation management as
the next slide explains:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 315 03/12/2010

And this is not an Erlang problem only: If you are using Java with
concurrency, make sure you measure the allocation times necessary for
large pieces of heap memory. You might be in for a surprise!

The following benchmark where Erlang performs badly shows a very
interesting aspect of dealing with threads: We have already seen that too
many threads in a runnable state lead to much context switching and long
response time. Here we see the opposite effect: too few threads (in other
words: things to do within the Erlang application) lead to threads/cores
being permanently put to sleep and woken up again – unnecessary context
switches causing bad performance.
There are other benchmarks that are less flattering to Erlang. One of the
worst known to-date is the ”chameneos_redux” in the Computer
Language
Shootout. It is basically centered around rendezvous, and a very poor
match for message-passing concurrency (esp of the granularity that
Erlang supports). One may note that the Scala entry, using much the
same approach as Erlang, timed out...
We note that the best entries use some form of shared-memory mutex
(spinlocks, MVars, etc.) The difference in performance is staggering.
To add insult to injury, the OTP team has observed that this benchmark
runs slower the more cores you throw at it.
On the next slide, we will try to see what is going on. [Wiger] Multi-Core
Erlang pg. 22ff.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 316 03/12/2010

According to Wiger the differences when other communication
mechanism like shared memory spinlocks were used are “staggering”. But
this is only a sign that one concurrency paradigm does not fit all bills.
With tightly coupled, number chrunching applications the message passing
and process creation overhead in Erlang might be a problem. But again,
the typical social network site does not have such requirements.

In the chapter on autonomous, selfmanaged systems we will see how
agents in Erlang can create hierarchical feedback loops. For a more
systematic look at concurrency concepts like declarative concurrency,
message passing and shared state I recommend [vanRoy].

<<also: Actors on the JVM, Kilim, Scalaris>>

Multicore and large-scale sites
What does the trend towards multicore really mean for us developers of
large scale sites? At first glance it looks like more cores simply means
more requests per second are possible without changes to our software.
This is what Joe Armstrong meant when he said that multi-core is good for
legacy software: more things can run in parallel if they are independent.
That’s a big IFF, but still… But is there nothing we need to worry about?
More cores means slower cores! And this means that our requests
suddenly may run longer than before. If we cannot afford to do so we need
to either make our requests shorter (doing less work) or start splitting them
up into parallel parts. And this means several threads working on one
requests. While this is certainly possible we need to make sure that these
threads really are available at the same time. Otherwise our request
processing might take much longer. And we have to do so with a
minimum of context switches per thread too! This is not easy to do!
<<architecture??>> It is a sync/async pattern with several async threads
<<slides half-sync/half async pattern>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 317 03/12/2010

<<sharing is good, but only on the social level with copies!!>>

Scale agnostic algorithms and data structures
Principles:
Decentralize, denormalize, don’t share, be eventually consistent, parallelize, be
asynchronous, specialize, cache
- Long-tail optimization (watch parallel processing for extreme delays)
- beyond transactions, large scale media processing
- combine requests into one – split large tasks into many smaller ones. Both
can reduce execution time, but when and how?
- partitioned iteration (map/reduce)
- hadoop, hbase, big-table paper, google application engine, gfs,
- mostly consistent/correct approaches: win be losing some things?
Performance through imperfection? Code for the “good/fast” case and live with
the failures? (relaxing of constraints etc.)
- eventually consistent (epidemic) protocols
- algorithms dealing with heterogeneous hardware environments
(faster/slower server combinations e.g.) as expressed by Werner Vogels in “a
word on scalability”
- consistent hashing.
- Central meta-data/decentral data combinations like media grids or Napster
(but watch for downsides like loss of indirection and virtualization)
- MVCC [Rokytskyy]
- Sharding logic (vertical sharding avoids downtime by just adding new
columns and tables)
- Snapshots and Syncronization points

Graph data structures and processing:
http://comlounge.tv/databases/cltv45
http://highscalability.com/blog/2010/3/30/running-large-graph-algorithms-
evaluation-of-current-state-o.html

[DeCandia et.al.] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami
Sivasubramanian, Peter Vosshall and Werner Vogels, “Dynamo: Amazon's
Highly Available Key-Value Store”, in the Proceedings of the 21st ACM
Symposium on Operating Systems Principles, Stevenson, WA, October 2007.
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

[Vogels] Werner Vogels, Eventually Consistent – Revisited,
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

[Vogels] Werner Vogels, Eventually Consistent, Building reliable distributed
systems at a worldwide scale demands trade-offs—between consistency and
availability. ACM queue,
http://portal.acm.org/ft_gateway.cfm?id=1466448&type=pdf

-

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 318 03/12/2010

Scalability is a core requirement for todays media processing systems.What if
your system hosts millions of media content of different kind and you would like
to sift through those data asking specific questions?

 A good architecture splits its code into two parts: a scale and distribution agnostic
level and a scale and distribution aware lower level. This looks much like the way
P2P networks use distributed hash tables. [Holl] pg 133,

For such an architecture the selection of the proper abstractions for the higher
levels is of paramount importance. Holland describes systems that are so large
that the set of records of a certain type and sets of related records cannot be kept
on one system under the control of one resource manager. But instead of asking
for distributed transactions to assure consistency according to Holland truly large
scale applications use the abstraction of an entity on the upper, scale agnostic
layer. And these entities are explicitly defined as not spanning machines and
unable to support distributed transactions. So some of the scalability problems are
reified and represented on the higher levels as abstractions and others can
successfully be hidden in lower levels. The split between explicit representation
and transparent function is one of the most critical decisions in distributed
systems and it gets more critical with the size of a distributed application (where
size means either users, content, timing requirements or all of this).

Partitioned Iteration: Map/Reduce
One of those splits has gotten very famous: the map/reduce algorithm used
by google to sift through its huge docuemten base represents a clever split
of a processing algorithm into two different part. JoelOnSoftware
describes the steps toward this clever separation of code in an excellent
article on functional programming ideas. [Spolsky]. The core idea really
comes from functional programming and its concept of higher order
functions. If we look at a typical iteration over some data we might notice
something peculiar:

For (i=0;i<AllDocuments;i++)
 Document=nextDocument();
 Result=Process(Document)
 Write(Result)

This code mixes the iteration and the processing steps and also forces the
whole processing into a sequential mode: one document after the other is
processed. Using the functional concept of higher order functions we can
split the iteration from the processing:

Map(Documents, ProcessingFunction)
 For (i=0;i<AllDocuments;i++)
 New Thread(Document=nextDocument();
ProcessingFunction)

This new “map” function can accept any processing function we give it.
The processing function can be created by application programmers while
the map function can do very fancy distribution and parallelization of the
documents and the processing function, e.g. send partitions of the

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 319 03/12/2010

document base together with the processing function to different servers
and handle all the distributed system logic and failure handling transparent
to the application programmerl

Google engineers have invented the map function and they combined it
with a second step, the so called “reduce” where the results can be
aggregated according to some user defined reduce function that is also a
higher order function like the process function handed over to map.

This architecture leads not only to usability improvements but also allows
google to sift through its complete database hundreds of times a day and
with many different hypothesis embedded in processing functions.

The diagram below shows some of the architectural elements used in this
system. Of course one constraint must be fulfilled: It must be possible to
apply the processing function to individual documents without side-
effects. In other words the processing of one document does not influence
the processing of other documents.

MapReduce: Simplifieded Data Processing on Large Clusters
Jeffrey Dean and Sanjay Ghemawat of Google Inc.

A short example can show how much optimization the split into a
distribution agnostic and a distribution aware part of the application
allows: When millions of documents are sent to servers for processing
strange effects can show up. When thousands of servers are used, some of
those servers will fail. But they won’t fail immediately in most cases.
Instead, they start getting slower, e.g. because the disk develops more and
more bad blocks which must be re-allocated etc. This leads to a very long
tail for a map/reduce run: Almost all servers are ready except for a few
which are still calculating. A clever map algorithm will account for those
servers, monitor the processing and add duplicate processing requests
when servers show malfunction. This reduces overall processing time by

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 320 03/12/2010

as much as 30% - but you sure don’t want your application programmers
having to deal with reliability and distribution problems.
(Hadoop)
We basically see the same effect as with the Chubby/Paxos
implementation at Google: there is a huge gap between the theoretical
algorithm and the realities of its distributed and reliable implementation.

Incremental algorithms
Some algorithms require all elements of a computation to be re-
processed in case a new element is added. A good example is the
calculation of a mean. If this is done be again adding all the known
elements and dividing them by their number the algorithm will not
really scale with larger numbers. An alternative strategy is to
calculate the new result from the last result and the newly added
element. It is easily seen that this will require far fewer memory
accesses and scale much better.
The pattern can be generalized to all kinds of incremental
calculations.

Fragment algorithms

We have just seen that sometimes the addition of a new element
requires the re-processing of many old elements. But we need to
take a close look: is it really the case that the WHOLE algorithm
applied to each element needs to be repeated? Or is it possible that
some intermediate result of the algorithm still holds? In that case
we have a fragment of the algorithms result that we can cache and
re-use in the calculation of the new result. This might increase
throughput by orders of magnitude as I have just seen in an image
comparison web application.

Long-tail optimization
When a large number of processing units is used the chance for some of
them developing problems during the execution of e.g. a map-reduce job is
rather high. An effective work distribution algorithm checks for slow
machines and reschedules the respective tasks.

consistent hashing
(memcached etc.)
[Kleinpeter] Tom Kleinpeter, Understanding Consistent Hashing,
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-
consistent-hashing/

[White] Tom White, Consistent Hashing,
http://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.ht
ml

[Karger] David Karger, Consistent Hashing and Random Trees:
Distributed Caching Protocols for Relieving Hot Spots on the World Wide
Web http://citeseer.ist.psu.edu/karger97consistent.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 321 03/12/2010

[Karger et.al.] David Karger, Alex Sherman, Web Caching with Consistent
Hashing

(i) Both URLs and caches are mapped to points on a circl e using
a standard hash function. A URL is assigned to the close st
cache going clockwise around the circle. Items 1, 2, and 3 are
mapped to cache A. Items 4, and 5 are mapped to cache B. (ii)
When a new cache is added the only URLs that are reassigned
are those closest to the new cache going clockwise around th e
circle. In this case when we add the new cache only items 1 a nd
2 move to the new cache C. Items do not move between
previously existing caches. [Karger et.al.]

The term “consistent hashing” stands for a family of algorithms which
intend to stop the “thundering herds of data” as Tom Kleinpeter calls the
phenomenon of wild data re-arrangements caused by changes in the
configuration of storage locations. A consistent hash function is a function
that changes minimally as the range of the function changes [Alldrin].
Functions that associate a certain data item with a certain storage location
in an automatic way are used in many areas. Distributed Hash Tables
[DHT] rely on this technique as well as horizontal data partitioning
schemes where e.g. certain user types are distributed across replica
machines. No matter whether a real hash function is used to map data to
locations or whether certain data qualities are used to map to a range of
machines: the number of machines or locations is a parameter of the
mapping function and if this number changes the mappings change as
well.

It is a classical second order scalability problem: first order scalability
partitions data across storage locations and makes both access and storage
scalable. Second order scalability – here represented by consistent hashing
- needs to make the partitioning scalable in the face of machine changes
and additions. Some important criteria for what we want to achieve:
“First, there is a “smoothness” property. When a machine is added
to or removed from the set of caches, the expected fraction of objects
that must be moved to a new cache is the minimum needed
to maintain a balanced load across the caches. Second, over all the
client views, the total number of different caches to which a object
is assigned is small. We call this property “spread”. Similarly, over
all the client views, the number of distinct objects assigned to a
particular cache is small. We call this property “load”. [Karger]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 322 03/12/2010

To give a simple example from [karger] et.al: A simple hash function like
 X -> ax + b (mod P)
With P being the number of machines available would have a “thundering
herd” characteristics if e.g. used to partition data across a distributed cache
and the number of machines in this cache changes. The change could be
caused by crashes or increasing load. Suddenly almost every cached item
is on the wrong machine and therefore unreachable. The caches would
have to be flushed anyway because invalidation events would also no
longer reach the right machines.

The following diagram shows one way to achieve consistent hashing in a
DHT ring. The example is taken from [Kleinpeter].

Here the whole hash range forms a ring with the first and the last hash
value being next to each other. Two resources have been mapped into the
ring via their hash values. And three nodes have also been mapped into the
ring at random positions using hashes of their IP addresses. Node #2 is
bigger and has two IP addresses (or locations on the ring) therefore. The
following rule applies: A node is responsible for all resources which are
mapped between his own position and the position of its predecessor
(when walking the ring clockwise).

There are some obvious advantages to this scheme: you can deal with
heterogeneous hardware easily by handing out more IP numbers. You can
slowly bootstrap new servers by adding IPs in a piecemeal fashion and in
case of a server crash the load should be distributed rather equally to the
other machines. [Kleinpeter]

Let’s take a look at what happens when a server crashes. If #2 crashes the
resources A and B are re-assigned to new nodes. So far so good but in
practice a number of problems will have to be dealt with:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 323 03/12/2010

- How do we know that #2 is down? We don’t want to hang in
network stacks for a long time.
- What happens to the stored resources? The new nodes do not have
replicas. We can either design a read-through cache which makes the
newly responsible nodes turn around and fetch the data from some store
(difficult because the simple key/value interface does not transport
parameters needed to re-create the data e.g. from some backend service).
Or we let the cache-read request fail at the client and the client goes to the
storage to get the original value.
- And what happens if unfortunately Michael Jacksons newly found
very last video clip shows up and is mapped to node #1? Then we learn
that our load partitioning using random hashes cannot deal with a very
uneven distribution of requests for specific data. The “load” property
mentioned by [Karger] only assures that a small number of objects is
mapped to a node. It does not take the number of requsts into account.
- The random distribution of resources and nodes my lead to uneven
load distribution.
- There are no provisions yet for availability of data. This may not be
necessary for a cache but is certainly needed for other applications. Also:
more and more caches are of vital importance for large sites which are no
longer able to re-generate all content needed from scratch and in a
reasonable time.
- The last point has also consequences for the new nodes: They
cannot just copy the data from another node because there is none with the
same data.
- IP numbers are not the ideal type to use for nodes. Some form of
virtual tokens would be better.
- Membership information about nodes and tokens need to be kept
and maintained (e.g. via gossip protocols) by each node.

The amazon dynamo implementation as described in [DeCandia] also uses
consistent hashing in a similar way but shows some improvements with
respect to the deficiencies just mentioned:

“The fundamental issue with this strategy is that the schemes for
data partitioning and data placement are intertwined. For instance,
in some cases, it is preferred to add more nodes to the system in
order to handle an increase in request load. However, in this
scenario, it is not possible to add nodes without affecting data
partitioning. Ideally, it is desirable to use independent schemes for
partitioning and placement” [DeCandia]

The dynamo architecture finally ended up dividing the ring into equally
sized partitions which were assigned to virtual tokens and nodes and
replicating the data across several nodes. This brought several advantages
and disadvantages like
- having partitions in one place/node which made archiving and
snapshots easier
- needing a coordination process to decide on partition/node
associations
- gossiping of compact membership information between nodes

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 324 03/12/2010

- being able to move replicas to a new node incrementally
- avoiding costly data scans at local nodes in case of configuration
changes

The diagram below shows the chosen solution. For a detailed description
of the Dynamo store – especially its eventually consistent features see
[DeCandia].

From: DeCandia et.al, Dynamo, Amazons higly
available Key/Value Store

The necessary helper services like coordination, eventual consistency and
membership/failure detection are discussed below. Amazon puts a lot of
emphasis on SLAs which determine the runtime of services rather strictly,
e.g. at the 99.99 percentile. Consistent lookup and atomic merges are
further requirements on DHTs and we will take a closer look at the
Scalaris DHT which is implementing those requirements in the secion on
leading edge architectures below.

For a connection with replication see: Honicky, Miller, [HM], Replication
Under Scalable Hashing: A Family of Algorithms for Scalable
Decentralized Data Distribution, UCSC.

<<scalaris: consistent lookup, atomic merge>>

beyond transactions, large scale media processing
 when to give up the idea of (distributed) transactions and how to
cope with the fallout.

mostly consistent/correct approaches:

 win be losing some things? Performance through imperfection? Code for
the “good/fast” case and live with the failures? (relaxing of constraints
etc.)

Failure Detection
Ping based network approach

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 325 03/12/2010

Membership protocols
algorithms dealing with heterogeneous hardware
environments

(faster/slower server combinations e.g.) as expressed by Werner Vogels in
“a word on scalability”
Striping works best when disks have equal size and
performance. A non-uniform disk configuration
requires a trade-off between throughput and space
utilization: maximizing space utilization means placing
more data on larger disks, but this reduces total
throughput, because larger disks will then receive a
proportionally larger fraction of I/O requests, leaving
the smaller disks under-utilized. GPFS allows the
administrator to make this trade-off by specifying
whether to balance data placement for throughput or
space utilization. [Schmuck] pg. 4.

Shortlived Information
- group communication based service for social information (presence,
same page etc.)
(Schlossnagle)

Sharding Logic

Scheduling and Messaging
(Gearman), ejabberd,

Task and processing Granularity with same block siz e,
task time etc.

Collaborative Filtering and Classification

* * Taste Collaborative Filtering - Based on the Taste project which
was incorporated into Mahout, including examples and demo applications
 * Naive Bayes Implementations - Implementations of both traditional
Bayesian and Complementary Bayesian classification are included
 * Distributed Watchmaker Implementation - A distributed fitness
function implementation using the Watchmaker library, along with usage
examples
http://www.infoq.com/news/2009/04/mahout
Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Clustering Algorithms

 * Distributed Clustering Implementations - Several clustering
algorithms such as k-Means, Fuzzy k-Means, Dirchlet, Mean-Shift and
Canopy are provided, along with examples of how to use each
http://www.infoq.com/news/2009/04/mahout

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 326 03/12/2010

Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Number Crunching

 * Basic Matrix and Vector Tools - Sparse and dense implementations
of both matrices and vectors are provided

*Hier ist der Link zur Übersicht auf InfoQ:
http://www.infoq.com/news/2009/04/mahout
Und hier die eigentlich Projekt Homepage:
http://lucene.apache.org/mahout/

Consensus: Group Communication for Availability and
Consistency

- spread, virtual synchrony [Schlossnagle], Spread toolkit [Amir
et.al.]
- Fault-tolerant PAXOS implementation as an example of
synchronous (quorum) group communication. [Google]
- Bryan Turner, The Paxos Family of Consensus Protocols, [Turner].
Good explanation of the Paxos protocol.
- CAP theorem/eventually consistent paper by Werner Vogels
- Backhand, wackamole (Schlossnagle)

Most distributed systems have a need for some form of agreement or
consensus with respect to certain values or states. Locking is a typical
example, replication of critical values or commands another. Just to solve
basic questions like who is currently responsible for what a reliable
mechanism is needed. Reliable meaning that it should work even in the
presence of machine or network failures and despite the famous
impossibility theorems of FLP and CAP.

We are going to look at two different consensus algorithms with different
performance and reliability guarantees. The first is PAXOS, a well know
and frequently used distributed consensus algorithm from Lampert. The
other one is based on group membership and virtual synchrony. The
implementation section in between discusses some lesions learned by
Google engineers when they implemented Paxos for the Chubby lock
service.

Paxos: Quorum based totally ordered agreement
In the presence of failures consensus is reached when a majority
within a static group of nodes agrees on a certain value. This is
called a quorum.Some rules apply to guarantee consistent
decisions:
With N being the number of nodes, a client must at least write to
WQ nodes and read from RQ nodes with WQ + RQ > N. In our
example we have 5 machines, WQ = 3 and RQ = 3. In that case
every write or read will have a majority. Individual writes will have
a timestamp or counter associated which lets a client detect the
latest version of a value.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 327 03/12/2010

The following is based on [Turner]. The basic Paxos protocol
knows several roles in addition to the client. The node receiving a
client request is called proposer. It needs to become a leader to
process the request. Acceptors are basically the voters in the
protocol and learners store and retrieve values. In practice these
roles are rolled together at each node, sometimes even the client.
But for the purpose of demonstration we will keep them mostly
apart.

Let’s again assume we have five nodes who together perform the
Paxos algorithm. Such groups are a frequent pattern in distributed
systems to e.g. provide locking, reliable storage of few but
important values, coordination of tasks etc. (see also [Resin])

A client sends a request to one of the participating nodes. If the
node is up it will
a) propose himself as a leader for this request to the others
b) Collect acceptance messages from the others
c) once accepted as a leader send the request to every other node
d) wait for confirmation from acceptors and values from learners

<<basic paxos diag>>

[Message Flow : Basic Paxos (one instance, one successful round)]

Client Proposer A1 A2 A3 L1 L2

--------> Request
--------------------->Prepare(N)
----------------------->Prepare(N)
------------------------->Prepare(N)
<-------------------- Promise(N,{Va,Vb,Vc})
<---------------------- Promise(N,{Va,Vb,Vc})
<------------------------ Promise(N,{Va,Vb,Vc})

Client (now) Leader A1 A2 A3 L1 L2

---------------------> Accept!(N,Vn)
-----------------------> Accept!(N,Vn)
-------------------------> Accept!(N,Vn)
<-------------------- Accepted(N,Vn)
<---------------------- Accepted(N,Vn)
<------------------------ Accepted(N,Vn)

<--- Response
<--- Response

(modified after [Turner], A= Acceptor, L=Learner, N=I nstance, V=Value)

This process flow naturally splits into two phases: an initiator
phase where leadership is decided and a data processing phase
where values are read or written. The leadership principle ensures a
total order of values and the protocol makes progress as long as
there is a quorum of nodes available. Please note that the Promise
response from acceptors can contain a value from a previous
instance run by a different leader which crashed during the accept

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 328 03/12/2010

phase. In this case just one of the acceptors might have seen the
accept command with this value and it is now essential for the new
leader to take this value as the value for his first round so all other
acceptors learn the previously committed value.

“As long as quorum is available” is a critical point in the
architecture of Paxos. The minimum number of active nodes to
achieve a consensus is 2F + 1 assuming F concurrently failed
machines. With only 2F nodes we could experience a network
partion problem and we would not know which half of the nodes is
correct. Why is this important? Because with the number of
assumed concurrent machine failures the write quorum (WQ) and
the read qorum (RQ) grows as well.

This means we have to to more writes and reads which slows
request handling down. But it gets worse. The Paxos protocol is
based on synchronous achnowledgements – nodes always have to
reply for the protocol to make progress. And there are at least two
rounds of this req/ack pattern needed per request (we will talk
about optimizations shortly). [Birman] concludes therefore that
Paxos is a very reliable albeit slow protocol to achieve consensus.
He talks about tens of requests per second, Google reports
fivehundred but we need to realize that a tightly coupled high-
speed distributed processing would probably use a different
algorithm for replication. This is not a problem for many cases
where Paxos is used today: locking of system resources, some
critical replication of small values etc. are no problem at all.

There are many optimizations possible in Paxos. The protocol
obviously benefits from a stable leader who could process more
requests within one instance without having to go through the
leadership agreement first. A sub-instance number added to the
Accept command will take care of that extension which is called
Multi-Paxos.
Accept!(N, I, Vn)
Accepted(N, I,Vn)
Accept!(N, I+1, Vn)
Accepted(N, I+1,Vn)
….
Another optimization (Generalized Paxos) concerns the values and
their mutual dependencies. If a leader can detect that certain
concurrent requests from clients are commutative, it can bundle
those requests within a single round and further reduce the number
of rounds needed. Don’t forget: in a quorum system even reads
need to go to several nodes before a value returned can be
considered consistent!

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 329 03/12/2010

Proposed Series of operations by two clients received at a node
(global order). A state machiene protocol maintains two
values A and B:

1:Read(A)
2:Read(B)
3:Write(B)
4:Read(B)
5:Read(A)
6:Write(A)
7:Read(A)

1, 2 and 5 are commutative operations. So are 3 and 6 and
finally 4 and 7. The node batches the operations into three
rounds:

1. Read(A), Read(B), Read(A)
2. Write(B), Write(A)
3. Read(B), Read(A)

(after [Turner])

The final optimizations turn the leader-based Paxos protocol into
something that resembles more membership protocols based on
multi-cast virtual synchrony and is called Fast Paxos. Here Clients
send messages directly to acceptor/learner nodes. The nodes send
accepted messages to each other and the leader and only in case of
conflict the leader sends out the canonical (his) accept message to
resolve conflict. This is very similar to letting nodes communicate
freely via multicast with one node sending out the defined order of
those messages every once in a while. This protocol can be further
improved with respect to message delays when there is a
mechanism in place which lets acceptor/leader nodes not only
detect conflicts (this is ensured by messages being sent to all
participants) but also to resolve conflicting requests automatically.

Paxos Implementation Aspects
One of the best papers on distributed systems engineering available
is “Paxos Made Live – An Engineering Perspective” by Chandra,
Griesemer and Redstone of Google [Chandra] et.al. It describes the
considerable engineering effort needed to create a fault tolerant log
running on a cell of five machines. On top of this log other
functions like a fault-tolerant store and locking mechanism have
been built which were described already in the section on
components needed in ultra large systems.

<<chubby arch>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 330 03/12/2010

Locking and DBI API

Clients

Chubby Network (5
machines per cell)

Fault tolerant Log

Fault tolerant DB

Chubby

Paxos
Protocol

Log

Local FS

Snapshot
exchange

After: [Chandra] et.al

In my eyes the paper is also a clear calling for well-tested open
source implementations for all kinds of group communication
needs (membership, consensus, failure detection). Such a
component is clearly needed in large systems but the effort to turn
an algorithm into a robust service implementation is huge.

The paper is divided into sections on Paxos, Algorithmic
challenges, Software engineering and finally unexpected failures.
In the Paxos part [Chandra] et.al describe a rather regular use of
Multi Paxos with propose phases prevented by sticking to one
leader called master. The whole API for the log already routes
client requests to arbitrary replicas to the one master node. This is
essential for good performance with Paxos.

The algorithmic challenges consisted of significant performance
improvements using leases for master and replicas and better
robustness in case of disk errors. Even an extension to the protocol
had to be made due to unexpected failures at nodes.
A look at the Paxos protocol in the context of a necessary quorum
for guarantee consistency makes it clear that even a simple read
against the log would involve a full Paxos round of requests against
a read quorum. But in case of a fixed master, shouldn’t it be able to
return a read value from its own store? The problem lies in the fact
that other replicas can at any time decide to start a new round of
leader election, perhaps without notifying the master. This could
have led to a new read value and the old master would then return
stale date from its store.
To prevent unnecessary churn of masters a master is granted a
lease. As long as the lease is valid the master knows that it will be

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 331 03/12/2010

the only one to answer requests and can therefore take read values
right from its own store and return them to clients.
Leases are certainly going to improve the performance of Paxos
due to lesser rounds needed. But they are nevertheless dangerous:
What happens in case of a master having problems? Or being
disconnected? To make progress a new master must be elected and
then the question arises: what happens to the lease at the old
master? What if it only experienced temporary performance
problems and wants to continue now? How could it now about a
potential network partition without doing a Paxos round and asking
for a quorum? The Google engineers do not tell exactly how they
distinguish those cases and what happens to the lease.
And there are more problems with the implementation of the
protocol:
In the presence of temporary network outages or disconnects the
Paxos protocol might cause two master nodes to fight for
controlwith each increasing their instance number every time they
come back. The problem was solved with forcing the master to
regularly run full Paxos rounds and to increase their instance
numbers at a certain frequency.
Something else might lead to a fast churn rate: what if the nodes
participating in consensus run some other processes as well? If the
load caused by those processes becomes too high it might affect the
ability of a master to respond quickly enough to requests from his
peers – who might conclude that the master is dead and start a new
election. This means there must be a scheduler service available
which can guarantee a certain response time to some processes.
<< add this to scheduling >>

According to the google engineers the higher level lock-service
protocol requires a request to be aborted when the master changes
during the request – even if it becomes master again during the
request. This forced the designers to implement a so called epoch
number for a master. It is a global counter of master churn at a
specific master. Losing mastership and later acquiring it again will
lead to a new epoch number. As all requests are conditional of their
epoch number it is now easy to decide when a request has to be
aborted.

Disc corruption was another interesting challenge within the
implementation of Paxos. As every Paxos node makes promises
during rounds, it cannot be allowed that the results of those rounds
are changed behind the back of the protocol. File corruption is
prevented using checksums and a way to distinguish an emptry
disk (new) from a disk with inaccessible files (error) was needed.
To this purpose a node writes another marker in the Google File
System and when it reboots it checks for the marker. If it finds one
it knows that the disk is corrupt and starts rebuilding it by
contacting the other replicas and getting the latest snapshot of the
system state.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 332 03/12/2010

Snapshots are needed to condense an ever growing log of actions
and commands into a static state. Snapshots have a number of
requirements that are hard to fulfil:
- sometimes a snapshot spans several resources which are
independently updated
- in most cases it is impossible to stop the system to take a
snapshot
- snapshots must be taken quickly to keep inconsistencies
small
- a catch-up algorithm is needed to get the changes after a
snapshot has been taken.

I will leave it to the reader to learn about other optimizations like
database transactions using complex Paxos values and concentrate
on a few but critical experiences in software engineering.
[Chandra] pg. 9
The Google engineers used four essential techniques to achieve
fault-tolerance and reliability:
1. An explicit model of the Paxos algorithm.
2. Runtime consistency checking
3. Testing
4. Concurrency restrictions

A consensus protocol like Paxos is used to implement the state
machine approach of distributed processing and lends itself to an
implementation using a state machine specification language. From
own experience I can say that having such a grammer which can be
turned into code via a compiler construction tool is an incredible
advantage over having complex events and states directly
implemented in software. Protocol problems are much easier to
find this way.

Implementors of large scale systems fear one thing especially:
runtime corruption of data structures. This is a well known problem
in storage technologies (ZFS was once thought to destroy disks
only because it contained test and validation code which detected
silent data corruption). The same goes for memory corruption in
unsafe languages like C or C++ and so on. The google engineers
reported that they used extra databases to hold checksums of other
database information.

Testing needs to be repeatable to have any value. Code needs
extensibe instrumentation to generate test input and output. A
rather unnerving fact is the tendency of fault tolerant systems to
hide errors. A node that is wrongly configured will try forever to
join some group just to be rejected again and again. A casual
observer will only notice that this node has probably crashed and is
now catching up without realizing the systematic error behind. In
our chapter on modelling ultra large systems we have shown how
hardware engineers use markov chains to put a probability on

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 333 03/12/2010

certain state changes which could be used to detect systematic
errors.
Within the Chubby/Paxos implementation a deliberate effort was
made to avoid multi-threading. While partially successful the
engineers had to admit that many components had to be made
concurrent later on for performance reasons [Chandra] pg. 12

Agreement based on virtual synchrony
http://www.jgroups.org/
spread

Optimistic Replication

“Thou shalst not copy” is usually a good advice in IT. Every copy
automatically raises the question of up-to-dateness. The more copies the
more trouble to keep them synchronized. But in many cases either
performance/throughput arguments or availability of resources force us to
create copies. And sometimes scalability forces us to even give up on a
central consistency requirement: that all copies have to have the same state
as the master before a client gets access to one of the copies. Long distance
and poor latency exclude a pessimistic replication strategy as well. Using
synchronous requests over several rounds to achieve consensus is just too
expensive.

Lately the concept of “eventual consistency” has become popular, e.g.
with Amazon’s key/value store called dynamo. Werner Vogels has written
extensively about their use of eventual consistent techniques like handoff-
hints etc. [Vogels] and [DeCandia].

Let us go back to the problem of multiple copies and see what it takes to
bring them into eventual consistence and what this means for clients.
To do so we need to answer the following questions:

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 334 03/12/2010

1. who does the update? Single Master or multiple ma sters
2. What is updated? State transfer or operation trans fer?
3. How are updates ordered?
4. How are conflicts handled/detected?
5. How are updates propagated to replica nodes?
6. What does the system guarantee with respect to di vergence?

Roughly after [Saito]

The following is a discussion of selected topics from [Saito et.al.]. They
describe asynchronous replication algorithms and its problems in great
detail. Before we start the discussion let’s mention some systems and
applications which use optimistic replication and accept eventual
consistency. DNS and usenet news are very popular examples and their
excellent scalability has been proven many times. They flood updates
through their network successfully. CVS is another optimistic replication
schema. It accepts concurrent updates by allowing offline operation but
flags potential conflicts. P2P file sharing comes to mind as well as PDA –
PC replication of personal user data. I do mention those successful
applications of optimistic replication to overcome the uneasy feeling in the
tummy once transactional guarantees are no longer available. But fact is:
many applications can live perfectly and some only with optimistic
replication.

The question of single-master vs. multiple master is rather critical for
replication systems. A single master excludes scheduling and conflict
detection problems and – surprisingly – may scale much better than a
multi-master replication system. The reason might be the increase in
conflicts and conflict resolution overhead once multiple masters accept
concurrent updates. While at the same time a single master can serialize
access easily and with little – especially no networking – costs. [Saito]
et.al. pg. 10.

Do we transfer the state of complete objects or do we transfer individual
operations that – executed at the target site – will produce perfect copies
according to the distributed state-machine principle? This depends very
much on the application. State transfer seem ideal for small objects,
expensive calculation costs and low latency connections. Operation
transfer allows semantically rich treatment at the receiver side, saves

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 335 03/12/2010

potentially network bandwidth and transmit times. Both use different
techniques to detect and handle conflicts (e.g. using chunks for
incremental updates).

There are numerous ways to detect conflict. From gossiping about object
state between machines and comparing their timestamps to comparing
causal histories of updates with vector clocks and so on. Vector clocks are
the swiss army knife of creating order in distributed systems.

Vector Clocks

1 | 4 | 6 | 4 | 1 | 4 |1 | 4 |1 | 4 |1 | 4 |1 | 4 | 2 |

Event
counter for
Node i = 2

1 | 4 | 6 | 4 | 7 | 4 |1 | 4 |1 | 4 |1 | 4 |1 | 4 | 2 |

Event
counter for
Node j = 4

Vector clocks are transmitted with messages and compared at the
receiving end. If for all positions in two vector clocks A and B the
values in A are larger than or the same as the values from B we say
that Vector Clock A dominates B. Thiis can be interpreted a s
potential causality to detect conflicts, as missed mes sages to order
propagation etc.

To solve conflict we can use Thomas’ write rule which leads to older
objects slowly to disappear from the replicas. CVS pushes the question of
conflict handling in certain cases to the user of the application. Fully
automatic ways to deal with conflicts will frequently have a price to be
paid in consistency.

How updates are propagated depends on the topology of the network and
how users of our replication system will interact with it. Here session
behaviour is a very important point because most applications need to
guarantee at least consistent sessions.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 336 03/12/2010

“Read your writes ” (RYW) guarantees that the contents read from a
replica incorporate previous writes by the same user.
“Monotonic reads ” (MR) guarantees that successive reads by the
same user return increasingly up-to-date contents.
“Writes follow reads ” (WFR) guarantees that a write operation is
accepted only after writes observed by previous reads by the same
user are incorporated in the same replica. No jumping back in tome
with a replica that missed some writes.
“Monotonic writes ” (MW) guarantees that a write operation is
accepted only after all write operations made by the same user are
incorporated in the same replica. (read set of client received from
replica will show those write events)

Session Guaranties with optimistic replication

After [Saito]. Remember that it is transparent
to the client which replica answers a request

Werner Vogels of Amazon correctly points out that applications which
violate the first two conditions are very hard to use and understand.

Finally the question of divergence of replicas needs to be answered. And
here the solutions are rather limited. Epsilon consistency with its famout
example of an international bank account comes to mind: A bank which
wants to restrict the damage fom overdraft in five regions will set a limit
of x/5 per region.. [Birman] gives some interesting numbers on the
behaviour of epidemic distribution protocols which seem to show a high
degree of reliability.

- session consistency
- epidemic propagation
- vector clocks

Failure Models
Time in virtually hosted distributed systems

[Williamson]
[root@domU-12-31-xx-xx-xx-xx mf]# ping 10.222.111.11
PING 10.222.111.11 (10.222.111.11) 56(84) bytes of data.
64 bytes from 10.215.222.16: icmp_seq=2 ttl=61 time=473 ms
64 bytes from 10.222.111.11: icmp_seq=4 ttl=61 time=334 ms
64 bytes from 10.222.111.11: icmp_seq=5 ttl=61 time=0.488 ms
64 bytes from 10.222.111.11: icmp_seq=6 ttl=61 time=285 ms
64 bytes from 10.222.111.11: icmp_seq=7 ttl=61 time=0.577 ms
64 bytes from 10.222.111.11: icmp_seq=8 ttl=61 time=0.616 ms
64 bytes from 10.222.111.11: icmp_seq=9 ttl=61 time=0.794 ms
64 bytes from 10.222.111.11: icmp_seq=10 ttl=61 time=794 ms

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 337 03/12/2010

64 bytes from 10.222.111.11: icmp_seq=11 ttl=61 time=0.762 ms
64 bytes from 10.222.111.11: icmp_seq=14 ttl=61 time=20.2 ms
64 bytes from 10.222.111.11: icmp_seq=16 ttl=61 time=0.563 ms
64 bytes from 10.222.111.11: icmp_seq=17 ttl=61 time=0.508 ms
64 bytes from 10.222.111.11: icmp_seq=19 ttl=61 time=706 ms
64 bytes from 10.222.111.11: icmp_seq=20 ttl=61 time=481 ms
64 bytes from 10.222.111.11: icmp_seq=22 ttl=61 time=0.868 ms
64 bytes from 10.222.111.11: icmp_seq=24 ttl=61 time=1350 ms
64 bytes from 10.222.111.11: icmp_seq=25 ttl=61 time=4183 ms
64 bytes from 10.222.111.11: icmp_seq=27 ttl=61 time=2203 ms
64 bytes from 10.222.111.11: icmp_seq=31 ttl=61 time=0.554 ms
64 bytes from 10.222.111.11: icmp_seq=32 ttl=61 time=678 ms
64 bytes from 10.222.111.11: icmp_seq=34 ttl=61 time=0.543 ms
64 bytes from 10.222.111.11: icmp_seq=35 ttl=61 time=25.6 ms
64 bytes from 10.222.111.11: icmp_seq=36 ttl=61 time=1955 ms
64 bytes from 10.222.111.11: icmp_seq=41 ttl=61 time=809 ms
64 bytes from 10.222.111.11: icmp_seq=43 ttl=61 time=2564 ms
64 bytes from 10.222.111.11: icmp_seq=44 ttl=61 time=7241 ms

As you can appreciate, this has some considerable knock-on effects to the
rest of our system. Everything grinds to a halt. Now I do not believe for a
moment, this is the real network delay, but more likely the virtual
operating system under extreme load and not able to process the network
queue. This is evident from the fact that many of the pings never came
back at all.

[VMWare] Time in VMWare …
The problem is that distributed algorithms for consensus, locking or failure
detection all rely on rather short and predictable latencies to predict a
failure reliably (meaning long timeouts) and at the same time achieve a
high throughput (meaning short timeouts). VMs will try to catch up by
delivering timer interrupts faster but this mechanism can clash with higher
level time setting protocols badly when run at the same time.
Overcompensation is one possible result.

Problem: how to monitor cloud app performance externally (Gomez?)
Williamson:
Following on, I noticed that cloudkick, the cloud performance monitoring
people, published their own findings on the network latency, and digging
into their graphs, we find a complete correlation with our own data.

Part VI: New Architectures
o media grid
o Peer-to-Peer Distribution of Content (bbc)
o Virtual Worlds
o Cloud Computing??
o Web app APIs from Google and Yahoo
o Scalaris with transactions
o Selfman self-management and feedback loops with agents

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 338 03/12/2010

Cassandra and Co.
(Todd Hoff, MySQL and Memcached, the end of an era?,
http://highscalability.com/blog/2010/2/26/mysql-and-memcached-end-of-an-
era.html?printerFriendly=true)
Design Patterns for Distributed Non-Relational Databases (Cloudera, Todd
Lipcon). Very good schematics on row/column and mixed storage and log
structured merge trees. (perhaps better in algorithms and bigtable discussion).
The points are: automatic scalability. Huge growth. Non intelligent reads
dominate. Mostly no transactions. Cassandra, MonoDB, Voldemort, Scalaris…

With a little perspective, it's clear the MySQL+memcached era is passing. It will
stick around for a while. Old technologies seldom fade away completely. Some
still ride horses. Some still use CDs. And the Internet will not completely replace
that archaic electro-magnetic broadcast technology called TV, but the majority
will move on into a new era.

LinkedIn has moved on with their Project Voldemort. Amazon went there a while
ago.

Digg declared their entrance into a new era in a post on their blog titled Looking
to the future with Cassandra, saying:

 The fundamental problem is endemic to the relational database mindset, which
places the burden of computation on reads rather than writes. This is completely
wrong for large-scale web applications, where response time is critical. It’s made
much worse by the serial nature of most applications. Each component of the
page blocks on reads from the data store, as well as the completion of the
operations that come before it. Non-relational data stores reverse this model
completely, because they don’t have the complex read operations of SQL.

Twitter has also declared their move in the article Cassandra @ Twitter: An
Interview with Ryan King. Their reason for changing is:

 We have a lot of data, the growth factor in that data is huge and the rate of
growth is accelerating. We have a system in place based on shared mysql +
memcache but its quickly becoming prohibitively costly (in terms of manpower) to
operate. We need a system that can grow in a more automated fashion and be
highly available.

It's clear that many of the ideas behind MySQL+memcached were on the mark,
we see them preserved in the new systems, it's just that the implementation was a
bit clunky. Developers have moved in, filled the gaps, sanded the corners, and
made a new sturdy platform which will itself form the basis for a new ecosystem
and a new era.
Building Large AJAX Applications with GWT 1.4 and Google Gears
In this presentation from QCon San Francisco 2007, Rajeev Dayal discusses
building applications with GWT and Google Gears. Topics discussed include an
overview of GWT, integrating GWT with other frameworks, GWT 1.4 features,
developing large GWT applications, integrating GWT and Google Gears, the
architecture of a Google Gears application, Google Gears features and the Google
Gears API.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 339 03/12/2010

Adaptive, Self-Managed ULS Platforms
www.selfman.org: European Research on self-managed systems

 [Andrzejak] Artur Andrzejak, Alexander Reinefeld, Florian Schintke, Thorsten
Schütt, On Adaptability in Grid Systems, Zuse Intitute Berlin

[vanRoy] Peter van Roy, Self Management and the Future of Software Design,
http://www.ist-selfman.org/wiki/images/0/01/Bcs08vanroy.pdf

[vanRoy] Peter van Roy, The Challenges and Opportunities of Multiple
Processors: Why Multi-Core Processors are Easy and Internet is Hard (short piece
on conflicting goals in p2p and emergent behaviour like the intelligence of google
search)

[vanRoy] Peter van Roy, Overcoming Software Fragility with Interacting
Feedback Loops and Reversible Phase Transitions. (again the concept of feedback
loops for control)

[Northrop] Linda Northrop, Scale changes everything,

[Gabriel] Richard Gabriel, Design beyond human abilities

[SEI]

[UK]

“Human-in-the-loop”

The approach in this book has been a rather practical one: take a look at
real ULS sites and investigate the architectures and methods used to build
them. The assumption behind is that while the practices and technologies
used certainly are different in ULS, it is still conventional engineering that
is used to build them. Even though it is a more complex kind of
engineering that is needed and which includes the social environment
explicitly. And even though it is a kind of engineering that stumbles from
roadblock to roadblock only to re-engineer what was built before to make
it adapt to new challenges.

But this approach is not undisputed. There are at least two groups of
researchers who go way beyond and challenge the engineering approach to
ULS in general:

ULS design will have to move beyond computer science and electrical and
electronics
engineering-based methodologies to include building blocks from seven
major research areas:human interaction; computational emergence;
design
computational engineering; adaptive system infrastructure; adaptable and
predictable system quality; and policy, acquisition, and management.
[Goth]

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 340 03/12/2010

Both groups of researchers share the above statement more or less but
differ in the engineering approach and especially in the scope of their
vision. But take a look first at the approach that critizized by both groups
an which I call “human in the loop”:

system

component

logs
Actions

Currently there is always a human involved in the basic feedback loops
which keep systems in a stable state while enduring external inputs and
forces. And of course humans were needed to build the whole system in
the first place. Adaptation, the change of a system in processes, structures
etc. is done manually. <<def adaptation, static, dynamic, evolution>>

Self-management with interacting, hierarchical feed back
loops

The selfman.org project, headed by Peter van Roy tries to replace manual
management with the concept of self-regulation by hierarchically
organized feedback loops.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 341 03/12/2010

system

subsystem

Actions

controllerActions

controller

monitor

monitor

Goals/
policies

<<feedback, stygmergy, management, open close, math>>.
The following diagram shows a real example of interacting feedback loops
in the TCP protocol:

TCP feedback loops, after [vanRoy]

The research group uses structured overlay networks as an example of
self-regulating/healing architecture and built self-management algorithms
on top of the SON platforms. Consistent lookup times, reliable merging of
partitioned rings with eventual consistency, range queries and finally even
distributed transactions on top of SONs have been developed.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 342 03/12/2010

<<description of selfman.org sub-projects>>.

The engineering view behind is based on good software architecture
principles: separation of interfaces from implementation and making
architectural elements explicit. <<[Haridi] on Kompics.>>

The concept of complex systems as “systems of sub-systems connected via
hierarchical feedback loops” is already a rather demanding view on ULS
architectures given that there is no general systems theory yet and the
complexity of intertwinded feedback loops soon gets challenging and .

<<diagram of feedback components: planner, analytics, decisions, policies
etc.>>

After [Andrzejak]

sensor

Actuator

architecture of the managed system, its
state, the allowed management actions,
desired target system states and the
optimization goals.

Event triggered condition-action rules for
management of networks and distributed
systems

ARIMA/Kalman
Classification

Sequence Mining

planning-graphs,
propositional satisfiability techniques, and
constraint satisfaction techniques

Game theory, genetic
alg., sim. Annealing,
expert systems etc.

The programming problem certainly generalizes the autonomic computing
problem, since in all by few exceptions the means to attain the self-
managing
functionality is software. Does it mean that the effort of formalization for
self-management is similarly high as in the programming problem? This is
not necessarily the case, since in the domain of self-management the
required
solutions are simpler (and more similar to each other) than in the field of
programming,
and so the benefits of domain-specific solutions can be exploited.
A further step to reduce the effort of formalisation would be the usage of
machine learning to automatically extract common rules and action
chains from
such descriptions [3]. Other tools are also possible, including graphical
development
environments (e.g. for workflow development), declarative specification
of management actions used in conjunction with automatic planning, or
domain-specific languages, which speed-up the solution programming.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 343 03/12/2010

Complete fault-tolerance is neither possible nor beneficial. One goal of
autonomic computing is to hide faults from the user and to first try to
handle
such situations inside the system. Some faults cannot be detected, like
whether
an acknowledgement or calculation just takes a very long time, or was lost
during data transmission. This is also known as halting problem [30]
which
states that no program can decide whether another program contains an
endless
loop or not. [Zuse..]

The paper raises some very interesting theoretical questions like the
observation of one program through another (halting problem) and how it
is applied at runtimes instead at code. But the methods mentioned for
decision making, planning and even analytics and prediction are far from
being engineering technologies. They are pure science and it will take a
while until we will be able to use some in real systems.

Emergent Systems Engineering

But the group that met for OOPSLA06 to discuss ULS seems even more
radical. Linda Northrop gave a presentation with the title “sale changes
everything” and she and her group of researchers including Richard
Gabriel and Doug Schmidt went out to investigate even larger systems.
They rejected a core assumption made about the engineering of ULS: that
they could be built consisting of billions of lines of reliably working code
with incremental improvements to todays software technology: “Scale
changes everything”.

Some core observations from this group:

<<list of features of ULS>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 344 03/12/2010

<<why scale changes everything>>

The group also states a paradigm shift in the approach to build those
systems. According to them neither classic engineering

• largely top-down and plan-driven development
• requirements/design/build cycle with standard well-defined
processes
• centrally controlled implementation and deployment
• inherent validation and verification

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 345 03/12/2010

nor the agile approach
• fast cycle/frequent delivery/test driven
• simple designs embracing future change and refactoring
• small teams and retrospective to enable team learning
• tacit knowledge

will work on the scale of ULS. [Northrop]

A quote from Greg Goth shows the scope of this research approach
clearly:
Where a traditionally engineered software system might be like the
detailed blueprints for a building, with everything laid out in advance, the
creation of a ULS architecture is more like the evolution of the city itself:
The form of a city is not defined in advance by specifying requirements;
rather, a city emerges and changes over time through the loosely
coordinated and regulated actions of many individuals. The factors that
enable cities to be successful, then, include both extensive infrastructures
not present in individual buildings as well as mechanisms that regulate
local actions to maintain coherence without central control. (from page 5
of the ULS report) [Goth]

In the context of this thinking fundamental questions are raised:
- are requirements really useful to build systems that span 25 and
more years?
- Can we even use traditional “design” thinking to build things of
such complexity and size?
- How do you bootstrap such systems (Kelly’s question on how to
build a biotope)
- Do these systems emerge or are they built according to an
engineering plan?
- Are the control loops hierarchical or network-like?
- How do we tie heterogeneous components into one system? Is
there ONE system?
- Collusion is normal in those systems
- Traditional science thinking is towards small and elegant
algorithms. Those systems are big and sometimes ugly conglomerates of
smaller pieces.
- Second order cybernetics: the builder are part of the system

Both research approaches are certainly fascinating but I seriously doubt
that they are in any way representative of the type of ULS we have been
discussing in this book. Sites like Facebook or Flickr, Youtube or Google
do go to great length to avoid some of the characteristics mentioned in the
ULS of Northrop. The desing rules are actually trying to put the problem
space into a shape that allows the application of engineering techniques to
achieve reliable systems: create requests of same, standardized runtime
behaviour. Control requests tightly with respect to frequency and side-
effects. Partition data as much as possible. Avoid services which create
unduly disruptions to your infrastructure and so on. And yes, despite a
carefule use of monitoring and logging there are humans in the feedback
loop that makes the existing systems scalable and reliable.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 346 03/12/2010

Scalability by Assumption Management

Perhaps this is anyway the right way to approach the problem: if it does
not fit to our engineering abilities – bring it into a shape that will fit.
Gregor Hohpe of Google, author of the famous book on application
integration patterns, collected a number of design guidelines for highly
scalable systems. The following is taken from his talk at Qcon London
with the title “Hooking stuff together - programming the cloud”. [Hohpe]

<<less is more>>

After Gregor Hohpe, Qcon Talk

Event driven, non-
sequential

Distrib. TAs too
expensive

Forget SLAs
Don‘t know if
service is up

Can‘t control
ordering of service

execution

Can‘t assume
much about

others

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 347 03/12/2010

Hohpe uses the example of Starbucks to demonstrate throughput
optimizations: accept some loss to achieve maximum throughput. This
sounds a bit like “eventual consistency” and we could call it “eventual
profitability” perhaps. In ULS design it clearly emphasizes the need to re-
think request types and functions in the overall system context. Who cares
about a tossed coffee every once in a while if they can save on a very
expensive transactional protocol? Overlapping processes are necessary to
achieve high throughput.

<<what now>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 348 03/12/2010

To be able to live with very few assumptions we need to re-design our
services and functions to e.g. make them order independent. Like in our
discussion of Paxos we see again that commutativity of requests allows
extreme optimizations, ideally full parallelization.

Order of
execution
does not
matter!

Service is either
a natural or our
protool needs to

achieve it!

Almost every architect of a ULS mentions simplicity as a core design
feature. We should probably attempt to define it a bit better: what do they
really mean with simplicity? Here the statement about a clear failure mode
being better than some complex failsafe architecture is interesting.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 349 03/12/2010

Interaction has always been the magic behind distributed systems
[Wegner]. Interaction is what makes those systems so very different from
sequential algorithms. I believe that we need to favour living systems over
code analysis in the future: a service is only a service if it is available.
Code is very different to a running instance which we can interact with!
(halting problem?)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 350 03/12/2010

Hohpes emphasize on asynchronous interaction does not come as a
surprise anymore: we have already seen that synchronous wait times are
just too expensive to achieve high throughput.

New programming models like map-reduce are needed to process data in
ULS. Hohpe’s final point here is to emphasize the difference between
some logical model and its execution within a distributed and parallel
environment. This requires extensive monitoring and tracking.

<<map reduce>>
<<runtime>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 351 03/12/2010

Accordiing to Hohpe Cloud-Computing dodges the bullets of the research
groups mentioned earlier by restricting features and cutting down on
assumptions and guarantees provided to clients. And Hohpe explicitly says
that some application scenarios are probably unfit for running in the cloud.
Giving up on transactions e.g. is certainly a hard thing to do for many
applications. Here the work of the selfman.org group might come in handy
by providing a transactional DHT and standard components which realize
broadcast and other functions within an active component (actor) concept.
Let’s take a closer look at Cloud Computing concepts now.

Cloud Computing: The Web as a platform and API
How do we use those new platform APIs with their special storage technology?
Pricing and API use?

[zülch] paper

[Williamson] Alan Williamson, has the EC2 cloud become over subscribed?
http://alan.blog-city.com/has_amazon_ec2_become_over_subscribed.htm#
(cloud computing is not the most cost effective way of running an enterprise if the
majority of them are running all the time). According to our monitoring, the
newly spun up machines in the server farm, were under performing compared to
the original ones. At first we thought these freaks-of-nature, just happened to
beside a "noisy neighbor". A quick termination and a new spin up would usually,
through the laws of randomness, have us in a quiet neighborhood where we could
do what we needed. (noisy neighbours)
Amazon is forcing us to go to a higher priced instance just because they can't
seem to cope with the volume of Small instances.
we discovered a new problem that has crept into Amazon's world: Internal
Network Latency.
ping between two internal nodes within Amazon is around the 0.3ms level,
App architecture: shut off instance and hope that the new one will be better.

On Polling being bad in clouds: Polling is bad because AppEngine applications
have a fixed free daily quota for consumed resources, when the number of feeds
the service processed increased - the daily quota was exhausted before the end of
the day because FF polls the service for each feed every 45 minutes. [Zuzak] Ivan
Zuzak Realtime filtering and feed processing
http://izuzak.wordpress.com/2010/01/11/real-time-feed-processing-and-filtering/

[google] Entity Groups and Transactions
http://code.google.com/appengine/docs/python/datastore/transactions.html

[Hohpe]

Amazon S3 architecture:
http://blogs.zdnet.com/storage/?p=416

<<check pricing at 15 cent/gig/month>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 352 03/12/2010

the Guide to Cloud Computing from Sun.

http://www.sun.com/offers/docs/cloud_computing_primer.pdf

(mentions capital expenditure advantages as well, defines saas, paas, iaas, open
storage concepts in new sun fire 4500,

http://www.ibm.com/developerworks/web/library/wa-
cloudflavor/index.html?
ca=dgr-jw22CC-Labyrinth&S_TACT=105AGX59&S_CMP=grsitejw22

provisioning, deployment, architecture
http://www.theserverside.com/news/thread.tss?thread_id=54238

http://www.devwebsphere.com/devwebsphere/websphere_extreme_scale/

* Storage made easy with S3
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_2IN
/wqxgc
83948394> (Java technology)
* Cloud computing on AIX and System p
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_3IN
/wqxgc
83948394> (AIX and UNIX)
* Is there value in cloud computing?
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_4IN
/wqxgc
83948394> (Architecture)
* Cultured Perl: Perl and the Amazon cloud, Part 2
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_5IN
/wqxgc
83948394> (Linux)
* Realities of open source cloud computing: Not all clouds are
equal
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_6IN
/wqxgc
83948394> (Open source)
* The role of Software as a Service in cloud computing
<http://www.ibm.com/vrm/newsletter_10731_5146_110766_email_DYN_7IN
/wqxgc
83948394> (Web development)

Mark Andreesen, Internet Platforms on his blog.

[Shalom] Nati Shalom, Latency is everywhere.
http://natishalom.typepad.com/nati_shaloms_blog/2009/03/its-time-for-auto-
scaling-avoid-peak-load-provisioning.html
- middleware virtualization
- cloud APIs and datastores
- best practices for cloud apps
Dr. Strüker also from the University of Freiburg talked about communicating
things, calculating clouds and virtual companies. He also used the famous
Animoto example.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 353 03/12/2010

Animoto scalability on EC2, from Brandon Watsons blog

Animoto faced extreme scalability problems and solved them by using EC2. Brian
Watson questioned the rationale behind adding 3000 machines practically over
night:
Amazon loves to hold out Animoto as an example of the greatness of their
platform. They love to show the chart on the left here. In a couple of days, usage
of the Animoto service exploded. There’s an accounting of the event in a blog
post by the AWS team. If you do the quick math, they were supporting
approximately 74 users per machine instance, and their user/machine image
density was on the decline with increased user accounts. The story they like to
tell from this chart is “wow, we were able to spin up 3000 machines over night.
It’s amazing!” What I see is more along the lines of “holy crap, what is your
code doing that you need that many instances for that many users?” I don’t mean
to impugn Animoto here, but I don’t want the point to be lost: the profitability of
your project could disappear overnight on account of code behaving badly.
[Watson]
I found especially interesting what Strüker said about cloud computing. He gave
some interesting numbers on the size and numbers of datacenters built by Google,
Amazon and now also Microsoft. According to him Microsoft is adding 35000
machines per month. Google uses 2 Mio. machines in 36 datacenters worldwide.
But the way this compute power is used surprised me even more. The first
example was the converson of 11 Mio. New Your Times articles to pdf. Instead of
building up an internal infrastructure of hundreds of machines somebody decided
to rent compute power from the Amazon Elastic Compute Cloud EC2 and ended
up with the documents converted in less than a day for only 240 dollar.
Then he mentioned the case of animato, a company creating movies from
pictures. Interesting about this case is that animato used the EC2 cloud to prepare
for incredible growht. I don't remember the exact numbers but the growth of
requests was so big that without an existing, scalable infrastructure, the users of
animato would have experienced major breakdowns. There would have been no
way to increase compute power quickly enough to comply with this growth rate.
But the last cases were even more astonishing. They were about businesses using
the cloud to do all kinds of processing. This includes highly confidential stuff like

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 354 03/12/2010

customer relationship handling which touches the absolute core of businesses. I
was surprised hat companies would really do this. In large corporations this type
of processing is done internally on IBM Mainframes. The whole development
could spell trouble for the traditional IBM Mainframe strategy as a new
presentation at infoq.com already spells out: Abel Avram asks: Are IBMs Cloud
Computing Consulting Services Generating a Conflict of Interests?

Qcon: Host: Gregor Hohpe
The Web has become the application delivery platform of choice. After an initial
focus on the presentation layer, business services and middleware components are
moving to the web as well. Supported by core services like Amazon's EC2
compute cloud and S3 storage services, and using application services like
Google's GData APIs these applications don't just run over the web, they run on
the web.
What does this mean for application developers? How do you deploy an
application to the Web? Will applications be composed by dragging web-based
components together? Do we still have to fiddle around with JavaScript and brittle
APIs? This track invites experts who have been living the cloud to share their
experiences and give hand-on advice.
Moving to the Grid will affect your application architecture considerably,
according to Joseph Ottinger. He explains core J2EE architectural features like the
assumption of request/response patterns and what is needed to move toward a
dynamic grid infrastructure. [Ottinger]

Canonical Cloud Architecture
The canonical cloud architecture that has evolved revolves around
dynamically scalable CPUs consuming asynchronous, persistently
queued events. We talked about this idea already in Flickr - Do the
Essential Work Up-front and Queue the Rest. The cloud is just
another way of implementing the same idea. [Hoff], Canonical
Cloud Architecture
What is this about asynchronous, persistently queued events and
scalability via CPUs? Sounds similar to Darkstar architecture for
MMOGs.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 355 03/12/2010

(from [Hoff], canonical cloud arc.)

Cloud-based Storage
[Glover]
-REST based API to S3, 15 cent/gig/month plus transfer costs,
flexible access token generation (e.g. time-limited access to storage
parts), global name space for spaces. Twitter stores user images on
S3.
<<REST API example for store and update >>

Latest from Architecture
http://www.infoq.com/architecture/:
Presentation: Google Data API (G-Data)
Frank Mantek discusses the Google Data API (GData) including
decisions to use REST rather than SOAP technology, how the API
is used, numerous examples of how GData has been used by
clients, and future plans for evolving the API. A discussion of how
GData facilitates Cloud Computing concludes the presentation.
(Presentations)

Cloud-based Memory (In-Memory-Data-Grid)
We are on the edge of two potent technological changes: Clouds
and Memory Based Architectures. This evolution will rip open a
chasm where new players can enter and prosper. Google is the
master of disk. You can't beat them at a game they perfected. Disk
based databases like SimpleDB and BigTable are complicated
beasts, typical last gasp products of any aging technology before a
change. The next era is the age of Memory and Cloud which will
allow for new players to succeed. The tipping point is soon. [Hoff],
Cloud-based Memory
Will ram become disk and disk become tape? Does this really
scale? What is the role of MVCC?

Time in Virtualized Environments

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 356 03/12/2010

[DynaTrace] SLA monitoring
[VMWare] Time Keeping in VMWare Virtual Machines
[Harzog]
[Dynatrace] Cloud Service Monitoring for Gigaspaces

The Media Grid

Make abstract:
“The Media Grid is a digital media network infrastructure and software-
development platform based on new and emerging distributed computational grid
technology. The Media Grid (http://www.MediaGrid.org/) is designed as an on-
demand public computing utility that software programs and web sites can access
for digital content delivery (graphics, video, animations, movies, music, games,
and so forth), storage, and media processing services (such as data visualization
and simulation, medical image sharpening and enhancement, motion picture scene
rendering, special effects, media transformations and compositing, and other
digital media manipulation capabilities). As an open platform that provides digital
media delivery, storage, and processing services, the Media Grid's foundation
rests on Internet, web, and grid standards. By combining relevant standards from
these fields with new and unique capabilities, the Media Grid provides a novel
software-development platform designed specifically for networked applications
that produce and consume large quantities of digital media.
As an open and extensible platform, the Media Grid enables a wide range of
applications not possible with the traditional Internet alone, including: on-demand
digital cinema and interactive movies; distributed film and movie rendering; truly
immersive multiplayer games and virtual reality; real-time visualization of
complex data (weather, medical, engineering, and so forth); telepresence and
telemedicine (remote surgery, medical imaging, drug design, and the like);
telecommunications (such as video conferencing, voice calls, video phones, and
shared collaborative environments); vehicle and aircraft design and simulation;
computational science applications (computational biology, chemistry, physics,
astronomy, mathematics, and so forth); biometric security such as real-time face,
voice, and body recognition; and similar high-performance media applications”
Dr. Dobb's Journal, November 2005
The Media Grid
A public utility for digital media
By Aaron E. Walsh

- interaction
- ad-hoc
- mobile
- swarming
- combination of p2p and GRID technology
<<swarming effect diagram>>

Peer-to-Peer Distribution of Content (bbc)

Video on Demand use case, problems with bandwidth.
Solution: p2p streaming
www.selfman.org !!!

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 357 03/12/2010

Meanwhile, a portion of the BBC's vast archive of audio and video material may
also be accessed via MyBBCPlayer. The software may also let viewers to buy
items via the BBC Web site, which would be a big leap from the current public
service features of the BBC’s online sites.

The announcement was made in August at the U.K.’s broadcasting headliner
event, the Edinburgh Television Festival, by the recently appointed head of the
BBC, Mark Thompson (“director-general” in BBC-speak). "We believe that on-
demand changes the terms of the debate, indeed that it will change what we mean
by the word 'broadcasting'," he said. "Every creative leader in the BBC is
wrestling with the question of what the new technologies and audience behaviors
mean for them and their service," he went on. "[MyBBCPlayer] should make it
easier for users to find the content they want whenever and wherever they want
it.”

It seems straightforward enough: a major content provider has made a smart move
with technology anticipating the growing surge of interest in on-demand TV. But
that interpretation misses some of both the political nuances of the BBC’s
intentions and its possibly explosive impact on the programming market in not
just the U.K., but globally as well.

The trial he’s referring to is some 5,000 carefully selected consumers who will be
offered a version of IMP (Interactive Media Player), a prelude to MyBBCPlayer
delivered to the PC that is set to evolve into the full commercial release if plans
come to fruition.

The underlying technology platform on which MyBBCPlayer and IMP are built is
provided by U.S.-based firm Kontiki. The company’s peer-to-peer solution is
increasingly being used as weapon of choice for delivering large media files over
IP, according to Kontiki CEO Todd Johnson. “We are unique in using a legal way
to use peer-to-peer–buttressed by rights protection–to make mass consumption of
these kinds of properties a reality,” he claims.

The advantage of P2P for this application is that it avoids the need to pump out
huge files centrally; instead, a network of collaborating computers team up to
share the workload with the content neatly splitting into many component pieces,
all reassembled at the user’s PC after locating the nearest and easiest nodes from
which to retrieve the next needed element. This way quality of service isn’t
constrained at any point during the delivery chain. “At peak periods this means
successful delivery even with relatively modest amounts of backup
infrastructure,” Johnson says—acknowledging that this is exactly how “pirate”
services like Gnutella and Grokster have been moving content for quite some
time.
„is bittorrent deployed by a huge broadcaster“

<<diagram with myBBCPlayer, swarming infrastructure and BBC archive plus
website for billing>>

<<diagram from kontiki architecture>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 358 03/12/2010

Virtual Worlds (Secondlife, DarkstartWonderland) –
Architecture for Scalability

(wikipedia article on new architecture of secondlife)

Jim Waldo of Sun - famous for his critque of transparency in distributed systems
wrote a paper on the new game platform Darkstart. But in this paper he turns
around and claims that for his new project it was necessary to build transparent
distributed features because of the special environment of 3D games. He claims
that game programmers are unable to deal e.g. with concurrency explicitly.
Darkstar splits requests into short and limited tasks which can be transparently
distributed to different cores or machines.
To achieve consistency all data store access is transacted with an attached event
system. We will see how this scales in the long term.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 359 03/12/2010

From:
Till Issler

Immersive multi-media based collaboration (croquet)

- The effects of interaction
- replication instead of proxies
- separating requests from local processing time
- specialization through hierarchies of servers

Replicated, independent objects:

hierarchies of servers

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 360 03/12/2010

<<vat concept with router diagram>>

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 361 03/12/2010

Part VII: Practice

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 362 03/12/2010

A scalable bootstrap kernel

<<build a small kernel for a scalable site that allows growth. Put the scalability
mechanisms in place early on. See how this works financially. How many
collocated servers? Compare with cloud computing costs, open source cloud?
Core services needed?>>

Exercises and Ideas
Data Storage

- take a look at a social graph model and speculate about its scalability
- build some storage grid components based on open standards:

Ideas with Grid Storage for HDTV

• Build micro-grid with Lustre (standard FS)
• Calculate capacity curve (Gunther)
• Build Grid-Gateway to support posix apps and

measure throughput
• Investigate existing Video apps for interfaces to

other storage types
• Build scheduler (based on hadoop) for

transcoding and indexing
• Build administration tools for soft backup and

restore, disaster recovery etc.
• Use of ZFS for NAS/SAN combo.

Modeling and Simulation

- program a simulation of one-queue servers with one or two service
stations. The Palladio simulation environment from KIT Karlsruhe seems
to be a good candidate for this.

Performance Measurements and Profiling

Distributed Algoritms
- use a group communication software to synchronize one variable
across servers. Grow the number of servers and watch for performance
problems. How far does multicast go? What is the effect of REAL high
speed networks on reliability and liveness?

Measurements
- use of a mediawiki installation for
• load-tests
• performance tests

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 363 03/12/2010

• profiling (cache, DB, PHP)
• monitoring and alarming
Compare the results with those from “modelling and simulation”. This is
currently done in my course on “system engineering and management”.

According to GOMEZ we will get a restricted test account for their global
test environment which would let us test the application externally.

Going Social
- Take a web-application and extend it with social features. How
should a social data model look like? (Open social, hierarchical etc.)
- Use Semsix as a testbed (currently a thesis which I am mentoring)

Failure Statistics

Collect real-world failure statistics on e.g. network partitionings, disk
failures. Consider dependencies between distributed algorithms and
specific hardware architectures (time in V

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 364 03/12/2010

Part VIII: Resources

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 365 03/12/2010

Literature:

[Narayanan] Arvind Narayanan und Vitaly Shmatikov, "Robust De-
anonymization of Large Sparse Datasets",
http://www.cs.utexas.edu/~shmat/shmat_oak08netflix.pdf

- http://blog.stackoverflow.com/category/podcasts/ (bzw:
http://itc.conversationsnetwork.org/series/stackoverflow.html)

Der Stack Overflow Podcast ist eine wöchentliche Serie in der Joel Spolsky und
Jeff Atwood über Software-Architektur und Themen rund um Software-
Technologie reden.
Interessant im Zusammenhang mit der Ultra-Large-Scale Sites Veranstaltung sind
insbesondere die Berichte über die Architektur der stackoverflow.com
Community.
- Web Services Architecture book
- Ed Felten..
- Globus.org
- Tecmath AG
- Stefan werner thesis
- Bbc article
- Bernard Traversat et.al., Project JXTA 2.0 Super-Peer Virtual network.
Describes the changes to JXTA 2.0 which introduced “super-peers” for
performance reasons – though they are dynamic and every peer can become one.
Good overview on JXTA.
- Ken Birman et.al, Kelips: Building an Efficient and Stable P2P DHT
Through increased Memory and Background Overhead. I read it simply because
of Birman. Shows the cost if one wants to make p2p predictable.
- Petar Maymounkov et.al. Kademlia: A peer-to-peer Information System
based on the XOR metric. http://kademlia.scs.cs.nyu.edu/ An improvement on
DHT technology through better organization of the node space. Interestingly,
edonkey nets want to use it in the future.
- Atul Adya et.al (Micr.Res.), Farsite: Federated, Available and Reliable
Storage for an Incompletely Trusted Environment. very good article with security
etc. in a distributed p2p storage system. How to enable caching of encrypted
content etc.
- Emit Sit, Robert Morris, Security Considerations for Peer-to-Peer
Distributed Hash Tables. A must read. Goes through all possible attack scenarios
against p2p systems. Good classification of attacks (routing, storage, general).
Suggests using verifyable system invariants to ensure security.
- M.Frans Kaashoek, Distributed Hash Tables: simplifying building robust
Internet-scale applications (http://www.project-iris.net) . Very good slide-set on
DHT design. You need to understand DHT if you want to understand p2p.
- A Modest Proposal: Gnutella and the Tragedy of the Commons, Ian
Kaplan. Good article on several p2p topics, including the problem of the common
goods (abuse) http://www.bearcave.com/misl/misl_tech/gnutella.html
- Clay Shirky, File-sharing goes social. Bad news for the RIAA because
Shirky shows that prosecution will only result in cryptographically secured
darknets. There are many more people then songs which makes sure that you will
mostly get the songs you want in your darknet. Also: do your friends share your

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 366 03/12/2010

music taste? quite likely. http://www.shirky.com/writings/file-sharing_social.html
Don‘t forget to subscribe to his newsletter – you won‘t find better stuff on
networks, social things and the latest in p2p.
- Project JXTA: Java Programmer‘s Guide. First 20 pages are also a good
technical overview on p2p issues.
- www.cachelogic.com. Note the rising „serious“ use of bittorrent by
software and media companies.
- Olaf Zimmermann et.al., Elements of Service-oriented Analysis and
Design, 6/2004, www.ibm.com/developerworks
- Ali Arsanjani, Service-oriented modeling and architecture, 11/2004
www.ibm.com/developerworks
- Guido Laures et.al., SOA auf dem Prüfstand, ObjectSpektrum 01/2005.
Covers the new benchmark by The Middleware Company for SOA
implementations
- http://www.akamai.com/en/html/services/edgesuite.html for a description
of the edge caching architecture and service
- Gamestar Magazine 08/2005
- Dr. Dobb's Journal, November 2005. The Media Grid. A public utility for
digital media By Aaron E. Walsh
- BBC turns to P2P for VOD,
http://www.streamingmedia.com/article.asp?id=9205
-

• Peer-to-Peer, Harnessing the Power of Disruptive Technologies, Edited by
Andy Oram, 2001, O‘Reilly. Contains good articles on different p2p applications
(freenet, Mixmaster Remailers, Gnutella, Publius, Free Haven etc). And also from
Clay Shirkey: Listening to Napster. Recommended.
• Peer-to-Peer, Building Secure, Scalable and Manageable Networks, Dana
Moore and John Hebeler. Definitely lighter stuff then Andy Oram‘s collection.
Missing depth. Covers a lot of p2p applications but few base technology.
• www.openp2p.org , the portal to p2p technology. You can find excellent
articles e.g. by Nelson Minar on Distributed Systems Topologies there.
• Project JXTA: Java Programmer‘s Guide. First 20 pages are also a good
technical overview on p2p issues.
• Upcoming: 2001 P2P Networking Overview, The emergent p2p platform
of presence, identity and edge resources. Clay Shirkey et.al. I‘ve only read the
preview chapter but Shirkey is definitely worth reading.
• It‘s not what you know, it‘s who you know: work in the information age,
B.A.Nardi et.al., http://www.firstmonday.org/issues/issue5_5/nardi/index.html
• Freeriding on gnutella, E.Adar et.al.,
http://www.firstmonday.org/issues/issue5_10/adar/index.html, claims that over
70% of all gnutella users do not share at all and that most shared resources come
from only 1% of peers.
• Why gnutella can‘t possibly scale, no really, by Jordan Ritter.
http://www.monkey.org/~dugsong/mirror/gnutella.html. An empirical study on
scalability in gnutelly.

• A Modest Proposal: Gnutella and the Tragedy of the Commons, Ian
Kaplan. Good article on several p2p topics, including the problem of the common
goods (abuse) http://www.bearcave.com/misl/misl_tech/gnutella.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 367 03/12/2010

• Clay Shirky, File-sharing goes social. Bad news for the RIAA because
Shirky shows that prosecution will only result in cryptographically secured
darknets. There are many more people then songs which makes sure that you will
mostly get the songs you want in your darknet. Also: do your friends share your
music taste? quite likely. http://www.shirky.com/writings/file-sharing_social.html
Don‘t forget to subscribe to his newsletter – you won‘t find better stuff on
networks, social things and the latest in p2p.
• Bram Cohen, Incentives Build Robustness in Bit Torrent. Explains why
the bit torrent protocol is what it is. Bit torrent tries to achieve „pareto efficiency“
between partners. Again a beautiful example how social and economic ideas mix
with technical possibilites in p2p protocol design: why is it good to download the
rarest fragments first? etc.

• Bob Loblaw et.al, Building Content-Based Publish/Subscribe Systems
with Distributed Hash Tables. Nice paper on DHT design with a content based
focus (not topic based as usually done). Experimental, good resource section.
• M.Frans Kaashoek, Distributed Hash Tables: simplifying building robust
Internet-scale applications (http://www.project-iris.net) . Very good slide-set on
DHT design. You need to understand DHT if you want to understand p2p.
• Ion Stoica (CD 268), Peer-to-Peer Networks and Distributed Hash Tables.
Another very detailed and good slide set on DHT designs.
(CAN/Choord/freenet/gnutella etc.). Very good.

• Emit Sit, Robert Morris, Security Considerations for Peer-to-Peer
Distributed Hash Tables. A must read. Goes through all possible attack scenarios
against p2p systems. Good classification of attacks (routing, storage, general).
Suggests using verifyable system invariants to ensure security.
• Moni Naor, Udi Wieder, A simple fault tolerant Distributed Hash Table.
Several models of faulty node behavior are investigated.
• Distributed Hash Tables: Architecture and Implementation. A usenix paper
which discusses transactional capabilities of a DHT based DDS.
• www.emule-project.net/faq/ports.htm shows the ports in use by emule-
related protocols. Shows that several emule-users behind a NAT/router/firewall
need individual redirects established at the firewall to allow incoming connections
to be redirected to a specific client.

• OCB Maurice, Some thoughts about the edonkey network. the author
explains how lookup is done in edonkey nets and what hurts the network.
Interesting details on message formats and sizes.
• John R. Douceur et.al (Microsoft Research), A secure Directory Service
based on Exclusive Encryption. One of many articles from Microsoft research
which try to use P2p technologies as a substitute for the typical server
infrastructure in companies.
• John Douceur, The Sybil Attack, Can you detect that somebody is using
multiple identities in a p2p network. John claims you can’t without a logicall
central authority.
• Atul Adya et.al (Micr.Res.), Farsite: Federated, Available and Reliable
Storage for an Incompletely Trusted Environment. very good article with security
etc. in a distributed p2p storage system. How to enable caching of encrypted
content etc.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 368 03/12/2010

• W.J. Bolosky et.al, Feasibility of a Serverless Distributed Filesystem
deployed on an Existing Set of PCs. Belongs to the topics above. Interesting
crypto tech (convergent encryption) which allows detection of identical but
encrypted files.
• Ashwin R.Bharambe et.al, Mercury: A scalable Publish-Subscribe System
for Internet Games. Very interesting approach but does not scale yet. Good
resource list at end.
• Matthew Harren et.al, Complex Queries in DHT-based Peer-to-Peer
Networks. How do you create a complex query if hashing means “exact match”?
E.g. by splitting the meta-data in many separate hash values. Interesting ideas for
search in p2p.
• Josh Cates, Robust and Efficient Data management fo a Distributed hash
table, MIT master thesis.
• Peter Druschel at.al, PAST: a large-scale, persistent peer-to-peer storage
utility.Excellent discussion of system design issues in p2p.
• Bernard Traversat et.al, Project JXTA: A loosely-consistent DHT
Rendezvous walker. Read this to get the idea of DHT in an unreliable
environment. Very good.
• John Noll, Walt Scacchi, Repository Support for the Virtual Software
Enterprise. Use of DHT for software engineering support in distributed
teams/projects.

• Petar Maymounkov et.al. Kademlia: A peer-to-peer Information System
based on the XOR metric. http://kademlia.scs.cs.nyu.edu/ An improvement on
DHT technology through better organization of the node space. Interestingly,
edonkey nets want to use it in the future.
• Zhiyong Xu et.al. HIERAS: A DHT based hierarchical P2P routing
algorithm. Shows that one can win through a layered routing approach which e.g.
allows optimization through proximity.
• Todd Sundsted, The practice of peer-to-peer computing. A series of entry
level articles from www.ibm.com/developerworks (e.g. trust and security in p2p)
• http://konspire.sourceforge.net A comparison with bittorrent technology.
Interesting. What limits the download in a p2p filesharing app? Also get the
overview paper on konspire from that site.
• NS2 – the network simulator. A discrete event simulator targeted at
network research. Use it to simulate your p2p networks. (from
http://www.isi.edu/nsnam
• Zhiyong Xu et.al, Reducing Maintenance Overhead in DHT based peer-to-
peer algorithms.
• Bernard Traversat et.al., Project JXTA 2.0 Super-Peer Virtual network.
Describes the changes to JXTA 2.0 which introduced “super-peers” for
performance reasons – though they are dynamic and every peer can become one.
Good overview on JXTA.
• Ken Birman et.al, Kelips: Building an Efficient and Stable P2P DHT
Through increased Memory and Background Overhead. I read it simply because
of Birman. Shows the cost if one wants to make p2p predictable.
• Krishna Gummadi et.al, The impact of DHT Routing Geometry on
Resilience and Proximity. Compares several DHT designs. Quite good. Findings
are that neighbour flexibility is more important than route selection flexibility.
Proximity selection techniques perform well.

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 369 03/12/2010

• Mark Spencer, Distributed Universal Number Discovery (DUNDi) and the
General Peering Agreement, www.dundi.com/dundi.pdf
• http://www.theregister.com/2004/12/18/bittorrent_measurements_analysis/
print.html An analysis of the bittorrent sharing system.

• Ian G.Gosling, eDonkey/ed2k: Study of a young file sharing protocol.
Covers security aspects.

• Heckmann, Schmitt, Steinmetz, Peer-to-Peer Tauschbörsen, eine
Protokollübersicht. www.kom.e-technik.tu-darmstadt.de
• A Distributed Architecture for Massively Multiplayer Online Games,
Chris GauthierDickey Daniel Zappala Virginia Lo

Larry Lessig, How creativity is strangled by the law,
http://www.ted.com/index.php/talks/larry_lessig_says_the_law_is_strangling_cre
ativity.html

[Issl] T.Issler, Potentiale und Einsatz von Virtuellen Welten entlang der
Wertschöpfungskette der Automobilindustrie, Diplomarbeit 2008, HDM/IBM

[Rodr]
Alex Rodriguez , RESTful Web services: The basics
IBM , 06 Nov 2008 http://www.ibm.com/developerworks/webservices/library/ws-
restful/index.html?S_TACT=105AGX54&S_CMP=B1113&ca=dnw-945

[Holl] P.Holland, Life beyond Distributed Transactions: an Apostates Opinion

[Rodr] A. Rodriguez, RESTful Web Services: The Basics,
http://www.ibm.com/developerworks/webservices/library/ws-restful/index.html

[Seeg] M.Seeger, Anonymity in P2P Networks, thesis HDM 2008,

[Pink] D.H.Pink, A Whole New Mind,

[Mühl], Gero Mühl et.al., Distributed Event-Based Systems

[Luck] D.Luckham, Complex Event Processing

[Dean] J. Dean and S. Ghemawat of Google Inc,
MapReduce: Simplified Data Processing on Large Clusters
http://labs.google.com/papers/mapreduce.html

[Ghemawat] Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung, The Google
File System, Google http://labs.google.com/papers/gfs-sosp2003.pdf

"Map-Reduce-Merge: Simplified Relational Data Processing on Large Clusters"
— Paper von Hung-Chih Yang, Ali Dasdan, Ruey-Lung Hsiao und D. Stott
Parker, Yahoo und UCLA, veröffentlicht in Proc. of ACM SIGMOD, pp. 1029--
1040, 2007. (Dieses Paper zeigt, wie man MapReduce auf relationale
Datenverarbeitung ausweitet)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 370 03/12/2010

[Saito] Yasushi Saito, Marc Shapiro, Optimistic Replication,
http://www.ysaito.com/survey.pdf

[Chandra] Tushar Chandra, Robert Griesemer, Joshua Redstone, Paxos Made
Live - An Engineering Perspective http://www.chandrakin.com/paper2.pdf

[Tomp] C.Tompson, Build it. Share it. Profit. Can Open Source Hardware Work?
Wired Magazine, 16.11

[Bung] S.Bungart, IBM. Talk at HDM on the future of IT.

[Edge] Edge Architecture Specification, http://www.w3.org/TR/edge-arch

[Mulz] M.Mulzer, Increasing Web Site Performance: Advanced Infrastructure and
Caching Concepts
http://www.dell.com/content/topics/global.aspx/power/en/ps1q02_mulzer?c=us&
cs=555&l=en&s=biz

[Heise119014] Heise news, Zürcher Forscher erstellen Modell für Erfolg von
Internet-Videos

[Crane] Riley Crane and Didier Sornette, Robust dynamic classes revealed by
studying the response function of a social system, Proceedings of the National
Academy of Sciences, Vol. 105, No. 41. (October 2008), pp. 15649-15653.
[Game] You have gained a level, Geschichte der MMOGs, Gamestar Sonderheft
08/2005

[enisa] European Network and Information Security Agency, Virtual Worlds,
Real Money – Security and Privacy in Massively-Multiplayer Online Games and
Social and Corporate Virtual Worlds
http://www.enisa.europa.eu/doc/pdf/deliverables/enisa_pp_security_privacy_virtu
alworlds.pdf
[Kriha02] Enterprise Portal Architecture, Scalability and Performance Analysis of
a large scale portal project <<url>>

[Borthwick] John Borthwick, the CEO of Fotolog
http://www.borthwick.com/weblog/2008/01/09/fotolog-lessons-learnt/

[Little] M. Little, The Generic SOA Failure Letter
http://www.infoq.com/news/2008/11/soa-failure

[HeiseNews119307] Blackberry Storm Käuferansturm legt website lahm,
- http://www.heise.de/newsticker/Blackberry-Storm-Kaeuferansturm-legt-
Website-lahm--/meldung/119307

[Kopparapu] Chandra Kopparapu, Load Balancing Servers, Firewalls, and Caches

[Haberl] Karl Haberl, Seth Proctor, Tim Blackman,
Jon Kaplan, Jennifer Kotzen, PROJECT DARKSTAR

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 371 03/12/2010

Sun Microsystems Laboratories

[Pirazzi] Chris Pirazzi, Video I/O on Linux: Lessons Learned from SGI,
http://lurkertech.com/linuxvideoio/

[Fowler] Martin Fowler, distributed document-oriented databases,
http://martinfowler.com/bliki/DatabaseThaw.html

[InfoQ] distributed document-oriented databases
http://www.infoq.com/news/2008/11/Database-Martin-Fowler

distributed document-oriented databases
http://qconsf.com/sf2008/tracks/show_track.jsp?trackOID=170

[Purdy] Cameron Purdy, The Top 10 Ways to Botch Enterprise Java Technology-
Based Application Scalability and Reliability
http://developers.sun.com/learning/javaoneonline/2007/pdf/TS-4249.pdf

[P2PNEXT] http://www.p2p-next.org/

[Gabriel] Richard P. Gabriel, Design beyond human abilities ,
http://dreamsongs.com/Files/DesignBeyondHumanAbilitiesSimp.pdf

[Scalaris] http://www.zib.de/CSR/Projects/scalaris/
http://www.ist-selfman.org/wiki/images/1/17/Scalaris_Paper.pdf
http://www.ist-selfman.org/wiki/images/9/95/ScalarisLowRes.pdf

http://www.ist-selfman.org/wiki/images/d/d5/PeerTVLowRes.pdf
http://www.ist-selfman.org/wiki/index.php/SELFMAN_Project

http://p2pcomputing.blogspot.com/ links to p2p dist-sys.

[vanRoy] Peter van Roy, Self Management and the Future of Software Design,
http://www.ist-selfman.org/wiki/images/0/01/Bcs08vanroy.pdf

[vanRoy] Peter van Roy, The Challenges and Opportunities of Multiple
Processors: Why Multi-Core Processors are Easy and Internet is Hard (short piece
on conflicting goals in p2p and emergent behaviour like the intelligence of google
search)

[vanRoy] Peter van Roy, Overcoming Software Fragility with Interacting
Feedback Loops and Reversible Phase Transitions. (again the concept of feedback
loops for control)

[Bray] Tim Bray, Presentation: "Application Design in the context of the shifting
storage spectrum", Qcon 2008-12-01

[Fowler] Martin Fowler, DatabaseThaw,

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 372 03/12/2010

http://www.theregister.co.uk/2008/11/22/braykeynote/ on Bray Keynote, notes
that memcached was a result of a large web2.0 site (LiveJournal.com)

[Hoff] Todd Hoff, google video, Youtube Architecture,
http://highscalability.com/youtube-architecture

[Hoff] Todd Hoff , A Bunch of Great Strategies for Using Memcached and
MySQL Better Together http://highscalability.com/bunch-great-strategies-using-
memcached-and-mysql-better-together

[Hoff] Todd Hoff, Facebook Tweaks – how to handle 6 times as many
memcached requests,
http://highscalability.com/links/goto/545/396/links_weblink

[Hoff] Todd Hoff, Myspace Architecture, http://highscalability.com/myspace-
architecture

[Hoff] Todd Hoff, Scaling Twitter: making Twitter 10000 Percent Faster,
http://highscalability.com/scaling-twitter-making-twitter-10000-percent-faster

[Blaine] Blaine, Big Bird, Scaling Twitter slides,
http://www.slideshare.net/Blaine/scaling-twitter

[Mituzas] Domas Mituzas, Wikipedia: Site internals, configuration, code examples and
management issues, MySQL Users Conference 2007,
http://dammit.lt/uc/workbook2007.pdf

[Bergsma] Mark Bergsma, Wikimedia Architecture
http://www.nedworks.org/~mark/presentations/san/Wikimedia%20architecture.pd
f

http://highscalability.com

[AboutDrizzle] about Drizzle, http://drizzle.org/wiki/About_Drizzle

[Dunkel et.al.] Jürgen Dunkel, Andreas Reinhart, Stefan Fischer, Carsten Kleiner,
Arne Koschel, System-Architekturen Für Verteilte Anwendungen, Hanser 2008

[ProgrammableWeb] Overview of mashups, http://www.programmableweb.org

[CouchDB] CouchDB Technical Overview,
http://incubator.apache.org/couchdb/docs/overview.html

[Chang et.al.] Chang, Dean, Gemawat, Hsieh, Wallach, Burrows, Chandra, Fikes,
Gruber, Bigtable: A Distributed Storeage System for Structured Data
http://labs.google.com/papers/bigtable.html

[DeCandia et.al.] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,
Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami
Sivasubramanian, Peter Vosshall and Werner Vogels, “Dynamo: Amazon's

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 373 03/12/2010

Highly Available Key-Value Store”, in the Proceedings of the 21st ACM
Symposium on Operating Systems Principles, Stevenson, WA, October 2007.
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

[Vogels] Werner Vogels, Eventually Consistent – Revisited,
http://www.allthingsdistributed.com/2008/12/eventually_consistent.html

[Vogels] Werner Vogels, Eventually Consistent, Building reliable distributed
systems at a worldwide scale demands trade-offs—between consistency and
availability. ACM queue,
http://portal.acm.org/ft_gateway.cfm?id=1466448&type=pdf

[Henderson] Cal Henderson, Building Scalable Web Sites

[Henderson] Cal Henderson, Scalable Web Architectures – Common Patterns and
Approaches, presentation, http://www.slideshare.net/techdude/scalable-web-
architectures-common-patterns-and-approaches/138

[SocialText] Story of Caching,
http://www.socialtext.net/memcached/index.cgi?this_is_a_story_of_caching

[Turner] Bryan Turner, The Paxos Family of Consensus Protocols
http://brturn.googlepages.com/PaxosFamily.pdf

[Turner08] Bryan Turner, The state machine approach
http://brturn.googlepages.com/StateMachines08.pdf

[IBM] IBM System Journal on Continuously Available Systems
http://www.research.ibm.com/journal/sj47-4.html

[Golle] Philippe Golle, N. Ducheneaut, Keeping Bots out of Online Games.
In proc. of 2005 Advances in Computer Entertainment Technology.
http://crypto.stanford.edu/~pgolle/publications.html

[Kleinpeter] Tom Kleinpeter, Understanding Consistent Hashing,
http://www.spiteful.com/2008/03/17/programmers-toolbox-part-3-consistent-
hashing/

[White] Tom White, Consistent Hashing,
http://weblogs.java.net/blog/tomwhite/archive/2007/11/consistent_hash.html

[Karger] David Karger, Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web
http://citeseer.ist.psu.edu/karger97consistent.html

[MySql] MySql, Memcached hash types, MySql HA/Scalability Guide
http://dev.mysql.com/doc/mysql-ha-scalability/en/ha-memcached-using-
hashtypes.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 374 03/12/2010

[MemCachedFAQ] Memcached faq,
http://www.socialtext.net/memcached/index.cgi?faq

[ViennaOnline] Offizielle Erklärung zum Bildausfall im Euro Halbfinale 2008
http://www.vienna.at/magazin/sport/specials/euro2008/artikel/offizielle-
erklaerung-zum-bild-ausfall-im-euro-halbfinale/cn/news-20080626-
02235595/?origin=rssfeed

[Telegraph] Euro 2008: Power cut leaves football fans in the dark 27 June 2008
 http://www.telegraph.co.uk/news/uknews/2195423/Euro-2008-Power-cut-leaves-
television-fans-in-the-dark.html

[Kelly] Kevin Kelly, Predicting the next 5000 Days of the Web
http://www.ted.com/index.php/talks/kevin_kelly_on_the_next_5_000_days_of_th
e_web.html

[Hoff] Todd Hoff, Scribe- Facebooks scalable logging system
http://highscalability.com/product-scribe-facebooks-scalable-logging-system

[Hoff] Todd Hoff, How I learned to Stop Worrying and Love Using a Lot of Disk
Space to Scale, http://highscalability.com/how-i-learned-stop-worrying-and-love-
using-lot-disk-space-scale

[Henderson] Cal Henderson, Scalable Web Architectures, Common Patterns and
Approaches, http://www.slideshare.net/techdude/scalable-web-architectures-
common-patterns-and-approaches/138

[Jordan] Kris Jordan Tips on REST for PHP http://www.krisjordan.com/

 [Duxbury] Bryan Duxbury, Rent or Own: Amazon EC2 vs. Colocation
Comparison for Hadoop Clusters http://blog.rapleaf.com/dev/

[Schlossnagel] Theo Schlossnagel, Scalable Internet Architectures

IO related:
[Santos] Nuno Santos, Building Highly Scalable Servers with Java
NIO09/01/2004 http://www.onjava.com/lpt/a/5127

[Naccarato] Giuseppe Naccarato Introducing Nonblocking Sockets 09/04/2002
http://www.onjava.com/lpt/a/2672

[Hitchens] Ron Hitchens, How to build a scalable multiplexed server with NIO,
Javaone Conference 2006,
http://developers.sun.com/learning/javaoneonline/2006/coreplatform/TS-1315.pdf

[Roth] Gregor Roth, Architecture of a Highly Scalable NIO-based Server,
02/13/2007,
Dan Kegel's "The C10K problem" http://www.kegel.com/c10k.html

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 375 03/12/2010

[Darcy] Jeff Darcy, Notes on High Performance Server Design
http://pl.atyp.us/content/tech/servers.html

[Liboop] Event library for asynchronous event notification,
http://liboop.ofb.net/why

[JargonFile] Thundering Herd Problem,
http://catb.org/~esr/jargon/html/T/thundering-herd-problem.html

[Simard] Dan Simard, AJAX, Javascript and threads: the final truth
http://www.javascriptkata.com/2007/06/12/ajax-javascript-and-threads-the-final-
truth/

[vonBehren] Rob von Behren, Jeremy Condit, Eric Brewer, UCB, Why Events
Are A Bad Idea (for high-concurrency servers)
http://citeseer.ist.psu.edu/681845.html

[Welsh] Welsh, Culler, et al. – 2001, SEDA: an architecture for well-conditioned,
scalable Internet services –
http://citeseerx.ist.psu.edu/showciting;jsessionid=B3029AE01E363095959876C6
2C88CC85?cid=7065

[DeShong] Brian DeShong, Designing for Scalability, April 5, 2007
http://media.atlantaphp.org/slides/2007-04-bdeshong.pdf (excellent examples on
de-normalization etc.)

[Graf] Markus Graf, Workflow und Produktionsaspekte einer CG-Animation im
studentischen Umfeld, Bachelor-Thesis, HDM 2009-02-13

[NY Web Expo 2.0-Panel Discussion] Building in the Clouds: Scaling Web2.0
Writeup by Kris Jordan, http://www.krisjordan.com/2008/09/18/panel-discussion-
building-in-the-clouds-scaling-web-20/ , about metrics, CDNs, user behavior,
quotas and the danger developers create for service clouds.

[Boer] Benjamin Boer, The Obama Campaign – A programmers perspective,
ACM Queue, Jan. 2009 http://queue.acm.org/detail.cfm?id=1508221

[Meyer] B. Meyer, Software Architecture: Object Oriented Versus Functional, in:
Domidis Spinellis, Georgios Gousios, (Ed.), Beautiful Architecture – Leading
Thinkers Reveal the Hidden Beauty in Software Design

[Sletten] Brian Sletten, Resource-Oriented Architecures: being “in the Web”, in:
Domidis Spinellis, Georgios Gousios, (Ed.), Beautiful Architecture – Leading
Thinkers Reveal the Hidden Beauty in Software Design
[Turatti] Maurizio Turatti, camelcase, The CAP Theorem,
http://camelcase.blogspot.com/2007/08/cap-theorem.html

[Kyne] Frank Kyne, Alan Murphy, Kristoffer Stav

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 376 03/12/2010

Clustering Solutions Overview: Parallel Sysplex and Other Platforms, Clustering
concepts, Understanding Parallel Sysplex, clustering, comparing the terminology,
IBM Redbook 2007
http://www.redbooks.ibm.com/redpapers/pdfs/redp4072.pdf

[Morrill] H. Morrill, M. Beard, D. Clitherow, Achieving continuous availability
of IBM systems
infrastructures, IBM SYSTEMS JOURNAL, VOL 47, NO 4, 2008 MORRILL,
BEARD, AND CLITHEROW pg. 493
http://www.research.ibm.com/journal/sj/474/morrill.pdf

[Clarke] W.J. Clarke et.al., IBM System Z10 Design for RAS
http://www.research.ibm.com/journal/rd/531/clarke.pdf

[ITIL3] OGC Common Glossary, ITIL Version 3 (May 2007),
http://www.best-management-
practice.com/officialsite.asp?FO=1230366&action=confirmation&tdi=575004

[LSHMLBP], Th. Lumpp, J. Schneider, J. Holtz, M.Mueller, N.Lenz, A.Biazetti,
D.Petersen, From high availability and disaster recovery to business continuity
solutions, HA approaches, in: IBM SYSTEMS JOURNAL, VOL 47, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/lumpp.pdf (good explanation of HA
concepts, clustering etc.)

[STTA] W.E.Smith, K.S.Trivedi, L.A.Tomek, J.Ackaret, Availability analysis of
blade servers systems, in: IBM SYSTEMS JOURNAL, VOL 47, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/smith.pdf (shows state-space models
like Markov Models, Semi Markov Processes etc. for availability calculation.
Nice failure tree of blade system architecture)

[CDK] R.Cocchiara, H.Davis, D.Kinnaird, Data Center Topologies for mission-
critical business systems, in: IBM SYSTEMS JOURNAL, VOL 47, NO 4, 2008
http://www.research.ibm.com/journal/sj/474/cocchiara.pdf Disaster recovery
concepts, two and three site architectures

Jboss Tree Cache – clustered, replicated, transactional, http://www.jboss.org/file-
access/default/members/jbosscache/freezone/docs/1.4.0/TreeCache/en/html_singl
e/index.html#d0e2066

[Miller] Alex Miller, Understanding Actor Concurrency, Part 1: Actors in Erlang
http://www.javaworld.com/javaworld/jw-02-2009/jw-02-actor-
concurrency1.html?nhtje=rn_031009&nladname=031009javaworld%27senterpris
ejavaal

Statistics, Modeling etc.

PDQ Pretty Damn Quick. Open-source queueing modeler.
Supporting textbook with examples (Gunther 2005a)
www.perfdynamics.com/Tools/PDQ.html

R Open source statistical analysis package.
Uses the S command-processing language.
Capabilities far exceed Excel (Holtman 2004).

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 377 03/12/2010

www.r-project.org

SimPy Open-source discrete-event simulator
Uses Python as the simulation programming language.
simpy.sourceforge.net

[Burrows] Mike Burrows, The chubby lock service for loosely-coupled
distributed systems, Google paper,

[Pattishall] Dathan Vance Pattishall, Federation at Flickr – doing Billions of
Queries per Day,

[Indelicato] Max Indelicato, Scalability Strategies Primer: Database Sharding,
http://blog.maxindelicato.com/2008/12/scalability-strategies-primer-database-
sharding.html

[Hoff] Todd Hoff, “latency is everywhere and it costs you sales - how to crush
it”
[Pritchett] Dan Pritchett, Lessons for lowering latency
[ALV] Al-Fares, Loukissas, Vahdat, A Scalable, Commodity Date Center
Network Architecture
[Google] Google's Paxos Made Live – An Engineering Perspective

[Laird] Cameron Laird, Lightweight Web Servers – Special purpose HTTP
applications complement Apache and other market leaders. (Evaluation criteria
and lists of special purpose web servers)

[Sennhauser] Oli Sennhauser, MySQL Scale-Out by application partitioning.
(Various partitioning methods for data, e.g range, characteristics. Load,
hash/modulo. Application aware partitioning)

[Ottinger] Joseph Ottinger, What is an App Server? (Good comparison of J2EE
architecture properties like request/response with a dynamic Grid environment).

[Lucian] Mihai Lucian, Building a Scalable Enterprise Applications using
Asynchronous IO and SEDA Model, 2008 (with performance numbers)

[Jones] Tim Jones, Boost application performance using asynchronous I/O, posix
AIO API. (on Linux IO models)

[Pyarali et.al] Pyarali, Harrison, Schmidt, Jordan, Proactor – An Object
Behavioral Pattern for Demultiplexing and Dispatching Handlers for
Asynchronous Events

[Lavender et.al.] Lavender, Schmidt, Active Object – An Object Behavioral
Pattern for Concurrent Programming

[Gilbert et.al.] Seht Gilbert, Nancy Lynch, Brewer’s Conjecture and the
Feasibility of Consistent, Available, Partition-Tolerant Web Services (on the CAP
Theorem), see also Vogels

[Indelicato] Max Indelicato, Distributed Systems and Web Scalability Resources,
(excellent list from his blog)

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 378 03/12/2010

[Smith] Richard Smith, Scalability by Design – Coding for Systems with Large
CPU Counts, SUN.

[Trencseni] Morton Trencseni, Readings in Distributed Systems,
http://bytepawn.com (excellent resource for papers)

[HAProxy] Reliable, High Performance TCP/HTTP Load Balancer,
www.haproxy.lwt.eu

[Hoff] Todd Hoff, canonical cloud architecture, (emphasizes queuing).

[Karger et.al.] David Karger, Alex Sherman, Web Caching with Consistent
Hashing http://www8.org/w8-papers/2a-webserver/caching/paper2.html#chash2

[Watson] Brandon Watson, Business Model Influencing Software Architecture
(questions Animoto scaling lesions on EC2)
http://www.manyniches.com/cloudcomputing/business-model-influencing-
software-architecture/

[geekr] Guerilla Capacity Planning and the Law of Universal Scalability,
http://highscalability.com/guerrilla-capacity-planning-and-law-universal-
scalability

[Optivo] Hscale, MySQL proxy LUA module (www.hscale.org) with some
interesting numbers on DB limits discussed

[Amir et.al.] Amir, Danilov, Miskin-Amir, Schultz, Stanton, The Spread toolkit,
Architecture and Performance

[Allamaraju] Subbu Allamaraju, Describing RESTful Applications, Nice article
talking about locating resources when servers control their namespace. Bank API
example.

[Schulzrinne] Henning Schulzrinne, Engineering peer-to-peer systems,
Presentation. 2008. Excellent overview of p2p technology.

[Loeser et.al.] Loeser, Altenbernd, Ditze, Mueller, Distributed Video on Demand
Services on Peer to Peer Basis.

[Scadden et.al.] Scadden, Bogdany, Cliffort, Pearthree, Locke, Resilition hosting
in a continuously available virtualized environment, in: IBM Systems Journal
Vol. 47 Nr. 4 2008 (on serial and parallel availability)

[Miller] Alex Miller, Understanding Actor Concurrency, Part 1: Actors in Erlang
www.javaworld.com 02/24/09
<http://www.javaworld.com/javaworld/jw-02-2009/jw-02-actor-
concurrency1.html?nhtje=rn_030509&nladname=030509>

[ThinkVitamin.com] ThinkVitamin.com, Serving Javascript fast

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 379 03/12/2010

[Yu] Wang Yu, Uncover the hood of J2EE clustering,
http://www.theserverside.com/tt/articles/article.tss?l=J2EEClustering

[Yu[Wang Yu, Scvaling your Java EE Applications, Part 1 and 2
http://www.theserverside.com/tt/articles/article.tss?l=ScalingYour
JavaEE
Applications
http://www.theserverside.com/tt/articles/article.tss?l=ScalingYour
JavaEE
ApplicationsPart2

Terracotta scalability: http://www.infoq.com/infoq/url.action?i=595&t=p
http://www.infoq.com/infoq/url.action?i=614&t=p
http://www.infoq.com/infoq/url.action?i=749&t=p
http://www.infoq.com/infoq/url.action?i=602&t=p
http://www.infoq.com/infoq/url.action?i=440&t=p

http://www.infoq.com/bycategory/contentbycategory.action?idx=2&ct=5&alia
s=performance-scalability

what is an appserver?
http://www.theserverside.com/tt/articles/article.tss?l=WhatIsAnAppServer
Java EE APIs list too, cloud computing changes app server

http://www.theserverside.com/tt/articles/article.tss?l=AreJavaWebApplica
tionsSecure

[Resin] Scaling Web Applications in a Cloud Environment using Resin 4.0,
Technical White Paper, coucho 2009

[Perros] Harry Perros, Computer Simulation Techniques, The Definitive
Introduction, http://www.csc.ncsu.edu/faculty/perros//simulation.pdf

[Saab] Paul Saab, Scaling memcached at Facebook,
http://www.facebook.com/note.php?note_id=39391378919&id=9445547199&ind
ex=0

[Viklund] Andreas Viklund, Empyrean, Performance – When do I start worrying?
http://pravanjan.wordpress.com/2009/03/24/performance-when-do-i-start-
worrying/

[Bray] Tim Bray, Sun Cloud API Restful API
http://kenai.com/projects/suncloudapis/pages/Home

Websphere eXtreme Scale http://www-
01.ibm.com/software/webservers/appserv/extremescale/

[Levison] Ladar Levison, Lavabit-Architecture – Creating a Scalable Email
Service http://highscalability.com/LavabitArchitecture.html

[Xue] Jack Chongjie Xue, Building a Scalable High-Availability E-Mail System
with Active Directory and More, http://www.linuxjournal.com/article/9804

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 380 03/12/2010

[Pravanjan] Pravanjan, Performance – when do I start worrying?

[Hoff] Are Cloud Based Memory Architectures the Next Big Thing? 03/17/2009,
www.highscalability.com

[Persyn] Jurriaan Persyn, Database Sharding at Netlog, Presentation held at
Fosdem 2009 http://www.jurriaanpersyn.com/archives/2009/02/12/database-
sharding-at-netlog-with-mysql-and-php/

MVCC:
[Rokytskyy] Roman Rokytskyy, A not-so-very technical discussion of Multi
Version Concurrency Control,
http://www.firebirdsql.org/doc/whitepapers/tb_vs_ibm_vs_oracle.htm

[Webster] John Webster, DataDirect S2A: RAID for a Petabyte World, Aug.
2008, http://www.illuminata.com

[Coughlin] Tom Coughlin, The Need for (Reliable) Speed, Coughlin Associates,
Aug. 2008

[Stedman] Geoff Stedman, Aktive Speichertechnik, Grid Speicher, in FKT 3/2008

[Bacher] Bacher Systems EDV GmbH, Storage einmal anders betrachtet,
Newsletter 2/2008, http://www.bacher.at

[Venners] Bill Venners, Twitter on Scala – a conversation with Steve Johnson,
Alex Payne and Robey Pointer, April 2009
http://www.artima.com/scalazine/articles/twitter_on_scala.html
(talks about Ruby problems with stability, building type systems in dynamic
languages, just like the developers with static languages build dynamic features
over time. Scala advantages and disadvantages.

[Glover] Andrew Glover, Storage made easy with S3,
http://www.ibm.com/developerworks

[Maged et.al.] Maged Michael, José E. Moreira, Doron Shiloach, Robert W.
Wisniewski
IBM Thomas J. Watson Research Center
 Scale-up x Scale-out: A Case Study using Nutch/Lucene
http://www.cecs.uci.edu/~papers/ipdps07/pdfs/SMTPS-201-paper-1.pdf

[Chu et.al.] Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary
Bradski, Andrew Y. Ng, Kunle Olukotun, Map-Reduce for Machine Learning on
Multicore,
http://www.cs.stanford.edu/people/ang//papers/nips06-mapreducemulticore.pdf

[Bartel] Jan Bartel, Proposed Asynchronous Servlet API,
http://www.theserverside.com/news/thread.tss?thread_id=40560

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 381 03/12/2010

[Schroeder] B.Schroeder, M.Harchol-Balter, Web Servers under overload: How
scheduling can help, in Charzinski, Lehnert, ITC 18, Elsevier Science

[Wilkins] Greg Wilkins, Asynchronous I/O is hard,
http://blogs.webtide.com/gregw/entry/asynchronous_io_is_hard
 (on partial reads/writes and other problems)

[Sun] Thread Pools Using Solaris 8 Asynchronous I/O,
http://developers.sun.com/solaris/articles/thread_pools.html

[Palaniappan] Sathish K. Palaniappan, Pramod B. Nagaraja, Efficient data
transfer through zero copy: Zero Copy – Zero Overhead,
http://www.ibm.com/developerworks/linux/library/j-zerocopy/

David Patterson, Why Latency Lags Bandwidth,
and What it Means to Computing
http://www.ll.mit.edu/HPEC/agendas/proc04/powerpoints/Banquet%20and%20K
eynote/patterson_keynote.ppt

[Maryka] Steve Maryka, What is the Asynchronous Web and How is it
Revolutionary? http://www.theserverside.com/tt/articles/article.tss?track=NL-
461&ad=700978&l=WhatistheAsynchronousWeb&asrc=EM_NLN_6729006&ui
d=5812009

[Shalom] Nati Shalom, Auto-Scaling your existing Web Applications,
http://library.theserverside.com/detail/RES/1242406940_306.html?asrc=vcatssc_s
itepost_05_15_09_c&li=191208

[Sweeney] Tim Sweeney, The Next mainstream Programming Language: a Game
Developers Perspective, http://www.cs.princeton.edu/~dpw/popl/06/Tim-
POPL.ppt

[Jäger] Kai Jäger, Finding parallelism - How to survive in a multi-core world
Bachelor thesis at HDM Stuttgart 2008

[Schneier] Bruce Schneier, Interview on cloud-computing
http://www.vnunet.com/vnunet/video/2240924/bruce-schneier-cloud-security

[Fountain] Stefan Fountain, What happens when David Hesselhof meets the
cloud, experiences with AWS, http://www.infoq.com/presentations/stefan-
fountain-hasselhoff-cloud

[Elman] Josh Elman, glueing together the web via the facebook platform,
http://www.infoq.com/presentations/josh-elman-glue-facebook-web

[Armstrong] Joe Armstrong, Functions + Messages + Concurrency = Erlang

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 382 03/12/2010

http://www.infoq.com/presentations/joe-armstrong-erlang-qcon08

[Wardley] Simon Wardley, cloud, commoditisation etc.
http://www.slideshare.net/cpurrington/cloudcamp-london-3-canonical-simon-
wardley

[Oracle] Oracle® Database Concepts, 10g Release 2 (10.2) Part Number B14220-
02 , Chapter 13 Data Concurrency and Consistency (on statement or transaction
read level consistency, MVCC use and isolatioin levels possible. Essential reading
for the web site architect).

[Harrison] Ann W. Harrison, Firebird for the Database Expert: Episode 4 - OAT,
OIT, & Sweep,
http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_expert4

[Wilson] Jim R. Wilson, Understanding Hbase and BigTable,
http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
[Wilson] Jim R. Wilson, Understanding Hbase Column-family performance
options http://jimbojw.com/wiki/index.php?title=Understanding_HBase_column-
family_performance_options
[Goetz] Brian Goetz, Java theory and practice: Concurrent collections classes -
ConcurrentHashMap and CopyOnWriteArrayList offer thread safety and
improved scalability
http://www.ibm.com/developerworks/java/library/j-jtp07233.html#author1

[Ellis] Jonathan Ellis Why you won't be building your killer app on a distributed
hash table
http://spyced.blogspot.com/2009/05/why-you-wont-be-building-your-killer.html#

[Bain] Tony Bain, The Problems with the Relational Database (Part 1) –The
Deployment Model http://weny.ws/1Xx

[EMC] Storage Systems Fundamentals to Performance and Availability
http://germany.emc.com/collateral/hardware/white-papers/h1049-emc-clariion-
fibre-chnl-wp-ldv.pdf

[Schmuck] Frank Schmuck, Roger Haskin, GPFS: A Shared-Disk File System for
Large Computing Clusters, Proceedings of the FAST 2002 Conference on File
and Storage Technologies Monterey, California, USA January 28-30, 2002
http://db.usenix.org/events/fast02/full_papers/schmuck/schmuck.pdf

[Avid] Avid Unity Isis,
http://www.avid.com/resources/whitepapers/Avid_Unity_ISIS_WP.pdf

[Northrop] Linda Northrop, Scale changes everything, OOPSLA06
http://www.sei.cmu.edu/uls/files/OOPSLA06.pdf

Goth, Greg. Ultralarge Systems: Redefining Software Engineering? IEEE
Software, 2008

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 383 03/12/2010

Gabriel, Richard P. Design Beyond Human Abilities

[Heer] Jeffrey Heer, Large-Scale Online Social Network Visualization,
http://www.cs.berkeley.edu/~jheer/socialnet/

[Hohpe] Gregor Hohpe, Hooking Stuff Together – Programming the Cloud
http://www.infoq.com/presentations/programming-cloud-gregor-hohpe

[Goth] Greg Goth, Ultralarge Systems: Redefining Software Engineering, IEEE
Software March/April 2008

[Jacobs] Adam Jacobs, The pathologies of Big Data, ACM Queue
http://queue.acm.org/detail.cfm?id=1563874

[Henney] Kevlin Henney, Comment on Twitter Architecture
http://www.infoq.com/news/2009/06/Twitter-Architecture

[Saab] Paul Saab (notes) facebook developer blog, Friday, December 12, 2008 at
12:43pm
http://www.facebook.com/people/Paul-Saab/500025857

[Weaver] Evan Weaver, Architectural changes to Twitter,
http://blog.evanweaver.com/about/

[google] Entity Groups and Transactions
http://code.google.com/appengine/docs/python/datastore/transactions.html

[Scheurer] Isolde Scheurer, Single-Shard MMOG EVE online, HDM 2009,
http://www.kriha.de/krihaorg/dload/uni/..<< >>

[Stiegler] Andreas Stiegler, MMO Server Structures, Why the damn thing always
lags! HDM 2009 http://www.hdm-stuttgart.de/~as147/mmo.pdf slides:
http://www.hdm-stuttgart.de/~as147/mmo.pptx

[Seeger] Marc Seeger, Key-Value Stores – a short overview… << >>

[Spolsky] Joel Spolsky, Can your Programming Language do that? Article on
functional programming and map reduce in http://www.joelonsoftware.com

[Adzic] Gojko Adzic, Space Based Programming,
http://gojko.net/2009/09/07/space-based-programming-in-net-video/

[Krishnan et.al.] Rupa Krishnan Harsha V. Madhyastha Sridhar Srinivasan
Sushant Jain§
Arvind Krishnamurthy Thomas Anderson£ Jie Gao, Moving Beyond End-to-End
Path Information to Optimize CDN Performance

[DynaTrace] The problem with SLA monitoring in virtualized environments
http://blog.dynatrace.com/2009/09/23/the-problem-with-sla-monitoring-in-
virtualized-environments/

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 384 03/12/2010

[VMWare] Time Keeping in VMWare Virtual Machines
http://www.vmware.com/pdf/vmware_timekeeping.pdf

 [Harzog] Bernd Harzog Managing Virtualized Systems – Pinpointing
performance problems in the virtual infrastructure April 2008
http://www.vmworld.com/servlet/JiveServlet/previewBody/3420-102-1-
4432/Managing%20Virtualized%20Systems%20-
%20APM%20experts%20Apr08.pdf

[Dynatrace] Cloud Service Monitoring for Gigaspaces
http://blog.dynatrace.com/2009/05/07/proof-of-concept-dynatrace-provides-
cloud-service-monitoring-and-root-cause-analysis-for-gigaspaces/

[Chiew] Chiew, Thiam Kian (2009) Web page performance analysis. PhD thesis,
University of Glasgow. http://theses.gla.ac.uk/658/01/2009chiewphd.pdf

[Schroeder] Bianca Schroeder, Eduardo Pinheiro, Wolf-Dietrich Weber, DRAM
Errors in the Wild: A Large-Scale Field Study
http://www.cs.toronto.edu/~bianca/papers/sigmetrics09.pdf

[Cooper] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam
Silberstein,
Philip Bohannon, HansArno Jacobsen, Nick Puz, Daniel Weaver and Ramana
Yerneni, PNUTS: Yahoo!’s Hosted Data Serving Platform,
http://highscalability.com/yahoo-s-pnuts-database-too-hot-too-cold-or-just-right

[Cantrill] Brian Cantrill, Dtrace Review, Google Video
http://video.google.com/videoplay?docid=-8002801113289007228#

[Shoup] Randy Shoup, eBay’s Challenges and Lessons from Growing an
eCommerce Platform to Planet Scale HPTS 2009 October 27, 2009

[Click] Cliff Click, Brian Goetz, A crash-course in modern hardware, Video,
JavaOne 2009 http://www.infoq.com/presentations/click-crash-course-modern-
hardware

[Ristenpart] Thomas Ristenpart� Eran Tromer† Hovav Shacham� Stefan
Savage�, Hey, You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds
http://people.csail.mit.edu/tromer/papers/cloudsec.pdf

[Heiliger] Jonathan Heiliger Real-World Web Application Benchmarking
http://www.facebook.com/notes/facebook-engineering/real-world-web-
application-benchmarking/203367363919 Discusses the effects of memory access
times in a highly optimized infrastructure

Walter Kriha, Scalability and Availability Aspects…, V.1.9.1 page 385 03/12/2010

Index
—M—
Media 5
—P—
People 5
—S—
Social Media 5

